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I. Influence of reference vector in method proposed 
                          by Lemmers et al. Nat. Comm. 7, 2016. 

 
 
 
In the following, the influence of the reference vector on the clustering outcome is investigated.  Here, we 
use a procedure which is similar to the work by Lemmers et al. (Nat. Comm. 7, 2016), but with one difference, 
as will be explained below. As reference vector, a tunneling trace with a slope of 7 decades per nanometer is 
used. Using this trace, the length of the difference vector |Y| = |X-R|, with X being the measured trace, and R 
the reference vector is used. In addition, the angle between R and Y is used as second coordinate in the 
feature vector. Finally, as third coordinate, in contrast to the work by Lemmers et al. the trace length is used, 
which is defined as the length in nanometer between the breaking of the last gold-gold contact to the first 
conductance value below 5e-6 G0. Altogether, the feature vector of each breaking trace consists of three 
dimensions. Using these three coordinates, clustering is performed using the Gustafson–Kessel fuzzy 
clustering algorithm.  The clusters obtained after application of this method on sample 2b are shown in 
Figure S1. Cluster 1 consist of traces which appear to be vacuum tunneling. Cluster 2 is populated with very 
short traces in which the gold-gold contact snaps very quickly below the noise floor of the setup, while cluster 
3 consist of a variety of traces which appear to be molecular in origin. 
 

 

 
Figure S1: (a) Two-dimensional and conductance histograms built from all the breaking curves recorded at different 

bias voltages (i.e. sample 6a-f), corresponding to 11 124 traces. (b-c) Two-dimensional and conductance histograms 

built from the breaking curves of classes 1, 2 and 3, respectively, obtained thanks to the clustering method.  



 
 

 

To investigate the influence of the reference vector, we varied its slope between 0.2 and 15 orders of 
magnitude per nanometer. Figure S2 shows the resulting population of the three clusters as a function of the 
slope of the reference. As shown in the figure, the population of the clusters varies with choice of the 
reference vector, with variation of the population up to 5% for cluster 1 and 3. Its influence on the clustering 
outcome is unwanted, and renders the method subjective. 

 
 

 

 
Figure S2: Population of the three clusters as a function of the slope of the reference vector. 

 
II. OPE3 datasets 

 
 

Table S1 is a summary of the OPE3 datasets. Six samples were measured in different experimental conditions 
(bias voltage, breaking speed and molecular yield). The total number of curves is 51 040. The detail of the 
calculation of the molecular yield for the datasets recorded at V = 100mV is presented in section III. 

 
 

Sample 
number 

Sample name Bias voltage 
(mV) 

Breaking speed 
(nm/s) 

Molecular 
yield  
(%) 

Total 
number of 

traces 
1a scan160720_17 100 3.0 30.96 10000 
1b scan160721_11 100 6.0 63.13 6346 
2a scan160512_50 100 1.0 10.38 3180 
2b scan160513_30 100 1.0 3.69 10000 
3 scan160719_15 100 2.0 30.9 1440 
4 scan161119_23 100 3.0 62.35 2000 

5a scan161123_25 100 3.0 25.45 2000 
5b scan161124_6 100 2.0 30.05 2000 
5c scan161124_10 100 6.0 28.55 2000 
5d scan161125_0 100 1.5 39.36 950 
6a scan161125_47 100 2.0 36.25 2000 
6b scan161126_0 150 2.0 28.50 2000 
6c scan161126_1 200 2.5 36.85 2000 
6d scan161126_2 250 2.5 45.30 2000 
6e scan161127_0 300 3.0 51.95 2000 
6f scan161127_1 50 5.0 29.81 1124 

 

Table S1 : Details about the OPE3 datasets used for this work.  



 
 
 

III. Extraction of the most probable conductance using the unfiltered data 
 

For every dataset presented in Table S1 (section I), the most probable conductance (GM) was extracted by 
fitting a log-normal distribution to the prominent peak in the associated conductance histogram. Figure S3 
shows the fit results as well as the extracted GM.  The graph of the most probable conductance of the 
unfiltered data as a function of the molecular yield is displayed in Figures 1 and 4a in the main manuscript.  
 

 
Figure S3 : (a-k)  Conductance histograms built from the unfiltered data of samples 1a, 1b, 2a, 2b, 3, 4, 5a, 5b, 5c, 5d and 
6a (see Table S1 in section I),  respectively. For every histogram, the shaded region is a log-normal distribution fit to 
the data. The mean value of the log-normal distribution fit corresponds to the extracted most probable conductance 
(the obtained value is displayed inside every graph).   

