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Abstract

Most of the synthesis models for the generation of the animal vocalization

until  now  have  been  studied  with  a  non-probabilistic  approach.  Current

studies  are  based  on  physical  models,  which  have  a  large  number  of

restrictions and limits for the creation of a realistic synthesis. In this thesis,

we have created acoustic representations of black and white ruffed lemur

(Varecia variegata) vocalizations, basing on signal processing techniques,

and we have used them for achieving high-level synthesis. Afterwards, we

have introduced Hidden Markov Models framework, approach which has

been very successful in the context of speech synthesis.  The outcome of the

project has been evaluated by means of listening tests with humans, where

original and synthetic vocalizations have been compared. 
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Chapter 1

INTRODUCTION

Animal  acoustic  communication  is  an  interdisciplinary  field  involving

research  from  various  backgrounds,  from  biologists  to  linguists,  to

psychologists  with  a  particular  focus  on  cognitive  sciences.  The  recent

development  of  more  powerful  engineering  techniques  has  helped  the

progress of scientific research, with increased focus on the signal processing

perspective. As a result, interest in the study of Bioacoustics has increased,

with progress and results in different contexts. 

In this sense, we can identify the main perspectives of these studies: (1) the

comparison of human and animal peculiarities in communication, which can

provide insight  into the evolutionary history of  the human language;  (2)

analysis of animal vocalizations, which can lead to a better comprehension

of animal behavior, as well as help recognition and classification tasks; (3)

synthesis, which can improve the human-animal interaction, and at the same

time  the  naturalness  of  playback  experiments,  widely  used  in  biological

research 

The latter of the three is the main focus of this thesis and the goal of this

work is  to  achieve  a  synthesis  of  animal  vocalizations  based on Hidden

Markov Models. However, it is fundamental to review the works related to

the other two categories presented before, for having a complete vision of

the general framework of Bioacoustics research. 
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Chapter 2

STATE OF THE ART 

The master thesis “Animal Vocalization Analysis and Synthesis” done by

Graugés [Graugés, 2014] provides a good starting point for this study. It

presents an extensive review of Lemur vocalization and the literature related

to  analysis  and synthesis  techniques,  both  in  the  case  of  speech  and  in

animal vocalizations. Grauges has also covered some of the main concepts

in depth and a reading of his works are thoroughly encouraged. 

Consequently,  in  the  following  sections  we  have  chosen  to  follow  a

different  line,  for outlining other  common grounds between Biology and

Signal  Processing  research.  Before  we  will  review  the  works  related  to

comparative approaches between human and animal  oral  communication.

After that, we will introduce general framework of analysis and synthesis

techniques, focusing on techniques utilizing Hidden Markov Models. 

2.1 Comparative approach 

A  comparative  analysis  of  animal  vocalizations  and  speech  can  be

considered  as  a  key point  for  understanding the  evolution  of  the  human

language.  In  particular,  identifying  similarities  and  differences  between

 non-human primate  and our  species  can  shed light  on   the evolution  of

modern  day language and communications.  Two main  directions  can  be

considered:  analysing peripheral  differences,  hence  how  mechanisms  of

sound  production  and  perception  are  based,  and  analysing neural

differences,  related  to  the perception  and cognition  of  language.  In  both

cases, it's possible to find relations between animals, not only primates, and

humans [Fitch, 2000b]. 
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2.1.1 Peripheral differences

Human speech production is a topic that has been widely studied during the

last  decades.  The  source-filter  theory  is  the  most  affirmed  model  that

describe  it.  Basically,  it  considers  speech  as  a  combination  of  a  source

function, a pulsating airflow passing through the larynx, and a vocal-tract

filtering process, which conveys a large part of the information in speech

[Fant, 1981].

Figure 2.1: Overview of human speech production (left) and source-filter
model (right) [Tokuda et al, 2013].

Although for a long time the human vocal productions system (VSP) has

been considered unique, several studies have demonstrated the presence of

common characteristics with other animal systems. In particular, three main

component are shared in the VSP of tetrapods: (1) a respiratory system with

lungs; (2) a larynx that has primarily evolved to protect the lungs, and can

actively produce sounds; and (3) a supralaryngeal vocal tract (or only “vocal

tract”),  that  filters  this  sound before its  release  into  the  environment.  In

addition, there are other elements which historically have been considered

unique in human, which recently has been discovered that are shared with

different animals.  For example the larynx position,  which is permanently

"lowered" in the human vocal tract. A study by Fitch and Reby [2001] threw

light on the fact that the descent of the larynx is not uniquely human. In

facts, other mammals, such as red and fallow deer, may lower their larynx

during  vocalization.  Also  movements  of  vocal  tract  articulators  (lips,

tongue,  jaw,  velum,  larynx),  which characterize  formant  variations,  have

been  observed  both  in  humans  and  animal  production  of  sound  [Fitch,

2000a]. 
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Despite  all  these  factors,  widespread  among  humans  and  animals,  it  is

evident that humans can produce sounds which animals do not, and vice

versa. Formants, which have a key role in both human and animal acoustic

communication [Gamba, 2014], provide great insight into this difference.

Formant frequencies are correlated with the length and shape of the vocal

tract, and thanks to this each species can produce different vocalizations.

However, the ability to produce rapid and precise movements of vocal tract

articulators, together with the characteristic of the decedent larynx, allows

humans  to  produce  a  much  wider  range  of  formant  patterns  than  other

mammals, which characterize speech communication [Fitch, 2000b]. 

Nevertheless,  it  is  evident  that  taking  into  account  solely  these  results

cannot  be sufficient  for explaining  how speech communication  has been

evolved in  a  thus  different  way.  Hence,  it  is  necessary to  analyze  other

differences based on neural aspects. 

2.1.2 Neural differences

Syntax  can  be  considered  an  exclusive  aspect  of  human  language.  The

human ability to create with a limited set of phonemes, a lot of words and

combine them in infinite different mode creating meaningful sentences has

not equal in the animal world [ten Kate and Okanoya, 2012]. Nevertheless,

the basic structure of animal vocalizations presents some common features.

Units of production, which can be considered as the small part in which we

can segment vocalizations, are species-specific, and this is a consequence of

the anatomical differences presented in the previous section. These units are

combined in different vocalizations, which can convey different meanings,

depending on how they are used. Two vocalizations can be used for creating

different high-level structures, creating calls that convey different meanings

[Arnold and Zuberbühler, 2006]. Hence, we can affirm that a fundamental

difference between human and animal language is not the presence or not of

an  high-level  structures  of  vocalizations,  but  it  is  more  related  to  the

complexity of that. [Berwick et al, 2011]. 
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Another interesting observation is related to the function of vocal mimicry,

which  is  fundamental  to  the  learning  process  of  human  language.  This

characteristic,  which  is  not  common  in  mammals,  is  present  in  other

animals, as birds, its influence on the evolution of speech remains unclear

[Fitch, 2000b]. 

In  conclusion,  we can  affirm that  using a  comparative  approach several

similarities in the acoustic communication of animals and humans can be

found. This suggests the possibility to use the knowledge accumulated in

studying speech to interpret animal calls, with due adaptations. Taking into

account  these  observations,  in  the  next  section  we  will  present  several

studies, showing the application of different techniques for the analysis of

animal vocalizations. Afterwards, we will focus on the main topic of this

thesis,  the  black  and  white  ruffed  lemur  (Varecia  variegata)  vocal

repertoire. 

