

IMPLEMENTATION OF A QUANTUM

PERCEPTRON IN INTEL-QS

Sep. 2019

AUTHOR:

Mohammad Reza Noormandipour
(Shahid Beheshti University, Iran)

IT-DI-OPL

SUPERVISORS:

Federico Carminati (CERN)
Fabio Fracas (CERN)
Sofia Vallecorsa (CERN)

CERN openlab Report // 2019

2

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

ABSTRACT

With the pervasiveness of high-speed computers and processors, computer companies are
looking for new technologies to incorporate into their products and use as a competitive advantage
in the market. Two modern and rapidly growing techniques are quantum computing and the use
of artificial neural networks (ANN) in computations. In this article, the possibility of integration of
these two technologies is investigated and based on recently published research outcomes, an
approach for the implementation of a recent model of a quantum perceptron is proposed. The
implementation is conducted in the Intel quantum simulator (Intel-QS), which is a simulator written
in C++ format using MPI to take advantage of multi-core and multi-node architectures for speed-
up [1].

Keywords: Artificial Neural Networks (ANN) . Quantum Computing . Intel-QS . MPI

CERN openlab Report // 2019

3

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

TABLE OF CONTENTS

Introduction 04

The Model 04

Unitary Transformations 06

Sign-Flip Block Approach

HSGS Algorithm

Results and Discussion 08

Conclusion 11

Acknowledgement 11

References 11

CERN openlab Report // 2019

4

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

1. INTRODUCTION

Artificial neural networks are a set of algorithms, that are inspired by but not identical to, biological neural
networks of brain and they have proved to be able to learn different tasks such as pattern recognition, image
classification, and decision making by looking at a set of examples [5]. It is also worth mentioning that as
complex as the architecture of the ANN becomes, it requires more computer resources (e.g. memory and
CPU) to be trained and used properly. Hence, considerable effort has been devoted to research on finding
a practical implementation of a neural network in inexpensive and fast hardware devices. Field
Programmable Gate Arrays (FPGAs) [2], Neuromorphic Chips [3], and Optical Networks [4] are among the
successful approaches to realize a neural network in micro-controllers, chemical materials with neural
behaviours, and optical systems, respectively. These hardware based neural networks have many
applications in science and technology. For instance, FPGAs are being tested in real-time triggering systems
at the European organization for nuclear research (CERN) as an efficient way to perform various tasks such
as particle identification and track reconstruction with much less overall latency [7].

Although these implementations are faster in some cases and less expensive than conventional memory
and CPU used in laptops, they still need lots of resources. A possible solution for this issue is to find a
mechanism or an architecture which is intrinsically capable of storing and accessing a large amount of
information at a given clock cycle. Qubits have such properties. For this reason, researchers have attempted
to build a model for a Quantum Perceptron which uses qubits to perform its job. The perceptron is the
simplest possible architecture of an artificial neural network which essentially has one layer of nodes with
the corresponding mutual connection between them. F. Tacchino et al. have recently proposed a model to
implement an artificial neuron on an actual quantum processor [5]. This new model combines the
mathematical modeling features offered by neural networks and the increased speed and access to more
storage and information offered by qubits. The model is briefly explained in the next section and a successful
implementation of a simple case with N = 2 qubits in the quantum register is performed in the Intel quantum
simulator (Intel-QS [1]) and the outcomes are given in the results section.

2. The Model

R. Rosenblatt in 1957 [8] was the first person to build a simple model for a perceptron; which is represented
in Fig.1a [5]. In this model, two binary valued vectors are given as input and weight vectors and the inner
product of these two vectors is then passed to an activation function with a particular threshold value based
on which it is decided whether the perceptron is activated or not. This type of binary valued perceptron is
known as a McCulloch-Pitts neuron in literature and facilitates the definition of a quantum perceptron,
because the input and weight vectors can be encoded as the sign of amplitudes in front of the Hilbert space
states [9].

F. Tacchino et al. have employed a particular class of quantum hypergraph states to find an algorithm for
quantum modeling of a perceptron [10]. The corresponding quantum version of the classical perceptron
defined in Fig.1a, is depicted in Fig.1b. As generally accepted, any perceptron should have a main feature,
which is the non-linearity of its outcome.This feature has been achieved in this proposal by introducing an
Ancilla qubit in qubit register and then exploiting the non-linearity of the quantum measurement process of
Ancilla qubit in order to implement the threshold function [5]. The input to the perceptron now comprises a
qubit register with a set of qubits initialized in |0⟩ state. Then, two unitary transformations, namely 𝑈𝑖 and

𝑈𝑤 are defined in such a way that they transform the initial qubit register to a state that if projected along
the Ancilla qubit, is equal to the inner product of the classical input and weight vectors, up to a normalization
factor [5].

