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ABSTRACT 

 

 

With the pervasiveness of high-speed computers and processors, computer companies are 
looking for new technologies to incorporate into their products and use as a competitive advantage 
in the market. Two modern and rapidly growing techniques are quantum computing and the use 
of artificial neural networks (ANN) in computations. In this article, the possibility of integration of 
these two technologies is investigated and based on recently published research outcomes, an 
approach for the implementation of a recent model of a quantum perceptron is proposed. The 
implementation is conducted in the Intel quantum simulator (Intel-QS), which is a simulator written 
in C++ format using MPI to take advantage of multi-core and multi-node architectures for speed-
up [1]. 
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1. INTRODUCTION 

 

Artificial neural networks are a set of algorithms, that are inspired by but not identical to, biological neural 
networks of brain and they have proved to be able to learn different tasks such as pattern recognition, image 
classification, and decision making by looking at a set of examples [5]. It is also worth mentioning that as 
complex as the architecture of the ANN becomes, it requires more computer resources (e.g. memory and 
CPU) to be trained and used properly. Hence, considerable effort has been devoted to research on finding 
a practical implementation of a neural network in inexpensive and fast hardware devices. Field 
Programmable Gate Arrays (FPGAs) [2], Neuromorphic Chips [3], and Optical Networks [4] are among the 
successful approaches to realize a neural network in micro-controllers, chemical materials with neural 
behaviours, and optical systems, respectively. These hardware based neural networks have many 
applications in science and technology. For instance, FPGAs are being tested in real-time triggering systems 
at the European organization for nuclear research (CERN) as an efficient way to perform various tasks such 
as particle identification and track reconstruction with much less overall latency [7]. 
 
 
Although these implementations are faster in some cases and less expensive than conventional memory 
and CPU used in laptops, they still need lots of resources. A possible solution for this issue is to find a 
mechanism or an architecture which is intrinsically capable of storing and accessing a large amount of 
information at a given clock cycle. Qubits have such properties. For this reason, researchers have attempted 
to build a model for a Quantum Perceptron which uses qubits to perform its job. The perceptron is the 
simplest possible architecture of an artificial neural network which essentially has one layer of nodes with 
the corresponding mutual connection between them. F. Tacchino et al. have recently proposed a model to 
implement an artificial neuron on an actual quantum processor [5]. This new model combines the 
mathematical modeling features offered by neural networks and the increased speed and access to more 
storage and information offered by qubits. The model is briefly explained in the next section and a successful 
implementation of a simple case with N = 2 qubits in the quantum register is performed in the Intel quantum 
simulator (Intel-QS [1]) and the outcomes are given in the results section. 
 

2. The Model 

 

R. Rosenblatt in 1957 [8] was the first person to build a simple model for a perceptron; which is represented 
in Fig.1a [5]. In this model, two binary valued vectors are given as input and weight vectors and the inner 
product of these two vectors is then passed to an activation function with a particular threshold value based 
on which it is decided whether the perceptron is activated or not. This type of binary valued perceptron is 
known as a McCulloch-Pitts neuron in literature and facilitates the definition of a quantum perceptron, 
because the input and weight vectors can be encoded as the sign of amplitudes in front of the Hilbert space 
states [9]. 
 
F. Tacchino et al. have employed a particular class of quantum hypergraph states to find an algorithm for 
quantum modeling of a perceptron [10]. The corresponding quantum version of the classical perceptron 
defined in Fig.1a, is depicted in Fig.1b. As generally accepted, any perceptron should have a main feature, 
which is the non-linearity of its outcome.This feature has been achieved in this proposal by introducing an 
Ancilla qubit in qubit register and then exploiting the non-linearity of the quantum measurement process of 
Ancilla qubit in order to implement the threshold function [5]. The input to the perceptron now comprises a 
qubit register with a set of qubits initialized in |0⟩ state. Then, two unitary transformations, namely 𝑈𝑖 and 

𝑈𝑤 are defined in such a way that they transform the initial qubit register to a state that if projected along 
the Ancilla qubit, is equal to the inner product of the classical input and weight vectors, up to a normalization 
factor [5]. 
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Figure 1. (a) Schematic representation of a classical versus (b) a quantum version of a perceptron 
(obtained from [5]). 

