

STIMA DELLA BATIMETRIA COSTIERA

CON MACHINE LEARNING E IMMAGINI SATELLITARI

Thursday 20th February, 2020

Dott. Filippo Tonion Prof. Francesco Pirotti

Università degli Studi di Padova Territorio Ecologia Recupero Risorsa Ambiente

TERRA SRL

Introduzione

Batimetria

Territorio Ecologia Recupero Risorsa Ambiente

ipero TERRA SRL

Batimetria - Definizione

La branca dell'oceanografia che si occupa della misura della profondità e dello studio morfologico dei fondali marini.

La batimetria risulta particolarmente importante per misurare l'entità dei fenomeni di erosione e deposizione in ambiente costiero.

Strumenti tradizionali

- Ecoscandagli di precisione Single beam o Multi beam
- GPS e/o software integrati per gestione misure
- Imbarcazioni

Tale modalità consente di acquisire dati ad alta precisione per l'area di interesse

TERRA SRI

Batimetria 2

Territorio Ecologia Recupero Risorsa Ambiente

Limitazioni

Le principali limitazioni della batimetria tradizionale sono:

- Costi. Spese elevate per lo svolgimento di rilievi
- **Area di analisi**. Talvolta difficile gestione aree vaste per tempi e costi
- Tipologia di informazione.

Batimetria da Satellite

La stima della profondità dell'acqua può essere fatta con :

- Modelli Empirici. Come il modello di Jupp o il modello di Stumpf
- Modelli fisici Che considerano ad esempio moto ondoso, granulometrtia sedimento... ecc.
- Machine e Deep Learning

TERRA SRI

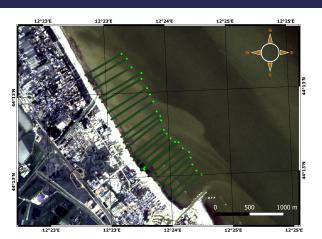
Batimetria da satellite - Vantaggi

- Costi contenuti.
- Estensione delle analisi

Il Machine Learning (ML) è una branca dell'intelligenza artificiale che comprende diversi modelli di analisi dei dati.

Algoritmi

- Decision Trees
- Neural Networks
- Random Forest
- Support Vector Machine


Materiali e Metodi

Territorio

Area di studio

L'area di studio è situata a nord del porto di Cesenatico (FC) ed è estesa circa 1.78 km²

La raccolta dati è avvenuta in data 26 Aprile 2018. Il range di profondità considerato è stato 0m - 5m. Le misurazioni sono state fatte lungo transetti a partire dalla spiaggia.

Dati da Satellite

Dati Multispettrali

- Landsat 8. Bande 2-11. Risoluzione spaziale da 15m a 100m. Risoluzione spettrale da visibile a SWIR
- **Sentinel 2**. Bande 2-12. Risoluzione spaziale da 10m a 60m. Risoluzione spettrale da visibile a SWIR
- **Planetscope**. Bande 1-4. Risoluzione spaziale 3m. Risoluzione spettrale da visibile a NIR

I dati dalle diverse piattaforme satellitari sono stati acquisiti per il giorno 26 aprile 2018, in modo che potessero essere comparati con i rilievi in mare.

TERRA SRI

Elaborazione dei dati

Territorio Ecologia Recupero Risorsa Ambiente

Amplificazione delle variabili

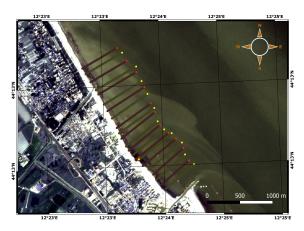
I dati satellitari da diverse piattaforme sono stati sottoposti ad un processo di amplificazione.

A partire dalla riflettanza delle bande sono stati elaborati nuovi indici (combinazioni di bande)

Variabili predittori

- NDVI. $\frac{(\sigma 8 \sigma 4)}{(\sigma 8 + \sigma 4)}$
- MNDWI $\frac{(\sigma 3 \sigma 12)}{(\sigma 3 + \sigma 12)}$
- + Combinazione di bande

In totale sono state estratte 53 variabili per la predizione della profondità.