CERN openlab Report // 2019

5

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

Figure 1. (a) Schematic representation of a classical versus (b) a quantum version of a perceptron
(obtained from [5]).

In order to demonstrate how the unitary transformations perform this task, the input and weight vectors are
considered as m-dimensional vectors with binary valued components 𝑖𝑗 & 𝑤𝑗 ∈ {−1, +1} as written in Equ.1.

Furthermore, two quantum states |𝜓𝑖⟩ and |𝜓𝑤⟩ are defined using the corresponding vector components as

amplitudes for the eigenstates in the m-dimensional Hilbert space of N qubits (see Equ.2), where 𝑚 = 2𝑁.
These two quantum states are equally weighted superpositions of every possible state in the Hilbert space.

The states |j⟩ ∈ {|00 … 00⟩, |00 … 01⟩, … , |11 … 11⟩ } are the members of the Hilbert space for N qubits in the
qubit register - this space is the so-called computational basis of the quantum register. The index j is the
decimal representation of the corresponding binary string for each member of the computational basis.

𝑈𝑖 is defined in such a way that when applied on the initial qubit register, it produces the |𝜓𝑖⟩ quantum state

and similarly, 𝑈𝑤 is defined in a way that when it acts on the quantum state |𝜓𝑤⟩, the computational basis

member |1⟩⨂ 𝑁 is obtained.

CERN openlab Report // 2019

6

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

As stated by F. Tacchino et al., any unitary matrix with the input vector in the first column can be used as
𝑈𝑖 and any unitary matrix with the weight vector in its last row can be substituted in the Equ.3 for 𝑈𝑤. The

action of the 𝑈𝑤 operator on |𝜓𝑖⟩ is also defined as |𝜙𝑖,𝑤⟩ and since [𝑈𝑖 , 𝑈𝑤] = 0, we can expand the result

as in Equ.4.

From Equ.3 it is easy to deduce that the inner product of quantum states in Equ.2 can be written as

Moreover, using Equ.2 it is straightforward to demonstrate that 𝑖. �⃗⃗⃗� = 𝑚 〈𝜓𝑤|𝜓𝑖〉. Therefore, the inner
product of the input and weight vector which is the most important element for a perceptron, is related to
the coefficient 𝑐𝑚−1 (see Equ.5) up to a normalization factor. In order to obtain this coefficient, an Ancilla

qubit is used in the qubit register which is initially in state |0⟩ [5]. A N-controlled NOT gate between the usual

qubits in the quantum register and the target Ancilla qubit, will change the term |𝜙𝑖,𝑤⟩|0⟩𝑎 as below [5].

Therefore, one can obtain the coefficient 𝑐𝑚−1 by performing a measurement on the probability of the Ancilla
qubit being in state |1⟩𝑎 [5]. This quantum measurement introduces a non-linearity in the outcome of the
threshold function which is desired for an effective modeling of a quantum perceptron [5].

3. Unitary Transformations

In this section the practical implementation of the unitary transformations is explained. These
transformations consist of a set of operators which are unitary by themselves and will prepare the quantum
states |𝜓𝑖⟩ and |𝜓𝑤⟩ as defined in Equ.2. There are two approaches for this purpose, namely the sign-flip
blocks and the Hypergraph States Generation Subroutine (HSGS) algorithm [5].

a. Sign-Flip Block Approach

This approach is a brute-force method and utilizes a successive application of sign-flip blocks to manipulate
the sign in front of the amplitudes associated with each member of the computational basis within |𝜓𝑖⟩
expansion [5]. A definition of the sign-flip operator is given in the Equ.7. The 𝑆𝐹𝑁,𝑗 can be seen as a

controlled Z gate, which is a useful quantum gate [6] and can be employed to change the signs in front of
computational basis vectors based on a given input or weight vector to obtain the desired representation for

|𝜓𝑖⟩ and |𝜓𝑤⟩. For example 𝑍 ≡ 𝑆𝐹1,1 and 𝐶𝑁𝑍 ≡ 𝑆𝐹𝑁,𝑚−1 [5]. Therefore, a generic sign-flip block can be

decomposed into a product of NOT and C𝑁Z quantum gates as illustrated in Equ.8.

CERN openlab Report // 2019

7

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

The index l in the Equ.8 means that the particular quantum gate should be applied on the l-th qubit in the
qubit register and 𝑗𝑙 = 0(1) if the l-th qubit is in state |0⟩ (|1⟩) [5].