 
 
 
 
 
 

IV. Calculation of the molecular yield for the datasets at V = 100 mV 
 

For a given dataset recorded at V = 100 mV in Table S1 (section I), the molecular yield is defined as the 
fraction of breaking curves belonging to the created classes 2 and 3 in Figures 3(c) and 3(d) in the main 
manuscript. In other words, it corresponds to the percentage of curves with plateau-like features. For 
example, sample 1a has 1154 and 1942 traces in classes 2 and 3, respectively, giving a molecular yield of 
30.96% (= ((1154+1942)/10000) x 100).  

 
 
 
 

b	 c	 d	

e	 f	 g	 h	

i	 j	 k	

1.492	x	10-4	G0	 8.425	x	10-5	G0	 9.329	x	10-5	G0	

1.028	x	10-4	G0	 3.181	x	10-4	G0	 8.399	x	10-5	G0	 1.060	x	10-4	G0	

1.060	x	10-4	G0	 1.449	x	10-4	G0	 1.494	x	10-4	G0	

a	 9.406	x	10-5	G0	



 
 

V. Determination of the most probable conductance of classes 2 and 3  
(molecular yield dependence) 

 
The molecular yield dependence of the most probable conductance was investigated using the datasets in 
Table S1 (section I) for a constant bias voltage, i.e., at V = 100 mV. It corresponds to eleven datasets of 
breaking curves associated with different molecular yields (i.e., samples 1a, 1b, 2a, 2b, 3, 4, 5a, 5b, 5c, 5d and 
6a). All the eleven datasets were merged to create a unique set of more than 40 000 traces and then split into 
three classes using the clustering method (see Figure 3 in the main manuscript). Since one class is a mixture 
of curves belonging to the different initial datasets, one can select all the curves of one of the initial datasets 
inside a specific class. By fitting a log-normal distribution to the prominent peak in the associated 1D 
histogram, one extract the most probable conductance related to one class for a given molecular yield. The 
results of the GM extraction are presented in Figure S4 in the case of classes 2 and 3 in Figures 3(c) and 3(d), 
respectively, in the main manuscript.  

 
 
 

 
 

Figure S4: (a-k)  Conductance histograms built from breaking curves belonging to class 3 and related to samples 1a, 1b, 
2a, 2b, 3, 4, 5a, 5b, 5c, 5d and 6a (see Table S1 in section I), respectively. (l-v) Conductance histograms built from  
breaking curves belonging to class 2 and related to samples 1a, 1b, 2a, 2b, 3, 4, 5a, 5b, 5c, 5d and 6a, respectively. For 
every histogram, the shaded region is a log-normal distribution fit to the data. The mean value of the log-normal 
distribution fit corresponds to the extracted most probable conductance (the obtained value is displayed inside every 
graph.).   

 
 

 

a	 b	 c	 d	 e	 f	

g	 h	 i	 j	 k	

l	 m	 n	 o	 p	 q	

r	 s	 t	 u	 v	

9.977	x	10-5	G0	 1.447	x	10-4	G0	 1.107	x	10-4	G0	 1.341	x	10-4	G0	 1.015	x	10-4	G0	 1.358	x	10-4	G0	

1.018	x	10-4	G0	 1.075	x	10-4	G0	 1.009	x	10-4	G0	 1.166	x	10-4	G0	 1.273	x	10-4	G0	

5.737	x	10-4	G0	 3.177	x	10-4	G0	 4.215	x	10-4	G0	 4.917	x	10-4	G0	 6.887	x	10-4	G0	 4.415	x	10-4	G0	

6.505	x	10-4	G0	 5.055	x	10-4	G0	 5.509	x	10-4	G0	 4.844	x	10-4	G0	 3.771	x	10-4	G0	



 
 

VI. Conductance and 2D histograms of the classes 1, 2 and 3 as well as the unfiltered data 
(bias voltage dependence) 

 
The bias voltage dependence of the most probable conductance was investigated using the datasets in Table 
S1 (section I) for different bias voltages (V = 50, 100, 150, 200, 250 and 300 mV). It corresponds to six 
datasets of breaking curves recorded with the same break junction (i.e., sample 6a-f). All the six datasets 
were merged to create a unique set of more than 10 000 traces, and then split into three classes using the 
clustering method (see Figure S5).  
 

