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ABSTRACT 

Adaptive filters with suitable nonlinear devices are very effective in 
suppressing the adverse effect due to impulse noise.  In a previous 
work, the authors have proposed a new class of nonlinear adaptive 
filters using the concept of robust statistics [1, 2]. The robust M-
estimator is used as the objective function, instead of the mean 
square errors, to suppress the impulse noise. The optimal 
coefficient vector for such nonlinear filter is governed by a normal 
equation which can be solved by a recursive least squares like 
algorithm with )( 2NO  arithmetic complexity, where N is the 
length of the adaptive filter.  In this paper, we generalize the 
robust statistic concept to least mean square (LMS) and 
transform domain LMS algorithms. The new fast nonlinear 
adaptive filtering algorithms called the least mean M-estimate 
(LMM) and transform domain LMM (TLMM) algorithms are 
derived. Simulation results show that they are robust to 
impulsive noise in the desired and input signals with an 
arithmetic complexity of order )(NO .  

I.  INTRODUCTION 

Recently, there has been considerable interest in studying 
adaptive filtering algorithms that are robust to impulsive 
interference. Under such adverse condition, the performance of 
the conventional linear adaptive filters can deteriorate 
significantly. Nonlinear techniques are often employed to 
reduce the hostile effects of the impulsive noise. In the 
nonlinear LMS (ATNA) and nonlinear RLS (N-RLS) algorithms 
[3, 4], nonlinear clipping functions are used to limit the transient 
fluctuation of the estimation error in conventional adaptive 
filters caused by the impulses. The mixed-norm LMS (RMN) 
algorithm, proposed in [5], combats the impulsive noise in the 
desired signal by minimizing a combination of 1L  and 2L  

norms using the stochastic gradient method. All of these 
methods are not robust to impulses that appear at the input 
signal. In [1], a RLS-liked algorithm, called the M-RLS 
algorithm, was proposed for impulse noise suppression, by 
minimizing an M-estimate cost function instead of the 
conventional mean square error. The M-RLS algorithm is more 
robust to the conventional RLS, N-RLS, RMN and ATNA 
algorithms when the input and desired signals are corrupted by 
individual and consecutive impulses. It is also more suitable to 
real-time processing than the Huber adaptive filter [6], which 
treats the filtering problem as a block fitting problem using the 
general M-estimator (GM-estimator) ([7], pp.12). The Huber 
adaptive filter is not recursive and a system of nonlinear 
equation has to be solved in each iteration. The arithmetic 
complexities of the M-RLS algorithm and its improvement 
version, called the RLM algorithm [2], however, are still rather 
high ( )( 2NO ) compared with the LMS type algorithms which is 

)(NO . It is the purpose of this paper to develop fast transversal 
filtering algorithms using the concept of robust statistics as 
proposed in [1, 2].  In particular, a new robust least mean M-
estimate (LMM) algorithm and its transform domain 
counterpart, called the transform domain least mean M-estimate 
algorithm (TLMM), are developed.  They can be viewed, 
respectively, as the generalization of the conventional LMS and 
transform domain LMS (TLMS) algorithms with an arithmetic 
complexity of order )(NO .  Simulation results show that they 

are more robust than the ATNA, N-RLS, and RMN algorithms in 
impulsive noise environment.   

II. OVERVIEW OF THE ROBUST ALGORITHMS 

Let’s consider the system identification problem in Fig. 1 with 
an adaptive linear transversal filter. The signals )(nx , )(ny  and 

)(nd  are the input, output and desired signals of this filter, 
respectively. The estimation error )(ne  of the adaptive filter at 
time instant n is given by 

     ),()()()( nnndne T Xw��        (1) 

where T
N nwnwnwn )](),...,(),([)( 110 �

�w  is the filter coefficient 

vector, TNnxnxnxn )]1(),...,1(),([)( ����X  is its input vector. In 
practice, )(nd  and )(nx  may be corrupted by additive 

interference signal )()()( nnn img ��� �� , where )(ng�  and 

)(nim�  are additive Gaussian and impulsive noise, respectively. 

In what follows, the principle of the ATNA, RMN, N-RLS and 
RLM algorithms will be briefly described.  