2.2 Analysis of animal vocalizations

The analysis of animal acoustic communication is one of the main tasks in

the field of Bioacoustics. Bioacoustics is a powerful tool for understanding

behaviour both at intra- and inter-specific level. Moreover, as a consequence

of this analysis, more sophisticated tasks such as automatic recognition and

classification, can achieve better results. However, considering the degree of

diversity  in  the  animal  world,  analysis  methods  can  not  be  totally

generalized,  and  specific  studies  have  to  be  fine-tuned  according  to  the

specific case. 

Below,  we will  introduce  a  methodological  framework,  resulting  from a

2013  workshop  entitled,  ‘Analyzing  vocal  sequences  in  animals’

[Kershenbaum  et  al.,  2014].  Then  we  will  present  some  representative

examples of the literature about the analysis of animal vocalization. They

will provide hints regarding how different methods that have been used led

to someway different results.
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2.2.1 Methodological framework

The key point of the analysis of animal vocalizations is to define what it is a

vocalization. We can consider it as a series of acoustic elements, or basic

units, which can convey several information. Nowadays, the meanings of

part of these vocalizations have been understood, but the function of a part

of  them  it  is  still  unclear. The  general  process  proposed  for  validating

hypothesis regarding meanings of different vocalization, as represented in

Figure 2, is composed of four steps: 

(1)  Collecting  the  species  vocalizations.  In  this  passage,  basic  signal

processing  analysis  is  done,  including  pre-processing,  filtering,  time-

frequency and time series analysis. 

(2) Identifying basic units of vocalizations. Starting from the previous step,

the aim is to find how a vocalization  is built. 

(3) Characterization of the vocalization. Obtaining several vocalizations, we

identify particular features of each of them. 

(4)  Identifying  the  meaning  of  each  vocalization.  In  this  last  step,  the

analysis of how vocalization are used, leads to validate or not hypothesis

regarding the meaning.  

 
Figure 2.2: Flowchart showing a typical analysis of  animal acoustic 
sequences [Kershenbaum et al., 2014].
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This framework can be considered as a reference,  however specific-cases

adaptations have to be implemented to obtaining sounding results, mainly in

the first two steps. From a perspective of signal processing, the enormous

differences  that  can be found between vocalizations  of different  species,

have led to applying several techniques depending on the particular case. In

the next section, we will provide some examples that can give an idea of

this variety.

2.2.2 Overview of specific-cases analysis

The features of animal acoustic communication vary dramatically between

species,  even  if  common  patterns  can  be  identified.  This  variability  is

evident in the process of production, which involves the morphology and

the functional anatomy of the vocal tract. We can have species uttering in

the infrasound like elephants and whales, and species emitting ultrasounds,

like rodents and bats [Fitch, 2006]. Because of that, it is critical to consider

different approaches basing on species-specific features.

In  ornithology the  presence  in  several  species  of  rapid  modulations  and

moreover the presence of numerous vocal units (often overlapped) led to the

use of different methods for the analysis [Baker and Logue, 2003]. More

recently innovative techniques have been applied to perform an automatic

tracking of birdsong [Stowell et al., 2013]. Instead, for marine mammals,

approaches not based on the Fourier analysis showed better results [Adam,

2006].  Classification  tools  coming  from the  music  information  retrieval

field  [Ness,  2013]  were  also  useful.  Regarding  non-human  primates,

quantitative methods have started to be considered in addition to qualitative

ones,  which  have  been  widely  used  historically  [Gamba  and  Giacoma,

2007].  

Apparently, the studies mentioned above do not represent the whole picture

of animal communication research, but can give an idea of the multitude of

approaches used. Below, we will present several kind of analysis of animal

vocalization based on Hidden Markov Models.

7



2.2.3 Analysis of Animal Vocalization using Hidden Markov

Models

Interest in  Hidden Markov Models have grown in the field of Bioacoustics

during last years. Mainly because of the huge versatility of this probabilistic

approach, several results have been accomplished thanks to it. In tasks such

as  call-type  classification,  individual  identification,  and  assessment  of

correlation between vocalization patterns and specific social or behavioral

contexts,  other  analysis  techniques  have  been used,  such as  multivariate

feature  analysis,  spectrogram  cross-correlation,  matched  filtering,  neural

networks,  dynamic  time  warping  and  others.  However,  HMM-based

systems have been shown to have a bigger percentage of accuracy [Ren et

al., 2009]. A big advantage of HMMs, as statistical classification models, is

that they are able to use any frame-based feature vector. Hence, it has been

possible to adapt features in several specific contexts. For instance, instead

of  using  Mel-Frequency  Cepstral  Coefficients  (MFCCs)  or  Perceptual

Linear Prediction (PLP) coefficients, widely affirmed in the human speech

analysis,  different  features  have  been developed.  Thanks  to  the  work of

Greenwood  [Greenwood,  1961],  generalization  of  the  previous  features

have  been  created,  called  Greenwood  Function  Cepstral  Coefficients

(GFCCs) and generalized perceptual linear prediction (gPLP) coefficients,

for  being  used  in  species-specific  case  of  study  [Clemins  and  Johnson,

2006]. In the next section, we will focus on the analysis of the study species

of this thesis, the black and white ruffed lemur. 

2.2.4 The Black and White Ruffed Lemur (Varecia variegata)

vocalizations

We will  introduce  a  brief  description  of  the  different  vocalizations  that

characterize white and black ruffed lemur acoustic communication. For each

call, we will use labels adopted in [Pereira et al., 1988]. In addition, further

analysis has been done [Gamba and Giacoma, 2006], which will helps us

understand the peculiarities of each vocalization, leading to a more precise

categorization. 
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The recognized repertoire of white and black ruffed lemur is composed of

16 vocalizations.  A first  step  is  to  subdivide  calls  into  three  sets:  high-

amplitude, moderate-amplitude, and low-amplitude. 

High-amplitude calls

Roar/shriek Chorus

This is characterized by the presence of two vocalizations, shriek, and roar.

Roar is a wide-band noisy sound while shriek is the frequency modulated

narrow-band  component.  Duration  can  vary  from  5  to  30  second.  It  is

produced at the same time by several adult lemurs. It is used to maintain

spacing between groups of free-ranging ruffed lemurs.

Abrupt roar

It comprises a rapid series of 2-5 short sound pulses. It is used commonly in

presence of large birds predators. 

Growl-snort

This is a low-pitched emission, in which the first part is emitted with mouth

closed (growl), followed by an explosive expulsion of air (snort) including

low-frequency sound energy. It is used when facing terrestrial predators or

perceived threats from the ground.

Pulsed squawk

This is composed by a series of acoustic pulses with harmonic overtones

with  a  duration  of  2  to  4  seconds.  Emitted  synchronously  by  several

members of a group, it can be given in the presence of a carnivore or can be

emitted by males during the breeding season. 

Wail

The last part of the pulsed squawk, when the rate of pulse decreases and

pulses become more tonal and very elongated, the sound is called wail and

is  characterized  by  a  richness  of  harmonic  overtones.  This  may  denote

urgency for re-aggregation.

9



Moderate-amplitude calls

Growl 

This is composed by a series of low-frequency laryngeal vibrations, and it

can  last  from  1  to  4  seconds.  It  is  commonly  emitted  in  context  of

generalized low-level disturbance.

Chatter

This is a series of brief, high-pitched, wide-band units whose duration can

be  highly  variable.  Social  subordinates  usually  directed  chatter  towards

dominants, but also dominants can use chatters in the context of an inter-

individual conflict. 

Whine

It varies from wide-band noise with tonal undertones to warbled frequency

modulation  with  numerous  harmonics  and  reduced  noise.  It  has  been

observed during the breeding season. Can also be uttered by the juveniles

and the infants. 

Brays

It exhibits  a widespread of low-frequency energy during exhalation.  It is

produce by adult male lemurs, and it is observed only in conjunction at the

roar/shriek chorus.

