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A randomized algorithm 𝒜𝒜 is 𝜖𝜖-DP if, for each event 𝐸𝐸, for any pair of datasets 𝐷𝐷 and 𝐷𝐷′ that 
are the same everywhere except for on one person’s data, 

Pr[𝒜𝒜(𝐷𝐷) = 𝐸𝐸] ≤ exp(𝜖𝜖)Pr[𝒜𝒜(𝐷𝐷′) = 𝐸𝐸]. 

This bound is typically proven by logical deduction, and for complex DP algorithms, the proof 
often relies on the Sequential Composition Theorem, which states that information derived by 
combining the output of an 𝜖𝜖1-DP algorithm and an 𝜖𝜖2-DP algorithm is at most (𝜖𝜖1 + 𝜖𝜖2)-DP. 
This theorem is an inequality, however, and the inequality might have room for improvement. 

As mentioned in the main text above, it is possible to empirically quantify privacy loss and 
thereby see if the inequality of the sequential composition theorem is not tight. A brute force 
approach to do this is to search over databases 𝐷𝐷 and 𝐷𝐷′ that differ on one row to find the 
event 𝐸𝐸 with the largest ratio of probabilities. However, this search is too computationally 
intensive to be feasible for all but the simplest DP algorithms. 

For algorithms that produce DP counts of multiple subpopulations, such as TopDown, we 
propose using the distribution of the residual difference between the precise count and the DP 
count as a proxy for the distribution produced by the brute force approach. We first assume 
that the residual difference of the DP count minus the precise count is identically distributed for 
queries across similar areas (such as voting-age population across all enumeration districts). 
Then, instead of focusing on only the histogram counts containing the individual who has 
changed, we use the residuals for all areal units to estimate the probability of the event we are 
after as 

Pr�error𝑗𝑗 = 𝑘𝑘� ≈ �� 𝟏𝟏
𝐶𝐶

𝑗𝑗′=1

��error𝑗𝑗′ = 𝑘𝑘��� /𝐶𝐶 =: �̂�𝑝𝑘𝑘, 

where error𝑗𝑗  is the residual difference of DP counts returned by TopDown minus the precise 
count for that same quantity in the 1940 census, and the error𝑗𝑗′  are residuals for 𝐶𝐶 other 
queries assumed to be exchangeable. 

After making this assumption, we define the empirical privacy loss for any residual 𝑥𝑥, which we 
denote by EPL(𝑥𝑥), in terms of an approximation of probability distribution of the residuals (DP 
count minus precise count at a selected level of the geographic hierarchy), which we denote 
𝑝𝑝KDE(𝑥𝑥), using Gaussian kernel density estimation with a bandwidth of 0.1 to smooth �̂�𝑝𝑘𝑘, and 
compare the log-ratio inspired by the definition of 𝜖𝜖-DP algorithms: 



EPL(𝑥𝑥) = log�
𝑝𝑝KDE(𝑥𝑥)

𝑝𝑝KDE(𝑥𝑥 + 1)�. 

The empirical privacy loss (denoted by EPL) is then the maximum of the absolute value of 
EPL(𝑥𝑥) for any 𝑥𝑥: 

EPL = max
𝑥𝑥 ∈ (−∞,∞)

{abs(EPL(𝑥𝑥))} 

For a simple demonstration of how EPL functions, we now present an example of EPL when 
applied to a parallel geometric mechanism.  We begin with the precise counts of the total 
population for enumeration districts in Washington State from the 1940 census and then 
produce geometric DP (GDP) versions of these counts by adding variation drawn independently 
at random from a symmetric geometric distribution with parameter 𝜖𝜖 = 0.05.  In the notation 
above, there are 𝐶𝐶 = 2,663 such queries, and the residual for each 𝑗𝑗 = 1, … ,𝐶𝐶 is independent 
and identically distributed with two-tailed geometric distribution of error𝑗𝑗 ∼ 𝐺𝐺(𝜖𝜖/2). (Figure 
SA1) 

 

Figure SA1: Panel (a) shows a scatter plot of the precise total count of people versus a 
corresponding DP count produced by the parallel application of the geometric mechanism with 
𝜖𝜖 = 0.25 for each enumeration district in Washington State, based on 1940 census data. Panel 
(b) shows a scatter plot of the residual difference of the DP count minus the precise count as a 
function of the precise count. Note that, unlike TopDown, the geometric mechanism does not 
guarantee DP counts are non-negative. 

 

We then calculate the EPL as described above. First, we use the residual differences between 
the DP and precise counts as input to a Gaussian kernel-density estimator (with bandwidth 0.1) 
to estimate 𝑝𝑝KDE(𝑥𝑥). Then we search over 𝑥𝑥 ranging from the 5th to 95th percentiles of the 
residual distribution to find the maximum absolute value of the log of the ratio of 
𝑝𝑝KDE(𝑥𝑥)/𝑝𝑝KDE(𝑥𝑥 + 1) (Figure SA2). In this example application to the Geometric Mechanism, 
we find EPL of 0.043, which is not too far from the theoretical value of 𝜖𝜖 = 0.05. 



 
Figure SA2: Panel (a) shows the direct and KDE-smoothed estimates of the density of residuals 
for the geometric mechanism, and panel (b) shows the corresponding EPL(x) and how it yields a 
maximum absolute value of 0.18, which is similar in value to the theoretical value of 𝜖𝜖 = 0.25. 