A. Adaptive Threshold Nonlinear Algorithm 

The nonlinear least mean squares (ATNA) algorithm is a 
stochastic gradient based algorithm. The cost function 

)]([ 2 neEJ MSE �  is minimized by updating the filter coefficient 

vector as [3] 
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where  �  is the stepsize, h  is the threshold parameter, 

10 ��
�

�  is the forgetting factor and )(�cf  is a truncated linear 

function applied to the error signal )(ne  to reduce its influence 
when it is abnormally large. The limitations of ATNA are its slow 
convergence speed and slow tracking ability. 

B. Robust Mixed-Norm Adaptive Filter Algorithm 

In the mixed-norm adaptive filter (RMN) algorithm [5], the 
coefficient vector is updated to minimize the cost function 

])([)1()]([ 2 neEneEJ mmMIX �� �	� . The resulting algorithm is 

similar to the combination of the well-known LMS algorithm 
and the least absolute difference (LAD) algorithm:  

       � �� � ),()((1)(2)1(ˆ)(ˆ nnesignnenn mm Xww ��� �����  

))(ˆ)((2 nneerfc em �� � ,             (3) 

where m�  is a mixing parameter , (.)erfc  is the complementary 

error function and )(ˆ ne�  is estimated by the trimming window 

method (details can be found in [5]). The RMN algorithm also 
suffers from slow convergence speed and the increased steady-
error due to the use of the mixed-norm.   

C. Nonlinear RLS Algorithm 

The nonlinear recursive least squares (N-RLS) algorithm is 
derived from the conventional RLS algorithm based on the cost 
function )()( 2

1 ienJ inn
iLS

�
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� � . The coefficient vector is updated 

as [4],   
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Where, )(nK  is the Kalman gain. )(�cf  is the clipper function. 

The advantage of the N-RLS algorithm is its fast convergence 
speed and low steady-state error.  However, the complexity of 
the N-RLS algorithm is relatively high with an order of )( 2NO  
per iteration. 
All of these algorithms, unfortunately, are not robust to 
impulses in the input signal and consecutive impulses in the 
desired signal. 

D. Robust M-Estimate Adaptive Filter And Recursive Least 
M-Estimate (RLM) Algorithm 

In [1, 2], the authors have proposed a new approach to robust 
adaptive filtering, which can effectively suppress the adverse 
effects of the impulse in the desired signal )(nd  and/or the input 
signal )(nx . The proposed cost function is based on the robust 

M-estimate function, � �)()( 1 ienJ inn
iL ��

�

�

�


� . Here, )(��  is a 

robust M-estimate function for suppressing impulsive noise.  In 
[1], )(��  was chosen to be the modified Huber M-estimate 
function.  Later in [2], the following more general Hampel’s 
three parts redescending M-estimate function was studied [8].  
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The advantage of this M-estimate is that its first order derivative 
is continuous. As shown in Fig. 2, )(��  is an even real-valued 
function and it is quadratic when e  is smaller than � . For 

� �1,�� �e , the function is linear. For 2�	e , the function is 

equal to a constant. The threshold parameters � , 1� , and 2�  
are used to control the degree of suppression of the outliers. 
Smaller values of � , 1� , and 2�  imply greater suppression of 

the outliers. Therefore, )(nJ L�  is capable of smoothing out 

momentary fluctuation caused by the impulsive interference. 
The optimal coefficient vector can be obtained by setting the 
first order partial derivatives of )(nJ L� , w.r.t. )(nw , to zero. 

This yields, 
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where rrr ��� /)()( ��  and rrrq /)()( �� . Substituting (1) into 
(6), one gets 
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are the correlation matrix of )(nX  and the cross-correlation 
vector between )(nd  and )(nX , respectively. We shall call (7) 
the M-estimate normal equation, which is a system of nonlinear 
equations. An effective recursive algorithm, called the recursive 
least M-estimate algorithm (RLM) was derived in [2] for solving 
this normal equation. Simulation results showed that the RLM 
algorithm could effectively suppress the adverse effects of 
individual and consecutive impulses occurring in the desired 

and the input signals.  Its convergence speed and steady-state 
error is relatively unaffected by the impulses with a 
performance similar to the RLS algorithm in the noise-free case. 
However, its arithmetic complexity, like the RLS algorithm, is 
approximately )( 2NO  per iteration. 