Quacks

Similar to brays, in addition it have a leading portion of tonal energy with

harmonics  overtones.  Also  in  this  case,  the  use  is  associated  at  the

Roar/shriek chorus. 

Low-amplitude calls

Grunts

These  consist  of  a  low-frequency  tonal  element  presented  as  a  train  of

pulses. It is emitted in context of mild disturbance.

Huffs

Huffs are produced by the passage of air through the nasal tract. It covers a

wide frequency range and can be given in a rapid sequence. Occasionally,

the duration can be unusually long and frequency range more narrow. It can

appear to accompany decreasing arousal.

10



Mew

This  is  a  tonal  call,  whose  duration  is  about  0.8-1.0  second.  It  is  often

present  a  slow rise  in  pitch.  The function  is  related  to  mother-offspring

communication  and  serves  to  maintain  contact  between  conspecifics  in

general. 

2.3 Synthesis based on Hidden Markov Models
The literature related at the synthesis of animal vocalization not as extensive

as its human counterpart. Probably because the interests in the field of 

Bioacoustics have been mainly oriented at the analysis of vocalizations, as 

we have presented before. 

Nevertheless,  it  is  possible  to  find  examples  of  animal  sound  synthesis

based on various approaches. As in [Clark et al, 1983], where a FFT-based

software  has  been  created  for  analyzing  and  then  synthesizing  bird

vocalizations. Another synthesis based on spectral features is presented in

[Dhar et al, 2010], which focuses on whale sounds. In a more creative way,

in  [Marino,  2000]  where  animal-like  vocalizations  are  modeled  using

MAX/MSP,  a  sound  design  software.  On  the  contrary,  examples  of

synthesis  generated  on probabilistic  models,  as  the one presented in  this

thesis, have not been found. This kind of synthesis has been very successful

within the context of human voice,  leading to notable results, one of the

reason for our choice to use HMMs for achieving a new kind of synthesis.

Consequently,  in  the  next  section  we  will  present  a  series  of  concepts

extracted  from [Tokuda  et  al,  2013],  which  summarizes  the  framework

related to speech synthesis based on Hidden Markov Models. This will be

the key to the full understanding of this thesis. 

2.3.1 Speech Synthesis 

Voice production

The  source-filter  model,  already  introduced  in  the  previous  sections,  is

capable of modeling the human voice based on few features. 
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With the fundamental frequency (f0) and a spectral envelope, it is possible

to  reconstruct  speech  waveforms.  The  aim  of  HMM  is  to  predict  the

parameters related to these features, basing on an initial input. A classic case

where HMM can be applied are Text-to-Speech (TTS) system, where the

initial input is, specifically, written text. 

Hidden Markov Model

An N-state hidden Markov model λ, is characterized by sets of initial-state

probabilities , state transition probabilities  and state-output

probability  distributions   are  typically  assumed  to  be  single

multivariate Gaussian distribution :

where μi is a mean vector, Σi is a covariance matrix, and ot is an observation

vector,  which  in  speech  case  is  formed  by  concatenating  spectral  and

excitation parameter vectors. 

The training of HMMs and synthesis from HMMs can be written as follows:

where  q  = {q1,q2,...,qT} is a state sequence.  O and  W are a set of speech

parameters  and corresponding linguistic  specifications  (such as  phoneme

labels) to be used for the training of HMMs, respectively, and o and w are

speech parameters and corresponding linguistic specifications that we want

to generate at synthesis time.

12



Figure 2.3: Example of an observation vector at each frame  [Tokuda et al,
2013].

Speech Parameter Generation From HMM 

The idea behind the generation of the speech parameters is that the most

probable speech parameter vector sequence, given a set of HMMs and an

input  to  be  synthesized,  is  determined  as  solution  of  a  maximization

problem.  Furthermore,  to  increase  the  naturalness  of  the  synthesis,  the

speech  parameter  generation  algorithm  introduces  the  use  of  first-  and

second-order  time  derivatives  of  speech  parameters  as  a  part  of  the

observation  vector,  which  is  a  powerful  mechanism  for  capturing  time

dependencies within the HMM framework.

Figure 2.4: Example of statistics and generated parameters from a sentence-
level HMM composed of phoneme-level HMMs for /a/ and /i/. The dashed
line and shading show the mean and standard deviation, respectively, of a
Gaussian pdf at each state [Tokuda et al, 2013].
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Training part 

The training part is where is performed the maximum-likelihood estimation

of the HMM parameters. Apart from excitation and spectral features, other

characteristics of speech are taken into account. For example, durations are

considered  for  modeling  the  temporal  structure  of  the  speech  parameter

sequence. other information related to more general linguistic context, such

as lexical stress, pitch accent, tone etc. can be introduced into the model,

affecting prosodic and duration parameters. 

Synthesis

In the synthesis part a sequence of speech parameters including spectral and

excitation parameters is determined so as to maximize its output probability

using  the  speech  parameter  generation  algorithm.  After  that  a  speech

waveform is synthesized directly from the generated spectral and excitation

parameters by using a speech synthesis filter.

Figure 2.5: Overview of the HMM-based speech synthesis system [Tokuda
et al, 2013].
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2.4 Open Source Toolkits

Open source toolkits have been consistently used during this work, and they

have been necessary for the development of several parts. In details, Hidden

Markov Model Toolkit (HTK) and  HMM-based Speech Synthesis System

(HTS) are toolkits for building and manipulating hidden Markov models.

The demo which has been used in a step of the work, has been created by

the HTS working group. Furthermore, the Speech Signal Processing Toolkit

(SPTK),  which  is  a  suite  of  speech  signal  processing  tools,  has  been

fundamental in the last part of the process, while generating the synthesis. In

conclusion, also the use of Sound eXchange (SoX) has been necessary for

performing several kind of sound processing. 
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Chapter 3

METHODOLOGY

The  analysis  and  synthesis  process  of  Lemurs  vocalizations  has  been

adapted  starting  from the  general  framework  used  in  the  human  speech

context.  However,  given  the  nature  of  these  particular  sounds,  several

considerations have to be done. 

First, the lack of precedent similar works in this field has meant that the

creation of an acoustic representation for each vocalization had not been

straightforward. The procedure for extracting the features in several cases

presented incompatibility with the ones normally used in speech-context. In

these cases, it has been necessary starting from scratch, leading to specific

representations. 

Furthermore, the two vocalizations considered in this study, the Mew and

the Growl, present quite different acoustic characteristics. It has meant that

for each one the process of features extraction has been particularized. It is

important to underline that the choice to focus on these two has been mainly

arbitrary, but in part because of their vowel like acoustic structure [Gamba

and Giacoma, 2006].

The next sections are organized as follow: before it will be introduced the

dataset, with its strengths and weaknesses. Afterwards, we will identify the

general strategy of analysis and synthesis which has been used for both the

vocalizations, focusing the on the details of each steps done for achieving

the final results.

 

3.1 Lemur vocalization database 

The collaboration with Dr. Gamba has made possible this work, considering

the  huge  database  of  Lemur  vocalizations  that  he  furnished  us.  The

recordings have been done during a period of almost 10 years, in several

places around the world. More than 50 specimen have been studied, with a
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range of age which start from newborn arriving at Lemurs 7 years old. In

total, the whole database is composed by more than 8 thousand examples.

For our purposes and our not extended knowledge of Lemur vocalization, a

fundamental tool has been the annotations related to this database which Dr.

Gamba gave us. In this table, for each vocalization has been annotated: the

specimen,  the  sex,  the  birth  date,  the  date  of  recording,  the  context  of

recording,  the  type  of  vocalization,  the  age  of  the  specimen  during the

recording and a number ID of the vocalization. Having these informations,

we have been able to optimize our research within the database. 