This approach starts with a qubit register initialized in |0⟩⨂ 𝑁 state and then N number of parallel Hadamard
gates are applied to obtain an equally weighted and positively signed superposition of all possible
computational basis vectors. Then, based on the input or weight vector components, sign-flip blocks are

applied to the qubits to produce the quantum states of Equ.2 [5]. The set of Hadamard, NOT and C𝑁Z gates
are then packed as the 𝑈𝑖 or 𝑈𝑤 unitary transformation introduced above.

b. HSGS Algorithm

The HSGS algorithm is based on the fact that there is a mapping between a mathematical hypergraph and
a quantum circuit consisting of controlled Z gates [10]. A simple example of such a mapping is shown in

Fig.2. This algorithm also starts with the qubit register in the state |0⟩⨂ 𝑁 and after applying the parallel
Hadamard gates, based on a given input or weight vector, it follows the steps outlined below [5]:

 First, Z gates are applied on the computational basis vectors within the quantum state with only one
qubit being in state |0⟩ which require a (-1) sign in front of it. It should be noted that extra sign flips
might happen and they must be considered at the end of the algorithm implementation.

 Second, C𝑝Z gates are applied on the computational basis vectors with exactly p qubits in state |1⟩,
where p ∈ {2, 3, … , N }. This leaves the computational basis members with less than p qubits in

state |1⟩ untouched.

Figure 2. A mathematical heypergraph (on the left) and the corresponding quantum circuit (obtained from [5]).
Circles represent a controlled Z gate.

As previously stated, after applying the unitary transformations, the state of the perceptron should be
projected along done using an N-controlled NOT gate (Toffoli gate), where N is the number of qubits in the
qubit register (excluding the Ancilla qubit) [5]. To further clarify the HSGS algorithm and also the role of
Toffoli quantum gate, the quantum version of a classical perceptron with the below input and weight vectors
is depicted in Fig.3, which is based on HSGS algorithm.

CERN openlab Report // 2019

8

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

Figure 3. Quantum circuit for N = 2 case Q-Perceptron [5].

4. Results and Discussion

The N = 2 case quantum perceptron is implemented in Intel-QS. Intel-QS is a distributed high-performance
quantum simulator on classical supercomputers, which is written in C++ format using a message passing
interface (MPI). It can perform general qubit gates in multi-core architectures for obtaining high performance
and high hardware efficiency [1]. As an example, the script for the quantum circuit of Fig.3 for the particular
combination of input and weight vectors in equation 2 is given in the code snippet below.

#include "../qureg/qureg.hpp"

using namespace std;

#include <iostream> // to use: std::cout, std::cin and std::endl

#include <iomanip> // to use: setw() in making tables

#include <complex>

///

//

///

//

///

//

int main(int argc, char **argv)

{

unsigned myrank=0, nprocs=1;

#ifdef INTELQS_HAS_MPI

openqu::mpi::Environment env(argc, argv);

myrank = openqu::mpi::Environment::rank();

nprocs = openqu::mpi::Environment::size();

// MPI_rank(MPI_COMM_WORLD, &myrank);

#endif

double sum = 0.;

std::cout << "------------------\n"

<< " Single qubit \n"

<< "------------------\n";

QubitRegister<ComplexDP> psi(3,"base",0);

psi.EnableStatistics();

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyHadamard(0);

psi.ApplyHadamard(1);

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyPauliZ(1);

psi.Print(" initial state |psi>=|-> : ");

CERN openlab Report // 2019

9

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

psi.ApplyCPauliZ(0,1);

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyPauliZ(0);

psi.ApplyPauliZ(1);

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyCPauliZ(0,1);

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyHadamard(0);

psi.ApplyHadamard(1);

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyPauliX(0);

psi.ApplyPauliX(1);

psi.Print(" initial state |psi>=|-> : ");

psi.ApplyToffoli(2,0,1);

psi.Print(" initial state |psi>=|-> : ");

double prob = 0.;

prob = psi.GetProbability(2);

std::cout<< " Ancilla Measurement: " << prob << std::endl;

return 0;

}

In Fig.3 as we proceed from left to right, after applying each gate or set of parallel gates, the state of the
qubit register is printed out with the command line "psi.Print(" initial state |psi>=|-> : ");" to make it possible
for the reader to follow the changes in each step. The outcome of the above code is shown below.

CERN openlab Report // 2019

10

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

As shown in the above results, the amplitudes and probabilities corresponding to each of the computational
basis vectors is given as a complex valued and a real number, respectively. Furthermore, the outcome of
the Ancilla qubit measurement is 0:0, which means that the inner product of the input and weight vectors
must also be zero and this can easily be verified from equation 1.

It is worth mentioning that, despite the achieved speed-up because of multi-core parallelization and also
high hardware efficiency through efficient memory allocation, there are limitations coming from sustainable
memory and network bandwidth of the machine [1]. Simulation of qubits is so costly and needs a huge
amount of memory (of the order of Petabytes for a few tens of qubits, as reported in [1]) and network
bandwidth. This is because of the fact that by increasing the number of qubits, there is an exponential
increase in the resources requests to store the quantum information. With the current state of the available
supercomputers, it is only possible to simulate a quantum system with at most 50 qubits in it [1].