III.   ROBUST LEAST MEAN M-ESTIMATE ADAPTIVE 
FILTER ALGORITHMS 

In what follows, we shall generalize the concept of robust 
statistics to the LMS and TLMS algorithms to derive robust 
adaptive algorithms with )(NO  arithmetic complexity. 

Least Mean M-Estimate (LMM) Algorithm   

For any coefficient vector w , the gradient vector of the mean 

square error function )]([ 2 neEJ MSE �  is 

)]()([2)]([)( 2 nneEneEJ MSEw X
w

�

�

�

�� wRb X22 ��� .      (9) 

where, )]()([ nnE T
X XXR �  and )]()([ nndE Xb �  are the 

correlation matrix of )(nX  and the cross-correlation vector 
between )(nd  and )(nX , respectively. In the LMS algorithm, 

MSEJ  is minimized by updating the coefficient vector )(ˆ nw  in 

the negative direction of the instantaneous gradient vector, w�̂ ,  

� � )()(2)((ˆ)( 2 nneneJ wMSE X
w

��

�

�

���� ,       (10)  

www ����
ˆ)1(ˆ)(ˆ �nn ).()(2)1(ˆ nnen Xw ����      (11) 

In the proposed LMM algorithm, the robust statistic based 
objective function ))](([ neEJ M �

�
�  is minimized instead of 

MSEJ .  The coefficient vector )(ˆ nw  is also updated in the 

negative direction of the instantaneous gradient vector w�

~
, 

which can be written as,  
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).()())(()1(ˆ)(ˆ nenneqnn Xww ����         (13)  

where )(�q  is the weight function defined previously in (6).  
Eq.(13) can be viewed as the extension of the LMS algorithm in 
(11).   

Transform Domain Least Mean M-Estimate (TLMM) 
Algorithm 

The limitation of the LMS-type algorithms is their slow 
convergence speed, especially when the distribution of the input 
signal is colored. The transform domain LMS (TLMS) proposed 
in [9] greatly improved the convergence speed of the LMS 
algorithm. Various aspects of the TLMS and their performance 
analysis can be found in [10-12].  The input signal, )(nx , is first 
transformed by an )( NN �  orthogonal matrix Q  to produce 

transform outputs, ),( inxt , Ni ,...,1� .  Each of the N outputs is 

then normalized by its power estimate 2
ip , which are usually 

estimated as, ),()1()1()( 222 inxnpnp tpipi �� �	�� , where p�  is a 

forgetting factor and is usually chosen as 0.95. Let 
� �T

ttt Nnxnxn ),(,),1,()( ��X  be the input vector of the TLMS 

adaptive filter, then the normalized input vector can be 
expressed as 

),()()()( 12

1
2 nnn tN QXXX �

�

����                     (14) 

where 2
�  is an )( NN �  diagonal matrix whose thii �),(  

element is equal to )(2 npi .  This normalization helps to reduce 



  

the eigenvalue spread of the autocorrelation matrix, XR , of 

)(nX .  The autocorrelation matrix of )(nNX  is given by, 

11111)]()([ �����

������� QQRQQRXXR X
T

X
T
NNX nnE

N
,    (15) 

If Q  is properly chosen, say as the KLT of XR , XR  will be 

diagonalized with IRX �
N

. Unfortunately, it is very 

computational expensive to compute the KLT of XR  and sub-
optimal transforms such as the discrete cosine transform (DCT), 
the discrete Fourier transform (DFT), or the discrete Hartley 
transform (DHT) are used.  We now consider the derivation of the 
TLMS and TLMM algorithms. Pre-multiplying both side of (9) by 

1�
XQR  results in QwQwQwbQRQR w 2222)( 11

	��	���
��

optXMSEX J , 

where bRw 1�
� Xopt , which is the optimal solution obtained by 

letting )( MSEw J
  in (9) to zero. Therefore, we obtain 

� �� �.(
2

1 1111
MSEwopt J�������

���� QQQRQwQw X .     (16) 

Assuming that the autocorrelation matrix XR  is approximately 

diagonalized by Q , we have � � IQQRX ���

�� 11  and by letting 

Qww �t , one gets 

).(( 2
2
1

, MSEwtoptt J����
� Qww        (17) 