The only limitation of this  database has been the quality of most  of the

recordings, as we will see the reasons in detail later. Indeed, for our kind of

analysis approach, vocalizations too much obfuscated from other sources, as

noises, other animals, and degradation of audio quality derived from echoes

or distortion due to extreme proximity of the source, have meant that a large

part of recordings could not be used. 

3.2 General strategy

The first aim has been to create an optimal acoustic representation which

could lead us to  a  good quality  synthesis,  regardless  from using HMMs

model.  This  means  that  we  had  to  find  features  which  could  represent

peculiarities of the signal for both vocalization. Furthermore, it is important

to point up that a relevant characteristic of the feature set, which we had to

keep in  mind during the features  selection,  was that  since we wanted to

arrive  at  an  HMM  based  statistical  model,  we  were  looking  for  rather

stationary features, that evolved slowly over time, at least over the states of

the HMM. As we will see, for Mew it did not present extreme difficulties,

while  for  Growl  it  has  been  necessary  a  more  complex  research.  Once

obtained a robust acoustic representation, we used the selected feature set

for generating a first synthesis. 
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After that, we have proceeded introducing HMMs framework. Our second

aim, has been to achieve a HMM-based synthesis for single vocalizations.

For this  step,  we have based our work on the general  structure used for

HMMs-based  speech  synthesis.  We  have  used  part  of  the  script  of  the

"Speaker dependent  training  demo (English-normal  version)"  released by

the HTS Working Group. Details will be presented later.

Achieved this first HMM-based synthesis, last step has been to use several

vocalizations  for  creating  a  model  and  then  generating  a  synthesis.

Difficulties had emerged in the selection of the examples for the training

part of HMMs, which had required a deepened analysis of the behaviors of

the  features  for  each  vocalization.  Specific  cases  will  be  discussed.

Surpassed  this  problem,  we  have  obtained  the  final  synthesis  based  on

HMMs.   

What  described before can be considered the general  strategy which has

been used in both the vocalizations taken into account. However, specific

characteristics in each case have been observed, and it has been necessary to

model them for achieving a good quality synthesis. In next sections, before

we will analyze the acoustic representation created for both vocalizations.

After that, we will deepen the HMMs framework used, and in conclusion

we will focus on the synthesis part. 

3.3 Acoustic representation 

The research and extraction of an adequate feature set for each vocalizations

has been the hardest task. Starting from the assumption that also for Lemur

vocalizations it can be applied the source-filter model, basically we needed

to find two types of features: one for describing the excitation part and one

for  the  spectrum  part.  In  the  field  of  speech  synthesis,  usually  the

fundamental frequency (f0) is used for creating the excitation signal, and

spectral  parameters,  as  Mel-Generalized  Cepstral  Coefficients  (MGCCs)

[Tokuda et al, 1994], are used for filtering the excitation and achieving the

synthesis [Tokuda et al, 2013]. 
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Therefore,  we  have  chosen  to  maintain  this  pattern,  even  if  we  have

encountered two kind of difficulties:

- algorithms for feature extraction designed for speech signals, often do not

work correctly in presence of other kind of signals, as in our case.

- using only two features, f0 for the excitation signal and MGCCs for the

spectral part, cannot be enough for modeling properly some kinds of Lemur

vocalizations. 

For solving these problems, it has been necessary to deepen the low-level

analysis  of the considered signals,  and basing on empirical  observations,

create from scratch specific algorithms for extracting specific features. 

3.3.1 Mew 

The  Mew  has  been  considered  a  good  starting  point  for  its  acoustic

characteristics. As presented before, it is a tonal call where duration hardly

exceeds 1 sec, and it has a slow increase in pitch. Furthermore, the presence

of a great number of examples of this vocalization in the database has led us

to choose it for starting our work. 

Figure 3.1: Example of Mew vocalization, waveform (top) and 
spectrogram (bottom)
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a. F0 estimation and data normalization

The first problem has been encountered during the f0 extraction. In fact, the

two algorithms implemented in the SPTK toolkit, RAPT [Talkin et al, 1995]

and SWIPE [Camacho, 2007], are not extremely accurate with this kind of

signals. This led to a synthesis where f0 trajectory was not well defined. For

solving this  problem,  we chose to  try  with SAC algorithm,  described in

[Gómez  and  Bonada,  2013],  thought  for  dealing  with  automatic

transcription  of  flamenco  music  recordings,  more  specifically  a  cappella

singing. Thanks to this, we have improved considerably the accuracy of f0

extraction.

Figure 3.2: F0 estimation of several vocalizations performed with different 
algorithms. RAPT (top), SWIPE (center), SAC (bottom)

Once obtained a good f0 estimation, we had to deal with the big variety of

the sounds.  Indeed, behavior  of  f0 presents  several  differences  between

Mew vocalizations. A root of this diversity is that not all the vocalizations

belong to the same individual and this can be a cause for differences in f0.

This could be a problem when trying to use several vocalizations together,

because  mixing  completely  different  behaviors  into  HMM  may  make

misleading variations at  the Gaussian models created.  Hence, it  has been

necessary to analyze in deep how was substantial the difference between f0

trajectories. 
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For this reason, we have chosen to work with normalized data. With data

which are quite different, using the absolute f0 values can lead to a really

strong over smoothing. Furthermore, with the normalization it is possible to

make  the  f0  feature  frequency  shift  invariant  and  also  frequency  scale

invariant. With this choice we achieved a more compact visualization of the

data and a more reliable comparison between vocalizations.  

We  can  describe  the  normalization  process  adopted  as  follow:  first  we

selected the parts of the f0 estimation different from zero, achieving a vector

f0 with only positive values. Namely, we considered only the voiced parts

of the vocalization. After that, we computed a histogram of the elements in

vector f0, sorted into 100 equally spaced bins along the x-axis between the

minimum  and  maximum  values  of  f0.  Following,  we  performed  a

cumulative  sum,  achieving  a  minimum  and  maximum  frequency

considering  only  a  range  between  the  10%  and  the  90%  of  the  total

frequency range of the vocalization. This passage has been fundamental for

avoiding  the  influence  of  extremes  behaviors  of  f0  trajectories  in  the

normalization, due sometimes also by computational errors. 

Figure 3.3: Plot of several examples of Mew f0 trajectories. In data1 we can
observe a quasi-regular rise, however some computational errors are evident
observing the unnatural peak around 0.4. Data2 presents is a case of very
irregular trajectory of f0. In data3 is present an initial prominent peak which
characterize some Mew. Data4 is a case where there is no presence of the
initial peak and the rise of the trajectory is regular.  
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In conclusion, we obtained normalized data applying 

b. Classification

The  analysis  of  normalized  f0  data  has  pointed  out  several  kinds  of

trajectories within the considered set of Mew. Hence, our second purpose

was  to  perform a  valid  classification.  This  passage  has  been  necessary,

because when putting together vocalizations with behaviors widely different

in the training dataset for HMMs, the resultant synthesis loses its sense.

To begin with, we were able to discriminate between two main behaviors. In

fact, in the range of 0-0.2 in the axis of time-normalized, some of the Mew

present an initial  prominent peak in the f0 trajectory.  It characterizes the

begin of the vocalization and it is clearly distinguishable when listening the

vocalizations.  Hence,  a  first  subdivision  of  Mew was  between  examples

with initial peak and without initial peak.  For achieving this, it has been

performed a comparison between the area of the first part of f0 estimation,

0-0.2  in  time-normalized,  and  a  constant  area  used  as  threshold  for

discriminating between the trajectories with or without initial peak. Simply,

if the area of f0 was bigger than the threshold, the Mew were classified as

with  peaks,  and if  not  without  peaks.  The threshold  as  been fixed  after

analysis of several examples of this vocalization.  