From the algorithmic point of view, it is straightforward to show that there is a symmetry under a global sign
flip for input and weight vectors and the outcome of the perceptron remains unchanged [5]. Therefore, in

CERN openlab Report // 2019

11

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

the worst case, the sign-flip approach requires at most
𝑚

2
= 2𝑁−1 sign-flip blocks for a total of

𝑚

2
 independent

(-1) factors in the expansion of quantum states in Equ.2 [5]. Since each sign-flip block consists of an C𝑁Z
gate, this approach is exponentially expensive in terms of number of qubits involved in each gate and also

the number of gates [5]. On the other hand, the HSGS algorithm uses at most one C𝑁Z gate and a number
of C𝑝Z gates with 𝑝 < N. Therefore, the circuit built with this algorithm needs less resources and also proves
to be more efficient than sign-flip approach in classification tasks as demonstrated by F. Tacchino et al. The
HSGS is based on hypergraph states which have been studied and employed in quantum algorithms that
have manifested successful results in practical applications [10][11].

5. Conclusion

In conclusion, the simplest case of a perceptron composed of two qubits was implemented in Intel-QS. The
obtained results were consistent with the results by F. Tacchino et al. In principle, this type of perceptron
can offer more storage capacity for information which is in general of great importance for machine learning
algorithms [5]. On the other hand, if the implementation is on classical hardware, the resource requests also
increase exponentially. One suggestion for an efficient implementation, is using near-term quantum
processing devices such as cloud-based quantum hardware called IBM-Q [5]. However, since the Intel-QS
uses multi-core and multi-node architectures for implementation, the classical supercomputers are likely to
be the main feasible simulation devices for the next one or two decades.

Moreover, although the HSGS algorithm is more efficient and accurate than sign-flip approach and optimizes
the number of multi-qubit operations [5], it still needs a considerable amount of resources.

As a future direction, author aims to completely implement the 𝑁 = 2 case qubit register for arbitrary
combinations of input and weight vectors and then perform classification tasks with that. Furthermore,
generalization of the binary valued quantum perceptron to one with any possible value for input and weight
vectors is being researched by the author. If this attempt proves to be successful, the perceptron can be
trained since it would be possible to perform back-propagation algorithms. Moreover, one can look at a deep
quantum neural network with many layers and interconnection built with a trainable quantum perceptron.

6. Acknowledgement

The author acknowledges the European organization for nuclear research to provide the required computing
facilities for this research. The author also thanks F. Fracas, S. Vallecorsa, and F. Carminati for the valuable
discussions and all the support provided at CERN OpenLab. The author thanks F. Tacchino et al. for giving
the permission to use their papers figures and diagrams in this work. The views expressed are those of the
author and do not reflect the official policy or position of Intel company.

7. References

[1] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik. qHiPSTER: The Quantum High Performance Software Testing

Environment. arXiv:1601.07195v2 [quant-ph], 12 May 2016.

[2] S. Sahin, Y. Becerikli, and S. Yazici. Neural Network Implementation in Hardware Using FPGAs. Springer Berlin

Heidelberg, 2006.

CERN openlab Report // 2019

12

 Implementation of a Quantum Perceptron in Intel-QS -- M. R. Noormandipour

[3] F. Walter, F. Röhrbein, and A. Knoll. Neuromorphic implementations of neurobiological learning algorithms for spiking

neural networks. Neural Networks. 72. 10.1016/j.neunet.2015.07.004.

[4] G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan. Quantum optical neural networks. npj Quantum Information. 5,

Article number: 60, 2019.

[5] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni. An artificial neuron implemented on an actual quantum processor.

npj Quantum Information 5, Article number 26 , 2019.

[6] M. A. Nielsen and I. L. Chuang. Quantum Computation and Qunautm Information. Cambridge Series on Information and

the Natural Sciences, Cambridge University Press, Cambridge, United Kingdom, 2004.

[7] G. Hadash, E. Kermany, B. Carmeli, O. Lavi, G. Kour, and A. Jacovi. FPGA-accelerated machine learning inference as a

service for particle physics computing. arXiv:1904.08986v1 [physics.data-an] , 18 April 2019.

[8] F. Rosenblatt. The Perceptron: A perceiving and recognizing automaton. Tech. Rep. Inc. Report No. 85-460-1 (Cornell

Aeronautical Laboratory, 1957).

[9] W.S. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5,115-133m,

1943.

[10] M. Rossi, M. Huber, D. Brub, and C. Macchiavello. Quantum hypergraph states. New J. Phys. 15, 113022, 2013.

[11] M. Ghio, D. Malpetti, M. Rossi, D. Bruß, and C. Macchiavello. Multipartite entanglement detection for hypergraph states.

J. Phys. A: Math. Theor. 51, 045302, 2018.