 
In order to demonstrate how the unitary transformations perform this task, the input and weight vectors are 
considered as m-dimensional vectors with binary valued components 𝑖𝑗 & 𝑤𝑗  ∈  {−1, +1} as written in Equ.1. 

Furthermore, two quantum states |𝜓𝑖⟩ and |𝜓𝑤⟩ are defined using the corresponding vector components as 

amplitudes for the eigenstates in the m-dimensional Hilbert space of N qubits (see Equ.2), where 𝑚 = 2𝑁. 
These two quantum states are equally weighted superpositions of every possible state in the Hilbert space. 
 

 

 
 

 
The states |j⟩  ∈  {|00 … 00⟩, |00 … 01⟩, … , |11 … 11⟩ } are the members of the Hilbert space for N qubits in the 
qubit register - this space is the so-called computational basis of the quantum register. The index j is the 
decimal representation of the corresponding binary string for each member of the computational basis. 
 
𝑈𝑖  is defined in such a way that when applied on the initial qubit register, it produces the |𝜓𝑖⟩ quantum state 

and similarly, 𝑈𝑤 is defined in a way that when it acts on the quantum state |𝜓𝑤⟩, the computational basis 

member |1⟩⨂ 𝑁 is obtained. 
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As stated by F. Tacchino et al., any unitary matrix with the input vector in the first column can be used as 
𝑈𝑖 and any unitary matrix with the weight vector in its last row can be substituted in the Equ.3 for 𝑈𝑤. The 

action of the 𝑈𝑤 operator on |𝜓𝑖⟩ is also defined as |𝜙𝑖,𝑤⟩ and since [𝑈𝑖 , 𝑈𝑤] = 0, we can expand the result 

as in Equ.4. 
 

 
 
From Equ.3 it is easy to deduce that the inner product of quantum states in Equ.2 can be written as 
 
 

 
 
 

Moreover, using Equ.2 it is straightforward to demonstrate that 𝑖. �⃗⃗⃗� = 𝑚 〈𝜓𝑤|𝜓𝑖〉. Therefore, the inner 
product of the input and weight vector which is the most important element for a perceptron, is related to 
the coefficient 𝑐𝑚−1 (see Equ.5) up to a normalization factor. In order to obtain this coefficient, an Ancilla 

qubit is used in the qubit register which is initially in state |0⟩ [5]. A N-controlled NOT gate between the usual 

qubits in the quantum register and the target Ancilla qubit, will change the term |𝜙𝑖,𝑤⟩|0⟩𝑎 as below [5]. 

 
 

 
 

 
Therefore, one can obtain the coefficient 𝑐𝑚−1 by performing a measurement on the probability of the Ancilla 
qubit being in state |1⟩𝑎 [5]. This quantum measurement introduces a non-linearity in the outcome of the 
threshold function which is desired for an effective modeling of a quantum perceptron [5]. 

3. Unitary Transformations 

 

In this section the practical implementation of the unitary transformations is explained. These 
transformations consist of a set of operators which are unitary by themselves and will prepare the quantum 
states |𝜓𝑖⟩ and |𝜓𝑤⟩ as defined in Equ.2. There are two approaches for this purpose, namely the sign-flip 
blocks and the Hypergraph States Generation Subroutine (HSGS) algorithm [5]. 
 
 

a. Sign-Flip Block Approach 
 

 
This approach is a brute-force method and utilizes a successive application of sign-flip blocks to manipulate 
the sign in front of the amplitudes associated with each member of the computational basis within |𝜓𝑖⟩ 
expansion [5]. A definition of the sign-flip operator is given in the Equ.7. The 𝑆𝐹𝑁,𝑗 can be seen as a 

controlled Z gate, which is a useful quantum gate [6] and can be employed to change the signs in front of 
computational basis vectors based on a given input or weight vector to obtain the desired representation for 

|𝜓𝑖⟩ and |𝜓𝑤⟩. For example 𝑍 ≡ 𝑆𝐹1,1 and 𝐶𝑁𝑍 ≡ 𝑆𝐹𝑁,𝑚−1 [5]. Therefore, a generic sign-flip block can be 

decomposed into a product of NOT and C𝑁Z quantum gates as illustrated in Equ.8. 
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The index l in the Equ.8 means that the particular quantum gate should be applied on the l-th qubit in the 
qubit register and 𝑗𝑙 = 0(1) if the l-th qubit is in state |0⟩ (|1⟩) [5]. 
 