Figure 3.4 : Example of Mew classified as "with initial peak". The dotted 
red line delimits the threshold area considered. 
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Figure 3.5: Example of a Mew classified as "without initial peak". The       
dotted red line delimits the threshold area considered . 

Afterwards, the task was to analyze the part after the initial peak until the

end of the vocalization.  In this  case,   the problem was that  even if  it  is

present a slow rise in f0 in almost all the Mew, the evolution of this rise can

vary a lot. In some cases, it follows a sort of regular pattern, in other it is

very  irregular,  presenting  random valleys  and peaks.  Hence,  we tried  to

recognize  if  there  were  regular  patterns  repeated  along  different

vocalizations and how they could be described. 

Our approach was to confront the part of f0 trajectory comprised in 0.2-0.9

in time normalized,  with its polynomial approximations of degree from 1 to

4.  Thanks to  this,  it  was  easy to locate  and discard examples  too much

irregular for our purpose. In fact,  if the difference between the f0 of the

vocalization and at least one of its polynomial approximations was under a

fixed threshold, this vocalization could be marked as regular. If not, it was

considered irregular, then discarded. 
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Figure 3.6: Example of Mew classified as regular (top) and irregular 
(bottom). The blue line represents the f0 estimation, the others are the 
polynomial approximations. 

Once discarding the overly irregular trajectories, another attempt to improve

the  classification  was  to  separate  the  regular  vocalization  basing  on the

convexity  or  concavity  of  the  f0  trajectories.  However,  later  we  have

noticed that this difference was not so perceptually relevant  when listening

the resulting synthesis, hence we discarded this passage. 

In conclusion, achieved this classification we were able to select two sets of

vocalization for the training part of HMMs and this led us to re-synthesize

faithfully the different behaviors of Mew. 

24



c. Spectral part

The selection and extraction of timbre features, necessary for filtering the

excitation signal and then obtaining the synthesis,  has not been a crucial

point in this work. Observed that the MGCCs were an enough valid spectral

representation for our purposes, we used the implementation present in the

SPTK toolkit for extracting them. 

3.3.2 Growl   

The characteristics  of  Growl  are  quite  different  from the  ones  of  Mew,

therefore  we  have  decided  to  continue  with  this  vocalization  for  trying

different  approaches  in  the  construction  of  the  acoustic  representation.

Similar to the growling of dogs, it comprises a long series of low-frequency

laryngeal vibrations and wide-band sound frequency striations. Duration is

typically from 1 to 4 sec [Pereira et al, 1988]. 

Figure 3.7: Example of Growl vocalization, waveform (top) and 
spectrogram (bottom)

The main difficulty with the growl samples was that they are highly non-

stationary.  This means that with a short window of just a few periods of

signal it is possible to observe strong amplitude and frequency modulation

(AM and FM). 
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Furthermore, as we mentioned before, there is plenty of noise and ambient

effects  in  the  samples.  The  big  advantage  of  the  Growl  is  that  we  can

observe a clear temporal structure. This led us to analyze it in time-domain

rather than in frequency-domain. Thanks to this, it  has been quite simple to

observe behaviors of amplitude modulations and then designing algorithm

to represent  

Basing on that, our strategy for having an optimal acoustic representation

has been to  create  in a supervised way the excitation  signal,  taking into

account the different peculiarities. After that, we have filtered it with the

timbre features. Hence, our first step has been to locate what features were

adequate for replicating the excitation in a realistic way. 

Figure 3.8: Block diagram of the process for creating the Growl  excitation
signal 

After several analysis, for creating our excitation model of Growl, we have

reputed  satisfactory  to  consider  four  features:  one  for  describing  the  f0

evolution,  and  three  for  the  amplitude  modulation.  It  is  important  to

underline that the extraction of these features is based on the analysis of the

temporal structure of the vocalization. Indeed, in all the four cases, the first

step has been to locate the peak of the amplitude of the signal. 
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With  these,  we  were  able  to  determine  how the  Growl  evolves  in  time

domain and what are the point where we can find more information relative

at the vocalization. 

a. Peak detection

The temporal  structure of Growl,  which is easily recognizable by ear,  is

characterized by a series of low-frequency vibrations rapidly performed. For

capturing  useful  information  from  the  signal,  detecting  the  peak  of  the

amplitude, normalized previously, has been the first step. Feature estimation

is  more  reliable  where  Signal-to-Noise  ratio  (SNR)  is  higher,  and  then

strategy has  been estimating  features  in  the  location  of  these  peaks  and

afterwards interpolating the values. 

Hence, we built a specific algorithm for detecting this point, basically based

on finding possible candidates and confronting with surrounding points. The

idea is  straightforward: find a local  maximum with a value over a fixed

threshold, and then comparing it with surrounding minima, for being sure

that it is effectively an useful peak. After that, check if there are other peaks

too near, and in case find the maximum values. 

Figure 3.9: Example of detected peaks of the amplitude

Applying  an 125 Hz high-pass  filter  at  the  selected  vocalizations  before

performing  the  peaks  detection  has  been  useful  for  improving  the

performance of this algorithm. 
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In fact considering the conditions of recording, filtering the audios before to

analyze them has helped to eliminate disturbances of various environment

noises. As result, it has been available how peaks were distributed in time,

and we were able to continue in the process of feature extraction. 

b. F0 estimation

It has been necessary to implement a specific procedure for estimating f0

values in the case of Growl vocalizations,  considering that attempts with

algorithms previous used didn't achieve satisfactory results. 

In  the  beginning,  we  started  analyzing  different  vocalizations,  trying  to

understand the behavior of f0 trajectories, and trying to locate a reference

value valid for all the examples.  After several spectral  analysis,  we have

fixed this value at 220 Hz. Afterwards, we have proceeded extracting f0 in

the peaks location previously estimated. First, centering a Blackman-Harris

window in the position of the peaks,  with a windows size equal  to four

times the period of the reference f0 and then, computing FFT, with an FFT

size equal to four times the window size. At this point, having available the

spectrum,  we have found the maximum point  within a range of  200 Hz

around our reference value, 220 Hz. This maximum has been selected as f0

values relative at the selected peak. 

Figure 3.10:  Example of windowed signal centered in the peak location, the
black stem, (top);  computed spectrum with selected candidate as f0, the red
cross, in the considered range, highlighted in red (bottom).
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Once obtained values for each peak location, we had to interpolate these for

obtaining an f0 estimation each ~5ms, achieving a f0 trajectory usable later

for training HMMs. 

c. Amplitude modulation 

Modeling the amplitude modulation of Growl has been a complex process,

however  it  has  been fundamental  for  creating  an acoustic  representation

which could lead us to a good synthesis.

First,  we  needed  to  have  an  idea  of  general  trends  of  the  temporal

distribution of the peaks of amplitude, previous estimated within the whole

vocalization.  Hence,  we  started  analyzing  the  distance  between  peak

locations.  Thanks  to  this,  we  have  been  able  to  detect  the  presence  of

regular or irregular behavior of the distribution of peaks. Indeed, using the

mean  and  standard  deviation  of  this  distribution,  we  have  been  able  to

construct an upper and lower envelope, which gave us a sort of measure of

regularity. If the distance between these two envelopes was relatively small,

it meant that in those points the distance between peaks was enough regular.

At  the  contrary,  it  meant  that  there  was  an  irregular  behavior  of  the

distribution. 