 

 
 

Figure S5: (a) Two-dimensional and conductance histograms built from all the breaking curves recorded at different 

bias voltages (i.e. sample 6a-f), corresponding to 11 124 traces. (b-c) Two-dimensional and conductance histograms 

built from the breaking curves of classes 1, 2 and 3, respectively, obtained thanks to the clustering method.  

 
 

 
 
 

VII. Reduced feature spaces associated with the created datasets for the molecular yield 
and bias voltage dependence analysis 

 
Figures S6(a) and S6(b) show the classification results of the datasets used for the molecular yield and bias 
voltage dependence analysis, respectively, in the reduced feature space. The three-dimensional reduced 
representations were created thanks to the principal component analysis (PCA) technique [1]. The latter 
method consists in projecting each feature vector onto the first three eigenvectors of the covariance matrix 
related to the dataset. The blue, green and red clusters are associated with the classes 1, 2 and 3, respectively.      

a b 

c d 



 
Figure S6: Reduced feature vector distributions associated with the created datasets for (a) the molecular yield and (b) 
bias voltage dependence analysis. The blue, green and red clusters correspond to the classes 1, 2 and 3, respectively.  

 
 
 
 

VIII. Principle of the K-means algorithm 
 

For a given feature space, one can apply a clustering algorithm in order to group the breaking curves into 
classes according to relevant trace features. For our investigation, we used the K-means++ algorithm (from 
the Scikit-Learn Python library) that is a variant of the standard K-means clustering method. The only free 
parameter to define is the number of final classes (K).  

 
Because of its popularity, a detail description of the K-means technique is easily accessible and widely 
discussed in the literature (for instance, see Ref. [2] or [3] for an introduction chapter and video, respectively, 
about the method). The workflow of the standard K-means algorithm can be summarized as follows: 

 
1. Initialization : every feature vector is randomly assigned to one class 
2. For each class, we compute the mean value of the associated set of feature vectors, also called 

centroid or cluster center. 
3. Each feature vector is reassigned to the class related to the closer centroid.  
4. The centroid value is updated for every class.  
5. The steps 3 and 4 are repeated until the assignments no longer change.  
 

Note that, in the case of the K-means++ algorithm, the only difference with respect to the standard K-means 
method is the improvement of the centroid initialization (i.e., steps 1 and 2).   

 
It can be shown that the K-means algorithm aims to minimize an objective function that computes the sum 
of squared distances from each feature vector to its centroid. This means that, depending on the investigated 
dataset, the final results can vary from one initialization to another, i.e., it can end up with a different local 
optimum of the objective function. Therefore, to optimize the classification task, the K-means algorithm is 
run for 100 different initializations. The final classification result is the one corresponding to the smallest 
objective function value.  
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IX. Summary of the results obtained with different clustering algorithms 
 
Table S2 gives a summary of the results obtained with different clustering algorithms applied in our created 
high-dimensional feature space.  

 
 
 

 
Name of the clustering method 

 

 
Results 

 
 

K-means++ [4] 
 

 

✓ 
 

Fast to run and can deal with high-dimensional 
space. 

 
 

 
Density-based spatial clustering of applications 

with noise (DBSCAN) [5] 
 

 

✗



For any values of minimum cluster size, the 
curves with plateau-like features always belong 

to class -1 corresponding to outliers. 
  

 
Hierarchical Density-based spatial clustering of 

applications with noise (HDBSCAN) [6] 
 

 

 ✗



Same results as DBSCAN. 
 

 
 

Gaussian mixture model [7] 
 

 

✗

 
Computationally expensive and creates just one 

single cluster.  
 

 
 

Gustafson-Kessel clustering model [8,9] 
 

 

✗

 
Creation of only one cluster (all the centroids 

have the same position)  
 

 
 
 

Maximum a-posteriori Dirichlet process mixtures 
(MAP-DP) [10] 

 

 

✗

 
For a feature space with more than 40 

dimensions, the algorithm does not work because 
of matrix singularity problems. 

 
Table S2 : Summary of the results obtained with different clustering methods in the case of our created high-

dimensional feature space.  

 
 



X. Influence of the number of classes and bins on the determination of the molecular 
conductance 

 
Here, we test the influence of the number of classes and bins on the determination of the molecular 
conductance for the dataset of sample 5a (see Table S1 in section I), i.e., the one related to the clustering 
results presented in Figure 2(d) in the main manuscript.  
 