This approach starts with a qubit register initialized in |0⟩⨂ 𝑁 state and then N number of parallel Hadamard 
gates are applied to obtain an equally weighted and positively signed superposition of all possible 
computational basis vectors. Then, based on the input or weight vector components, sign-flip blocks are 

applied to the qubits to produce the quantum states of Equ.2 [5]. The set of Hadamard, NOT and C𝑁Z gates 
are then packed as the 𝑈𝑖 or 𝑈𝑤  unitary transformation introduced above. 
 
 

b. HSGS Algorithm 
 
 
The HSGS algorithm is based on the fact that there is a mapping between a mathematical hypergraph and 
a quantum circuit consisting of controlled Z gates [10]. A simple example of such a mapping is shown in 

Fig.2. This algorithm also starts with the qubit register in the state |0⟩⨂ 𝑁 and after applying the parallel 
Hadamard gates, based on a given input or weight vector, it follows the steps outlined below [5]: 
 
 

 First, Z gates are applied on the computational basis vectors within the quantum state with only one 
qubit being in state |0⟩ which require a (-1) sign in front of it. It should be noted that extra sign flips 
might happen and they must be considered at the end of the algorithm implementation. 

 

 Second, C𝑝Z gates are applied on the computational basis vectors with exactly p qubits in state |1⟩, 
where p ∈  {2, 3, … , N }. This leaves the computational basis members with less than p qubits in 

state |1⟩ untouched. 
 

 

 

Figure 2. A mathematical heypergraph (on the left) and the corresponding quantum circuit (obtained from [5]). 
Circles represent a controlled Z gate. 

 

As previously stated, after applying the unitary transformations, the state of the perceptron should be 
projected along done using an N-controlled NOT gate (Toffoli gate), where N is the number of qubits in the 
qubit register (excluding the Ancilla qubit) [5]. To further clarify the HSGS algorithm and also the role of 
Toffoli quantum gate, the quantum version of a classical perceptron with the below input and weight vectors 
is depicted in Fig.3, which is based on HSGS algorithm. 
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Figure 3. Quantum circuit for N = 2 case Q-Perceptron [5]. 

4. Results and Discussion 

 

The N = 2 case quantum perceptron is implemented in Intel-QS. Intel-QS is a distributed high-performance 
quantum simulator on classical supercomputers, which is written in C++ format using a message passing 
interface (MPI). It can perform general qubit gates in multi-core architectures for obtaining high performance 
and high hardware efficiency [1]. As an example, the script for the quantum circuit of Fig.3 for the particular 
combination of input and weight vectors in equation 2 is given in the code snippet below. 
 
 
#include "../qureg/qureg.hpp" 

using namespace std; 

#include <iostream> // to use: std::cout, std::cin and std::endl 

#include <iomanip> // to use: setw() in making tables 

#include <complex> 

///////////////////////////////////////////////////////////////////////////////////////

// 

///////////////////////////////////////////////////////////////////////////////////////

// 

///////////////////////////////////////////////////////////////////////////////////////

// 

int main(int argc, char **argv) 

{ 

unsigned myrank=0, nprocs=1; 

#ifdef INTELQS_HAS_MPI 

openqu::mpi::Environment env(argc, argv); 

myrank = openqu::mpi::Environment::rank(); 

nprocs = openqu::mpi::Environment::size(); 

// MPI_rank(MPI_COMM_WORLD, &myrank); 

#endif 

double sum = 0.; 

std::cout << "------------------\n" 

<< " Single qubit \n" 

<< "------------------\n"; 