Figure 3.11: Example of Growl waveform, blue line, with peaks detected,
red stem (top); plot of trend of peak distance, red line, mean, dashed line,
and standard deviation, gray lines (bottom).  
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This has been fundamental for modeling the locations of pulses were later

applying the amplitude modulation. These envelopes have been the first two

features  which  we  have  selected  to  model  the  amplitude  modulation,

because, thanks to them, we were able to construct peak locations, hence the

temporal structure of Growl. 

After  that,  our  first  attempting  for  generating  amplitude  modulation  was

based on convolving the pulse location obtained before with an Hanning

window with a fixed size of 1227 frames, a value deemed valid after several

analysis of the shape of the signal. However, the synthesis based on these

features was not totally satisfactory.  In fact,  even if  the excitation signal

presented a behavior in time similar  to the original  Growl,  there was no

presence  of  substantial  variations  in  the  amplitude  modulation.  This  is

because  in  this  first  step  we  have  achieved  to  generate  the  AM  pulse

locations, but we do not had any control on their amplitude. 

Figure 3.12: Example of Growl waveform, blue line, with peaks detected,
red stem (top); pulse location  (bottom).   

Again,  we  returned  to  analyze  the  normalized  amplitude  of  the  signal,

searching a way to model the amplitude modulation. Our first observation

has  been  regarding  how HMMs are  able  to  model  the  evolution  of  the

energy  along  the  utterance.  Indeed,  the  output  of  HMMs  is  a  sort  of

smoothed version of the amplitude envelope of the vocalization. 
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This information is generally contained in the first (or 0th) coefficient of the

timbre representation. However, computing the amplitude envelope basing

on the pulse locations,  it  was possible  to observe a  behavior  which was

clearly  different  from  the  hypothetic  one  deriving  from  HMMs.

Furthermore, with HMMs we will not be able with a few number of states to

represent the differences between HMMs derived and real envelope. Since

there are relevant variations we decide to model them with two features,

depth and rate. 

Figure 3.13: Example of Growl waveform, blue line, with peaks detected,
red stem (top); normalized amplitude of the signal, blue line, evolution of
the energy, red line, pulse amplitude envelope,black line (bottom) 

The idea has been that observing some periodicities in the difference signal,

it makes sense for modeling it, to consider an oscillator with depth and rate

modulation features with some noise. Thus, we obtain another feature for

the amplitude modulation, that models actually this difference. 

In conclusion, we have modified the pulse onset signal adding variations

based on the previous observations, obtaining a signal consisting of deltas

with different amplitudes. Then we have convolved it with the pulse shape.

In this passage, after  further observations,  we have chosen to not use an

Hanning window,  but  instead  to  create  an  asymmetrical  window with  a

sudden start and a slow decays. For achieving it, we have merged a flat top

window and an Hanning window, both with a windows size equal to 1227.
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Figure  3.14:  Asymmetrical  window  used  for  modeling  the  amplitude
modulation

This has been useful also for emphasizing the perception of f0 at the energy

modulation  rate.  The  results  of  the  whole  process  has  been  the  final

amplitude  modulation.  Another  way  of  looking  the  procedure  done  for

creating the excitation signal is: 

- with the analysis of the pulse locations, we have been able to replicate the

temporal structure of the Growl, creating a series of uniform deltas.

- with the analysis of the normalized amplitude, we have been able to model

for  each pulse locations  the  amplitude,  creating  a  series  of  non uniform

deltas. 

- with the convolution with an asymmetrical window, we have been able to

replicate the pulse shape, and achieving the final amplitude modulation. 

Once available a representation of the amplitude modulation, the last step

for creating the excitation signal has been to convolve it  with a train of

periodic pulses generated with the f0 estimation.

 

32



Figure 3.15: Uniform deltas in pulse locations (top); deltas with amplitude 
variations (center); obtained amplitude modulation (bottom).

d. Spectral part 

Similar considerations at the ones done for the Mew have been done for

extracting the spectral features. We have not considered particular needs for

using a different spectral  representation,  hence also in this we have used

MCG analysis for obtaining timbre features of the vocalization. 

However in this case, given the acoustic structure of Growl, we have tried to

improve  the  spectral  features.  In  fact,  considering  the  vocalization  as  a

sequence of pulses, with noise between each one, what we tried to achieve

was  to  catch  the  timbre  information  corresponding  at  the  pulses,  and

discarding others. 

Considering the whole MGC representation, extracting the features only in

the location of pulses, and finally smoothing it, we have obtained a pulse-

centered smoothed version of the timbre representation. Nevertheless, the

results achieved have not improved the final synthesis in a way perceptually

relevant. At the end, we have chosen to discard this approach.
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3.4 Hidden Markov Models framework

The creation of an acoustical representation for the two vocalizations has

been the preliminary but fundamental step, previous the introduction of the

HMMs framework. 

It is important to point out that the choice to use HMMs is mainly derived

by  two  factors.  First,  since  we  want  to  model  statistically  the  feature

trajectories,  with  HMMs  we  have  a  measure  of  likelihood  of  synthetic

trajectories,  and  this  allows  us  to  generate  variations  of  samples  with  a

natural  sound  and  behavior.  Second,  to  learn  which  context  labels  are

relevant  for  explaining  the  variations  found  among  the  different

vocalizations.  

As already mentioned, for testing the validity of our representation we have

generated a first synthesis based only on the features extracted. Once the

quality was relatively high, we have proceeded to create a second synthesis

of a single vocalization, but this time based on HMMs. This second step has

been important for observing how the features selected for each vocalization

would have behaved.  After that, the final passage has been selecting several

vocalization to be used in the training dataset for HMMs, training HMMs,

and as consequence obtaining a probabilistic model for each vocalization. 

In this part, it has been necessary to understand the use of some commands

of the toolkits presented before (HTK, HTS and SPTK) and to adapt at our

exigences the script of the demo provided by the HTS working group. We

can summarize the whole process as following: 

  Calculate  global mean and covariance of a set of training data (HCompV)

  Provide initial estimates for the parameters of a single HMM using a set

of observations sequences, repeatedly using Viterbi algorithm (HInit)

  Perform basic Baum-Welch re-estimation of the parameters of a single

HMM using a set of observations sequence (HRest)

  Make monophone macro model files (Hhed)
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  Perform a single re-estimation of the parameters of a set of HMMs, using

an embedded training version of the Baum-Welch algorithm (HERest)

  Generate speech parameter sequence (HMGenS)

  Synthesize waveform basing on the parameters generated by the previous

step (SPTK)

where in brackets are indicated the related commands or toolkits used for

each specific passage. In the next sections, we will describe step by step the

procedure done for achieving synthesis based on HMMs. 

 
Figure 3.16: Block diagram of the process done with HTK/HTS/SPTK 
toolkits
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3.4.1 Data Preparation

Difficulties  have  arisen  when  dealing  with  HMMs,  in  particular  in  the

process  of  adaptation  of  data  with  the  used  script.  In  fact,  the  demo  is

thought for working with human speech, and a series of parts do not match

with our purpose. 

The most relevant difference is features extraction of training data, f0 and

MGC, which is automatic in the demo, while we had to use our specific f0

estimation,  both with Mew and Growl,  and with the second, also adding

amplitude modulation features.  Furthermore,  speech audios are automatic

labeled,  which  means  that  duration  of  each  phoneme  is  automatically

recognized and information  is  saved for being used later.  Given that  we

have dealt with Lemur vocalizations, this automation cannot be used, hence

we have manually annotated each label. An example of a label of Mew is: 

 0      3963816  pau
   3963816    12287829  mew
 12287829   16251645  pau

Where the first two numbers denote the start and the end in time of the

vocalization, 'pau' denote the pause or silence, hence no presence of signal,

and 'mew' is the kind of vocalization, referred to the audio relative at the

label.