The gradient vector can be estimated from the instantaneous MSE 
error as in (10). Therefore one gets the TLMS algorithm as, 

)()()1()( 2 nnenn ttt Xww �

�	�� � , where ),()( nnt QXX �  and 

).()()()( nnndne t
T
t Xw��  Alternatively, the gradient vector can 

be estimated from the instantaneous robust distortion ))(( ne�  as 
in eqn. (12), the resulting transform domain least mean M-
estimate (TLMM) algorithm is obtained as follows 

� � ).()()()1()( 2 nenneqnn ttt Xww �

�	�� �       (18) 

Since 
�MJ  is used instead of MSEJ , (13) and (18) are called the 

least mean M-estimate (LMM) and transform domain LMM 
algorithms, respectively.  It can be seen that when )(ne  is 

smaller than � , the weight function � �)(neq  is equal to one and 
(13) and (18) become identical to the corresponding equations 
in the LMS and TLMS algorithms, respectively.  When )(ne  is 

larger than � , � �)(neq  becomes smaller and smaller and is zero 

when )(ne  is greater than 2� .  Thus the LMM and TLMM 
algorithms effectively de-emphasize the effect of large signal 
error during the updating of the filter coefficients. The 
effectiveness in suppressing the influence of the impulses 
depends very much on how the threshold parameters � , 1�  and 

2�  are estimated. This is addressed in the following section. 

IV. PARAMETER ESTIMATION 

As mentioned earlier, the choice of the threshold parameters � , 

1�  and 2�  can significantly affect the performance of the LMM 
and TLMM algorithms. For simplicity, the error signal )(ne  is 
assumed to be Gaussian distributed and corrupted by additive 
impulsive noise. By estimating the variance of )(ne  without the 
impulses, it is possible to detect and reject the impulse noise in 

)(ne . Specifically, the probability of )(ne  greater than a given 

threshold T  is given by 

})({)( TnePn rT ��� ))(ˆ2(1 nTerf e���  [1], where )(rerf  is the 

error function and )(ˆ ne�  is the estimated standard deviation of 

)(ne . Using different threshold parameters T, we can detect the 
impulse noise with different degrees of confidence. Let 

})({ ��
�

�� nePr , })({ 11
���

�
nePr� , and })({ 22

���
�

nePr�  

be the probabilities that )(ne  is greater than � , 1�  and 2� , 

respectively. In this work, �� , 
1�

�  and 
2�

�  are chosen to be 

0.05, 0.025 and 0.01, respectively, so that we have 95% 
confidence to down weight the error in the interval � �1,�� , 
97.5% confidence to down weight the error signal in the interval 
� �21 ,��  and 99% confidence to reject it when 2)( ��ne . The 

corresponding threshold parameters are determined to be 
)(ˆ96.1 ne�� � , )(ˆ24.21 ne��� , and )(ˆ576.22 ne��� . A 

commonly used estimate of )(ˆ 2 ne�  is 

)()1()1(ˆ)(ˆ 222 nenn ee ��
���� �	��  [4]. It is, however, not robust 

to impulse noise. In fact, a single impulse with large amplitude 
can substantially increase the value of )(ˆ 2 ne� , and hence the 

values of � , 1�  and 2� . A more robust but complex estimator 

is the median absolute deviation from the median (MAD) ([8], 
pp.105). In the paper, the following robust recursive estimator 
with much lower complexity than the MAD for )(ˆ ne�  is 

proposed   

� � � �)(med)1(1483.1)1(ˆ)(ˆ
1

522 nAnn eNee w ��
���� �		��

�

,     (19) 

where )}1(,),({)( 22
	�� we NnenenA � , and wN  is the length of 

the estimation window. From the above discussion, it can be 
seen that the arithmetic complexity of the proposed LMM and 
TLMM algorithms is close to that of the conventional LMS and 
TLMS algorithm, except for the order )log( ww NNO operations 

in (19).  