 

The detail-oriented reader may have noted that the choice of bandwidth of 0.1 and limits for 
maximization of 5th to 95th percentiles were somewhat arbitrary, but we hope they would also 
be reassured that the EPL value is close to 𝜖𝜖 for this simple mechanism.  We validated our 
approach by repeating this calculation for a range of epsilon values, and performed a one-way 
sensitivity analysis to see if changing the bandwidth or limits for maximization would 
substantially change the ability of the method to recover an EPL value matching epsilon for the 
Geometric Mechanism. (Table SA1.) 

[TABLE SA1 HERE] 

EPL is capable of producing evidence that the bounds in the sequential composition theorem 
are not tight, as well.  As a minimal example of how this can happen, we add a little complexity 
to our simple demonstration example, by including a measurement of the total count in each 
enumeration district with 𝜖𝜖1 = 0.25 and the measurements of the stratified counts in each 
enumeration district with 𝜖𝜖2 = 0.75.  Inspired by the optimization step of TopDown, we then 
use optimization to find consistent values for the detailed counts that minimize the weighted 
sum of the absolute differences between the measured values and the optimized values.  This is 
(𝜖𝜖1 + 𝜖𝜖2)-DP because of sequential composition, but the EPL is substantially smaller than this 
sum, with a value of 0.54. (Figure SA3) 

  



Figure SA3: Panel (a) shows the direct and KDE-smoothed estimates of the density of residuals 
for a DP mechanism that combines geometric, and panel (b) shows the corresponding EPL(x) 
and how it yields a maximum absolute value of 0.54, which is smaller than the value of 𝜖𝜖 = 1.0 
proven using the sequential composition theorem. 

 

TopDown includes invariants, which are a feature that goes beyond the traditional formulation 
of epsilon-DP. As a final example, we consider how an invariant can produce an EPL that is 
greater than the privacy loss budget epsilon that is formally proven for the algorithm without 
invariants. To achieve this, we now shift the example of EPL of stratified counts (stratified by 
voting age, race, and ethnicity) with geometrically distributed variation added to achieve DP 
with 𝜖𝜖 = 0.25, but we combine this with an optimization step that includes invariants of the 
total population count at the county level.  In this case, the EPL of the optimized count 
(stratified and at the enumeration district level) is larger the theoretical 𝜖𝜖 , with EPL=2.3.  This 
shows how the EPL construct is capable of quantifying the degree to which invariants 
compromise differential privacy. (Figure SA4)  

Figure SA4: Panel (a) shows the direct and KDE-smoothed estimates of the density of residuals 
for a mechanism that includes an invariant and therefore is not formally DP, and panel (b) 
shows the corresponding EPL(x) and how it yields a maximum absolute value of 2.3, which is 
substantially larger than the 𝜖𝜖 = 0.25 used in the geometric DP portion of the mechanism. 

 

  



 

 

Table SA1: Validation of empirical privacy loss construct comparing EPL values to geometric DP counts for a range of (a) epsilon values for 
bandwidth=0.1 and search percentile=95; (b) KDE bandwidth values for epsilon=0.25 and search percentile=95; and (c) search range 
percentiles for epsilon=0.25 and bandwidth=0.1. 

(a)  
epsilon 
value in 
Geometric 
DP 

EPL 
mean 

EPL Lower 
Bound - 
2.5th 
Percentile 

EPL Upper 
Bound - 
97.5th 
Percentile 

 

(b) 
KDE 
band-
width 
value 

EPL 
mean 

EPL Lower 
Bound - 
2.5th 
Percentile 

EPL Upper 
Bound - 
97.5th 
Percentile 

 

(c) 
EPL Search 
Range 
Percentile 

EPL 
mean 

EPL Lower 
Bound - 
2.5th 
Percentile 

EPL Upper 
Bound - 
97.5th 
Percentile 

0.0010 0.0010 0.0008 0.0013  0.0010 0.2385 0.1872 0.3257  75.0000 0.2385 0.1872 0.3257 
0.0050 0.0048 0.0039 0.0068  0.0050 0.2327 0.1853 0.3130  85.0000 0.2327 0.1853 0.3130 
0.0100 0.0099 0.0076 0.0130  0.0100 0.2396 0.1837 0.3410  95.0000 0.2396 0.1837 0.3410 
0.0500 0.0490 0.0390 0.0673  0.0500 0.2364 0.1911 0.3246  99.0000 0.2364 0.1911 0.3246 
0.1000 0.0980 0.0752 0.1262  0.1000 0.2410 0.1858 0.3195  99.9000 0.2410 0.1858 0.3195 
0.1500 0.1475 0.1181 0.1941  0.5000 0.2366 0.1842 0.3146      
0.2000 0.1988 0.1521 0.2639  1.0000 0.2431 0.1946 0.3251      
0.2500 0.2429 0.1853 0.3493  5.0000 0.2429 0.1853 0.3493      
0.3000 0.2824 0.2228 0.3806           
0.3500 0.3252 0.2651 0.4116           
0.4000 0.3482 0.2717 0.4360           
0.4500 0.3827 0.3140 0.4807           
0.5000 0.4052 0.3434 0.5195           
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