While labeling the data, we had to choose how to manage vocalizations. The

simpler choice was to consider each vocalization has a single phoneme, and

it  was  the  approach  that  we  chose.  Mainly  it  was  because  even  if

considering a vocalization as a series of "phonemes" probably can lead to

better synthesis, we have chosen to start with a basic approach. We have

done some test trying to separate a vocalization into different units, as for

example in the Mew considering the initial peak as a phoneme and the rest

of the vocalization as another phoneme. However, our decision has been to

remain  with  the  model  "vocalization=phoneme",  leaving  as  future  work

different kind of labeling approaches, as we will discuss later. 
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Last  step  for  preparing the  data  was to  convert  to  raw the audio  of  the

database, originally in aiff format, and to change the sample rate at 48000

Hz. For this passage we have used the SoX toolkit.  

3.4.2 Training Part 

Once having data ready to be used, we have continued setting the training

part of your system. Basically, we have not modified the original script in

this part, because for our aim it was enough to exclude some parts related at

high-level context which we have not taken into account during this study.

Indeed,  our  process  of  analysis  and synthesis  was focused on each case

separately,  hence  we  have  not  used  any  kind  of  relationship  between

vocalizations and a general context where they are used. Surely, it has been

a  limitation  both  for  the  improvement  of  the  synthesis  quality  and

considering that one point of strength of HMMs is to be able to manage

different level of relationships between phonemes, syllables, words, phrases

etc.  This  is  possible  because  of  the  syntax  is  well  defined  in  human

languages, but with Lemurs, and in general animals, the approach cannot be

exactly the same. Also here, we will discuss in future work different ones

which could be adopted.  Considering the previous observations,  we have

used default values of the original script for performing the training part.

The only change has been done for the Growl, because of the presence of

addition features for modeling the amplitude modulation. 

 

3.5 Synthesis

The synthesis is the last step of the whole process described in the previous

sections. However, several attempts have been done during work, which in

most of the cases have led at results with a poor quality. At the beginning,

the lack of correct acoustical representations has been the cause of synthesis

which did not replicate the original vocalizations faithfully. Afterwards, we

had to deal with the difficulty on finding valid examples to be used in the

training  part.  Furthermore,  the  number  of  vocalizations  with  an  enough

quality for our purposes, has been not so massive. 
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However,  working  on  three  different  kind  of  synthesis,  we  had  the

possibility  to evaluate results separately, taking into account in each case

the  constrictions  below  which  we  had  to  work.  As  already  mentioned

before, we have achieved three types of synthesis:

1)  Synthesis  of  one  example  of  vocalization  not  using  HMMs,  which

probably has been the most important. Thanks to this, we have obtained an

immediate response of the validity of the acoustic representation and of the

quality of the features extracted for the vocalization. 

2) Synthesis of one example of vocalization using HMMs. In this passage,

we have started to have an idea of how synthesis behaved using HMMs, and

as consequence, where we started to have a decrease in naturalness.

3) Synthesis of several examples of vocalization using HMMs. In this last

type,  the whole process has been as the one used in speech-context.  We

have  been  able  to  create  a  model  for  each  vocalization,  based  on

probabilistic  analysis  of  the  several  examples  used  in  the  training  part.

Specifically, for the Mew we have used 10 examples in the case with initial

peak and 25 in the case without initial peak. While for the Growl we have

found only 6 vocalizations which had enough quality to be used.

3.5.1 Post-Processing

The  introduction  of  Hidden  Markov  Models  in  the  process  of  synthesis

immediately has lead to a notable  decrease of the naturalness  of results.

Several reasons could be considered: lack of useful examples,  validity of

choices of feature extraction, analysis and synthesis parameters, approaches

used, etc.  All the issues treated in the previous sections have influenced

partially the final results.  

Because of that, before to perform the evaluation it has been necessary to

post-process the synthesis. As we will see in the next chapter, the evaluation

has  been  based  on  comparison  between  original  and  synthesized

vocalizations, hence having a synthesis that clearly sounded artificial would

not led to interesting results. 
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However,  only in the case of the second type of synthesis,  the one of a

single vocalization based on HMMs, it has been performed this further step

of post-processing. Regarding f0, it has been enough to add noise at a fixed

percentage  of  frames,  about  10%,  uniformly  distributed  in  time,  and

afterwards smoothing the result.

 In  the  case  of  MGC,  the  idea  has  been  to  take  the  feature  of  original

vocalization and the one generated by HMMs, and to do statistical analysis

of the several differences. Once having an idea of how much differed the

behaviors, automatic variations have been generated and then applied at the

features  extracted  with  HMMs.  In  details,  first  the  difference  between

original  MGC  and  HMM  derived  MGC  has  been  computed,  frame  by

frame. After that, using the mean of the difference values for each frame,

noise has been generated,  and variations has been computed in the same

way of f0 estimation. In conclusion, we have used this modified features for

generating the synthesis. 

Figure  3.17:  Plots  of  f0 initial  estimation  (top),  f0  generated  by HMMs
(center), final f0 after post-processing (bottom).
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Figure  3.18:  Plots  of  MGC initial  estimation  (top),  MGC generated  by
HMMs (center), final MGC after post-processing (bottom).

In this way, it has been possible to have features based on HMMs, but with

slightly variations based on statistical analysis, choice which has enhanced

enough the quality of the synthesis.

The  last  step  necessary  before  to  start  the  evaluation  has  been  to  add

background at synthesis. Several fragments have been selected within the

database,  and  it  has  enhanced  the  naturalness  of  the  artificial  signals.

Indeed, in the synthesis generated obviously there is no presence of noises

and echoes  derived from the environment.  Hence,  we have  due recreate

these ambient effects before to perform the evaluation. 
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Chapter 4

EVALUATION AND RESULTS

The final part of this work has been to evaluate the outcomes of the project

by means of listening tests with humans, which have been performed via a

web-based form. In the next section we will introduce the general schema of

the  evaluation  process  and  several  characteristics  of  the  participant

population and the conditions during the experiment. Afterwards, we will

examine the results of each vocalization separately. 

4.1 Evaluation 

4.1.1 Listening test

While  designing  the  experiment  for  evaluation  of  the  synthesis,  several

issues have been taken into account. 

The  first  consideration  has  been  that  probably  most  of  the  participants

would  not  had  a  background  in  the  field  of  Bioacoustics  or  Signal

Processing. Considering that it has not been selected a specific population

for  performing  this  test,  the  variety  of  participants  has  been  previously

hypothesized, and later it has been confirmed. In addition, even if with some

experience in fields related to this work, it is not very likely to encounter

persons which have already listened lemurs vocalization during their life.

Furthermore, if we consider that in our case vocalizations are treated out-of-

context, as single signals, to be familiar with this kind of sounds becomes

very unlikely. 

Consequently,  the first  step has been to  present  several  examples  of the

original vocalizations. Thanks to this, the participants had the possibility to

have clear  acoustic  references  on how these vocalizations  are structured,

which are the main peculiarities, significant variations etc.  After that, the

core of the test has been consisting of two parts, which have been presented

randomly in each test for avoiding possible bias. 
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First, it has been presented an A/B testing, where the aim was to compare

two audios  and to  recognize the nature of  each  one,  hence  if  they were

original or synthesized versions. For each kind of vocalization, six couples

of audios have been presented, where there were four possibilities: or the

first audio were original and the second synthesized, or the contrary, or both

original, or both synthesized. In this section, the first and the second type of

synthesis  have  been  evaluated,  those  based  on  single  vocalization.

Moreover, this part has been also useful for having a criteria of judgment of

the reliability of the decisions taken by the participant. Indeed, apart from

recognizing the ability in differentiating between original and not, analyzing

the  results,  it  has  been  possible  to  know if  the  participant  was  able  to

recognize if the same audio was repeated two times.  