QubitRegister<ComplexDP> psi(3,"base",0); 

psi.EnableStatistics(); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyHadamard(0); 

psi.ApplyHadamard(1); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyPauliZ(1); 

psi.Print(" initial state |psi>=|-> : "); 
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psi.ApplyCPauliZ(0,1); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyPauliZ(0); 

psi.ApplyPauliZ(1); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyCPauliZ(0,1); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyHadamard(0); 

psi.ApplyHadamard(1); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyPauliX(0); 

psi.ApplyPauliX(1); 

psi.Print(" initial state |psi>=|-> : "); 

psi.ApplyToffoli(2,0,1); 

psi.Print(" initial state |psi>=|-> : "); 

double prob = 0.; 

prob = psi.GetProbability(2); 

std::cout<< " Ancilla Measurement: " << prob << std::endl; 

return 0; 

} 

 

In Fig.3 as we proceed from left to right, after applying each gate or set of parallel gates, the state of the 
qubit register is printed out with the command line "psi.Print(" initial state |psi>=|-> : ");" to make it possible 
for the reader to follow the changes in each step. The outcome of the above code is shown below. 
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As shown in the above results, the amplitudes and probabilities corresponding to each of the computational 
basis vectors is given as a complex valued and a real number, respectively. Furthermore, the outcome of 
the Ancilla qubit measurement is 0:0, which means that the inner product of the input and weight vectors 
must also be zero and this can easily be verified from equation 1. 
 
It is worth mentioning that, despite the achieved speed-up because of multi-core parallelization and also 
high hardware efficiency through efficient memory allocation, there are limitations coming from sustainable 
memory and network bandwidth of the machine [1]. Simulation of qubits is so costly and needs a huge 
amount of memory (of the order of Petabytes for a few tens of qubits, as reported in [1]) and network 
bandwidth. This is because of the fact that by increasing the number of qubits, there is an exponential 
increase in the resources requests to store the quantum information. With the current state of the available 
supercomputers, it is only possible to simulate a quantum system with at most 50 qubits in it [1]. 
 
From the algorithmic point of view, it is straightforward to show that there is a symmetry under a global sign 
flip for input and weight vectors and the outcome of the perceptron remains unchanged [5]. Therefore, in 
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the worst case, the sign-flip approach requires at most 
𝑚

2
= 2𝑁−1 sign-flip blocks for a total of 

𝑚

2
 independent 

(-1) factors in the expansion of quantum states in Equ.2 [5]. Since each sign-flip block consists of an C𝑁Z 
gate, this approach is exponentially expensive in terms of number of qubits involved in each gate and also 

the number of gates [5]. On the other hand, the HSGS algorithm uses at most one C𝑁Z gate and a number 
of C𝑝Z gates with 𝑝 < N. Therefore, the circuit built with this algorithm needs less resources and also proves 
to be more efficient than sign-flip approach in classification tasks as demonstrated by F. Tacchino et al. The 
HSGS is based on hypergraph states which have been studied and employed in quantum algorithms that 
have manifested successful results in practical applications [10][11]. 

5. Conclusion 

 

In conclusion, the simplest case of a perceptron composed of two qubits was implemented in Intel-QS. The 
obtained results were consistent with the results by F. Tacchino et al. In principle, this type of perceptron 
can offer more storage capacity for information which is in general of great importance for machine learning 
algorithms [5]. On the other hand, if the implementation is on classical hardware, the resource requests also 
increase exponentially. One suggestion for an efficient implementation, is using near-term quantum 
processing devices such as cloud-based quantum hardware called IBM-Q [5]. However, since the Intel-QS 
uses multi-core and multi-node architectures for implementation, the classical supercomputers are likely to 
be the main feasible simulation devices for the next one or two decades. 
 
Moreover, although the HSGS algorithm is more efficient and accurate than sign-flip approach and optimizes 
the number of multi-qubit operations [5], it still needs a considerable amount of resources. 
 
As a future direction, author aims to completely implement the 𝑁 =  2 case qubit register for arbitrary 
combinations of input and weight vectors and then perform classification tasks with that. Furthermore, 
generalization of the binary valued quantum perceptron to one with any possible value for input and weight 
vectors is being researched by the author. If this attempt proves to be successful, the perceptron can be 
trained since it would be possible to perform back-propagation algorithms. Moreover, one can look at a deep 
quantum neural network with many layers and interconnection built with a trainable quantum perceptron. 
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