V.  SIMULATION 

The performance of the proposed LMM and TLMM algorithms 
are evaluated and compared to the conventional LMS [13], 
TLMS [9], RLS [13], RLM [2], N-RLS [4], RMN [5], and ATNA 
[3] algorithms through simulations of the system identification 
problem shown in Fig.1. The DCT is used as the orthogonal 
transformation in the TLMS and TLMM algorithms due to its 
good performance and low implementation complexity. The 
unknown system is a FIR filter with coefficients 

T] 20406080180604020[ ., ., -., ., -, ., -., ., -.�w , which is suddenly 
changed to w�  at 1536�n . The desired signal is corrupted by 

the zero mean additive Gaussian noise, )(ng� , with variance 2
g�  

and the additive impulsive noise, )(nim� , which is generated by 

the Gaussian-Bernoulli process with 210*5 �

�arP  and 1002
��  

[5] in 900~1�n . The locations of the impulses are fixed in all 
independent runs, while their amplitudes are governed by a 
zero-mean Gaussian process [5]. Specifically, these impulses 
are at time instants 589,461,247,246,245�n . The signal-to-noise 

ratio at the system output is given by )/(log20 22
10 0 gdSNR ��� , 

where 2

0d�  is the variance of the unknown system output, 

)(0 nd , and it is set to dB40 . The input signal )(nx  is a colored 

signal and it is generated by passing a zero-mean, unit variance 
white Gaussian process through a linear time-invariant filter 
with coefficients 0.3887] .3887,1,0[  [13]. There is just one 
impulse appearing at 944�n  in )(nx . The length of the 
adaptive filter is 9�N  and that of the estimation window is 

14�wN . The forgetting factor 
�
�  is chosen as 0.99 except for 

the ATNA algorithm, where it is chosen as 995.�
�
� according to 

[3]. All step sizes are set to 0.02 except for the RMN algorithm, 
where it is 014.0�� .  For the RLS, N-RLS and RLM algorithms, 

99.0��  with initial conditions 0w �)0( , IR ��

� 20)0(1 , 

0P �)0( , and )0()0(ˆ 2 de �� . The mean squared error (MSE) 



  

obtained by averaging over 200 independent runs is plotted in 
Fig. 3. It can be seen from Fig. 3(a) that the performances of the 
RLS, LMS, TLMS are significantly degraded by the impulses. 
The proposed LMM and TLMM algorithms are robust to the 
impulses appearing either in the desired or input signals. The 
LMM algorithm, however, converges slowly due to its LMS-
nature. From Fig. 3(b), it is clear that the TLMM algorithm 
provides faster tracking ability compared to the RLM, N-RLS, 
RMN and ATNA algorithms.  Its steady-error, however, is higher 
than that of the RLM algorithm.  The RLM, N-RLS and RLS 
algorithms have almost the same initial convergence speed, 
tracking ability and low steady-state error. It is also noted that 
the performances of the N-RLS, ATNA, and RMN algorithms 
were degraded significantly by the impulse in the input signal at 

944�n . Therefore, it can be concluded that, under the 
experimental condition specified, the TLMM algorithm is more 
effective and robust than ATNA, N-RLS, RMN in mitigating the 
adverse effects due to the impulses either in the desired signal or 
in the input signal.  It is therefore a very attractive sub-optimal 
alternative to the RLM algorithm with a much lower 
computation complexity of )(NO . 

VI.  CONCLUSION 

Two new adaptive filtering algorithms called the least mean M-
estimate (LMM) and the transform domain least mean M-
estimate (TLMM) algorithms are proposed for robust adaptive 
filtering in impulse noise environment.  They can be viewed, 
respectively, as the generalization of the conventional LMS and 
transform domain LMS (TLMS) algorithms using the robust 
statistic concept.  The arithmetic complexity of the algorithms is 
of order )(NO , which is much lower than that of the RLM 
algorithm proposed previously by the authors.  Simulation 
results show that they are in general more robust than the ATNA, 
the N-RLS and the RMN algorithms when the desired or input 
signals are corrupted by individual and consecutive impulses. 
Simulation results show that the TLMM algorithm is a very 
attractive sub-optimal alternative to the RLM algorithm with a 
much lower computational complexity and faster tracking 
speed. 
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Fig.1 System Identification Structure 

Fig.3 The MSE results for various algorithms 

Fig.2 Hampel’s three parts redescending M-estimate  