Second, it has been required to identify, within a set of audios, which ones

were synthesized vocalizations and which ones were original. This part has

been used  for  evaluating  the  synthesis  created  by using  Hidden Markov

Models with several examples in the training part, hence the third type of

synthesis.  Performing  and  A/B testing  did  not  make  sense  in  this  case,

considering that the audios artificially generated were based on the analysis

of several examples used together. As before, this part it has been useful for

observing  if  the  participants  were  able  to  recognize  the  original

vocalizations, hence for having an idea of their ability.

4.1.2 Population participant

The  web-form  created  for  performing  the  listening  test  has  been  open

without  any  kind  of  restrictions,  hence  it  has  meant  that  we  have  not

performed any kind of selection within the participants. The population of

this experiment has been composed by 22 participants, mixed gender, with a

range of age between 22 and 29 years with some exceptions over the 30.

Furthermore,  more  than  the  85% never  had experiences  in  the  fields  of

Biology,  Bioacoustics,  Signal  Processing  and  Audio  Engineering.  In

addition, the conditions under which the test have been done are various:

about  50%  have  used  low-quality  speakers  while  the  rest  have  used

headphones. 

42



These aspects surely have influenced in part the results of the experiment,

hence it is fundamental to take them into account analyzing the responses. 

4.2 Results

The  analysis  of  the  responses  of  listening  test  confirmed  several

considerations already taken into account at the end of the synthesis process,

but  at  the  same  time  it  has  pointed  out  various  relationship  between

vocalizations and their artificial version. 

The  A/B  testing  gave  us  an  evaluation  of  the  first  two  synthesis,  both

derived from a single vocalization. A first important consideration is that

more  the  users  have  been  able  to  recognize  two  identical  vocalizations

within the couple, more they were able to recognize between original and

synthesized vocalizations.  It is  a validation that responses have not been

totally random. As a consequence, we can also affirm that the synthesis of

Mew without initial peak is the one which is less recognizable within the

three computed,  while  the Growl has been clearly perceived as artificial

when compared to the original.  Also, it  is  interesting that in the case of

Mew, the synthesis generated without using HMM has been more difficult

to recognize. This fact is not completely unexpected, on the contrary it has

confirmed that in some cases using HMMs has not improved the naturalness

of the synthesis. 

O – S1 O – S2 S1 – S2 O – O S1 – S1 S2 – S2 

Growl
 

59,10% 50.00% 36,40% 68.20% 54.50% 40.90%

Mew
N.P.

27.30% 45.50% 45.50% 27.30% 27.30% 54.50%

Mew
W.P.

45.50% 59,10% 31.80% 40.90% 40.90% 36,40%

  Table 4.1: Percentage of correct responses of the A/B testing. Legend:
O = original vocalization. S1 = synthesis generated without using HMMs. 
S2 = synthesis generated using HMMs. Mew N.P. = Mew without initial 
peak. Mew W.P. = mew with initial peak.
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Regarding the other part of the test, the identification task, it has helped to

evaluate the level of naturalness of the synthesis  generated using several

vocalizations  together  as  training  dataset  for  HMMs.  In  this  case,  the

percentage of correct identifications of original examples has not been so

high, between 60% and 70%. At the contrary of the previous results, it is

interesting  to  notice  that  in  this  case  Growl  is  the  vocalization  better

synthesized, while Mew has been detected as artificial in more than 18 cases

over 22, both with and without initial peak.

Original HMM-based 

Growl 60.23% 50.00%

Mew (N.P.) 68.18% 81.82%

Mew (W.P.) 67.04% 81.82%

  Table 4.2: Percentage of correct responses of the identification testing. 
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Chapter 5

CONCLUSIONS AND FUTURE WORK

The work presented in this thesis is nothing but a first little step into a new

way for creating artificially animal vocalizations. Several directions could

be taken both in  the specific  case  of  Lemurs  and,  in  general,  in  animal

context.  The  aim of  this  research  is  to  show that,  even if  there  are  not

specific information about the morphology and the functional anatomy of

the  vocal  tract,  it  is  possible  to  model  and  then  synthesize  animal

vocalizations. Indeed, all the results have been obtained mainly thanks to

signal  processing  techniques.  Obviously,  for  achieving  high-quality

synthesis it is fundamental a collaboration between biologists and engineers,

because  apart  from  having  a  good  modelization  of  the  signals,  it  is

necessary to have a profound knowledge of the "semantic part" concerning

the animal communication.

5.1 Contributions

The main contribution of this work is to have created an acoustic model of

two vocalizations within the Lemur repertoire, the Mew and the Growl, only

based on signal analysis. Starting from several acoustic features, we have

synthesized  these  vocalizations,  achieving  three  types  of  synthesis:  one

based  only  on  the  feature  extracted,  one  based  on  HMMs  but  created

starting from a single vocalization, and then a last one where HMMs have

been used as normally in the speech-context, with due adaptations.

Apart from the obtained results, we have introduced in the context of animal

vocalization  a  different  approach  for  achieving  high-quality  synthesis,

which  is  widely  used  in  the  field  of  speech  synthesis.  Surely,  other

approaches could be considered, but we are confident that Hidden Markov

Models could potentially lead to optimum results.  
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5.2 Future work

Considering this work as a first attempt of using probabilistic based models

for the creation of animal vocalization synthesis,  directions that could be

taken  are  various.  A  list  of  possible  future  work,  focusing  on  Lemurs

vocalization, could be the following:

- Try different labeling for each vocalization while using HMMs. In this

passage, it is fundamental to analyze in deep each vocalization, both from a

signal processing and a biological point of view, for locating basic units of

each vocalizations. In this manner, more precise characterization could be

done, leading to create more specific models in each case, improving the

quality of the synthesis. Indeed, one of the basic problem is to identify what

could be considered as a phoneme within a vocalization, if it has sense to

talk about phonemes in the animal oral communication and issues related.

Even if mainly it can be treated from a biological point of view, with the

help of signal  processing techniques,  it  could be easier to  achieve better

results. 

-  Extend  the  kind  of  analysis  done in  this  work  at  all  the  vocalizations

within the Lemur vocalization repertoire,  leading to have a specific acoustic

representation  in  each  case.  In  addition,  it  could  be  try  to  use  the  ones

presented for the Mew and the Growl with other vocalizations, observing if

they can be adapted. 

-  Once  having  specific  synthesis  for  all  the  repertoire,  try  to  add  more

information of the high-level context into the Hidden Markov Models. In

fact, one of the point of strength of HMMs is that it can use context-related

information for modeling the sound, improving the quality of the synthesis

generated.   Also in  this  part,  it  is  necessary a work both in  the field of

biology and in signal processing. Analyzing how vocalizations are used, the

correlation between each other, repetitions and other kind of relationship,

important  information  could  be  extracted  which  could  improve  the  final

results. 
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- Done all  the steps before,  a final experiment  could be to try to record

enough vocalizations of a specific specimen and built a dependent-speaker

model. Indeed, using vocalizations of exemplars with different sex, age, size

etc. adds non-sense variations into the probabilistic model, which could be

misleading. 

However,  it  is  important  to  underline  that  the  approach which  has  been

adopted in this thesis with Lemurs, could be extended, at least, at all the

animals which sound production can be represented with the source-filter

model. Obviously, in each case the species-specific acoustic representations

of vocalization within the repertoire have to be adapted and customized. 

Hopefully,  in  the future approaches  where are  mixed together  biological

researches and audio engineering techniques could lead to improve notably

results,  helping  in  the  discovery  of  new  knowledges,  fundamental  in

understanding animal behaviors and improving human-animal interactions. 
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