Elaborazione dei dati2

Territorio Ecologia Recupero Risorsa Ambiente

TERRA SRL

Training e Validation

Per tutti i punti di profondità misurata è stato estratto il valore di ciascuna delle 53 variabili

TERRA SRI

Modelli ML

- Random Forest (RF)
- Support Vector Machine (SVM)

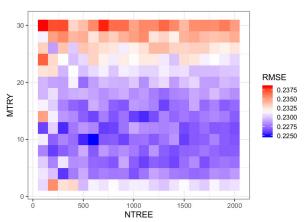
Per RF il tuning dei parameti è potuto avvenire in modo automatico variando i parametri ntree (numero di alberi decisionali) e mtry (numero di variabili da considerare)

Metriche

La stima dell'incertezza è stata fatta sul set validazione, confrontando profondità misutata e stimata, con:

- Root Mean Square Error(RMSE)
- Mean Average Error(MAE)

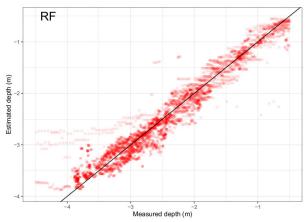
Risultati ed Analisi


RF Tuning

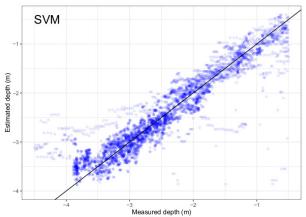
Territorio Ecologia Recupero Risorsa Ambiente

ero TERRA SRL

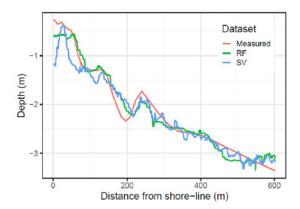
RF parametri


Il processo di taratura del modello RF ha portato all'utilizzo di ntree = 600 e mtry=10

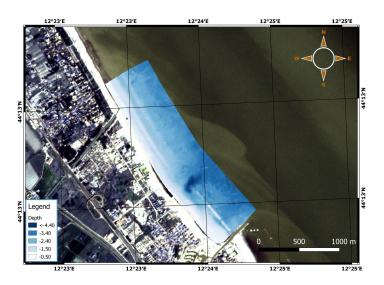
ipero TERRA SRL


Random Forest

In termini di errore RF ha permesso di ottenere RMSE=0.228m e MAE=0.158m. Coefficiente di regressione $R^2=0.97$.


Support Vector Machine

In termini di errore SVM ha permesso di ottenere RMSE=0.409m e MAE=0.226m. Coefficiente di regressione $R^2=0.89$.



Transetti

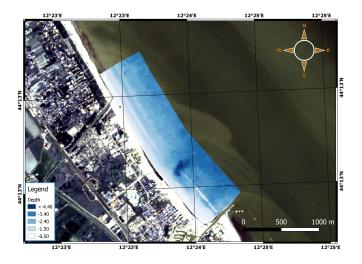
La predizione delle lungo le sezioni longitudinali ha permesso di riscontrare una buona conformita' dei risultati con la realtà misurata.

Territorio

Conclusioni

Conclusioni

Batimetria da satellite


Strumento utile di supporto ai metodi di rilievo tradizionali. I risultati delle stime sono particolarmente buoni. In particolare:

- Random Forest (RF). ha permesso di ottenere errori molto più contenuti
- Support Vector Machine (SVM). errori maggiori ma possibilità di miglioramento con utilizzo di kernel per data transforming

Lavori futuri

- Testare la metodologia su altre zone e con tipologie di dati da satellite differenti.
- Testare modelli di ML differenti (XGB, Neural Network..)

GRAZIE PER L'ATTENZIONE