Figure S7(a) shows the results of the most probable conductance values extracted from the conductance 
histograms of every created class (see, e.g, section II for the method) as a function of the number of classes 
K.  For K = 1 and 2, only one conductance value is extracted (corresponding to just one class with plateau-
like features). However, from K = 3 to 7, one can identify two values for the most probable conductance, i.e., 
around 7x10-4 and 1x10-4 G0. The latter values are associated with the set of breaking curves of classes 2 and 
3, respectively, in Figure 2(d) in the main manuscript. Note that increasing the number of classes above K = 
7 leads to the split of the classes 2 and 3 into subclasses. This is due to the fact that, for higher values of K, it 
is more favorable to create subclasses in order to minimize the objective function of the K-means++ 
algorithm. As observed on Figure S7(a), the most probable conductance values of the subclasses related to 
class 3 are very close to each other, while those of class 2 are clearly different. One possible explanation of 
the last observation could be that the breaking curves related to class 3 mainly correspond to a unique 
conformation of the OPE3 molecule (i.e., fully stretched molecule) and therefore, creating subclasses leads 
to very similar conductance values. On the other hand, the breaking curves of class 2 might be a mixture of 
different molecular behaviors. Increasing the number of classes K enables to get more insights into the 
composition of one class. 
 
Figure S7(b) is a graph of the most probable conductance associated with classes 2 and 3 as a function of the 
number of bins (M and N). To extract the most probable conductance values of every class, we first used the 
clustering algorithm in order to split the data into 3 classes (for a given number of bins M and N). Then, the 
most probable conductance is obtained using the conductance histogram related to every class (see, e.g, 
section II for the method). As observed in Figure S7(b), the extracted values are independent of the number 
of bins between 15 and 100. However, decreasing M and N below 15 leads to a modification of the extracted 
conductance values, especially in the case of class 2 showing a decrease of the conductance. This is mainly 
due to the fact that the resolution of the created individual 2D histograms is too poor to make a good 
detection of the relevant features related the breaking curves. Therefore, some curves from class 3 
are ‘picked up’ by class 2, leading to a decrease of the most probable conductance of class 2. However, 
increasing the resolution does not modify the final results.  
 
The investigation of the influence of the number of classes and bins on the determination of the molecular 
conductance show the reproducibility and robustness of the identification of 2 sets of breaking curves with 
plateau-like features, i.e., classes 2 and 3 in Figure 2(d) in the main manuscript. 
 

 

 
Figure S7 : Most probable conductance as a function of (a) the number of classes K and (b) the number of bins (M and 
N, where M=N) in the case of the OPE3 dataset of sample 5a. The number of bins was chosen randomly between 1 and 
100. 



 
XI. Subclasses of class 2 related to the molecular yield dependence analysis 

 
Figure S8 shows the classification results after applying the clustering method on class 2 in Figure 3(c) in the 
main manuscript. As one can see, the two created classes show well-defined behaviors. Subclass A contains 
breaking curves that are longer than subclass B. It is worth noting that the occurrence of breaking traces 
belonging to subclass A is only significant at high molecular yield.  
 
The identification of a new type of breaking curves (i.e., belonging to subclass A) at high molecular yield (i.e., 
> 40%) could be one of the reasons related to the change of the ratio between the occurrence of classes 2 
and 3 observed in Figure 4(b) in the main manuscript. In other words, an increase of the molecular yields 
may lead to new types of molecular behavior. 

 

 
Figure S8 : Classification results after applying the clustering method for K=2 on class 2 presented in Figure 3(c) in the 
main manuscript. Two classes with different types of breaking traces are created. 

 
 
 
 

References 
 
[1] A. Géron, O’Reilly (2017)  
 

[2] G. James et al., Springer (2013) 
 

[3] https://fr.coursera.org/learn/machine-learning 
 

[4] D. Arthur et al., SODA, 1027 (2007) 
 

[5] M. Ester et al., Proc. of the 2nd Int'l Conference on Knowledge Discovery in Databases and Data Mining (1996) 
 

[6] R. Campello et al., Proc. of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (2013) 
 

[7] C. Bishop, Springer, 2007 
 

[8] D. Gustafson et al., 1978 IEEE Conference on Decision and Control including the 17th Symposium on  
      Adaptive Processes 761 (1978) 
 

[9] M. Lemmer et al., Nature Communications, 7 (2016) 
 

[10] Y. Raykov et al., PLOS One, 11(9) (2016) 
 
 

https://fr.coursera.org/learn/machine-learning

