The ETCBC Data Model

Current developments

Hendrik Jan Bosman Constantijn Sikkel

Vrije Universiteit

February 18 2020

- Introduction
- Background of the ETCBC data model
- The ETCBC data model: Points to consider
- Current developments and the issues that spring from it
- Time for questions and discussion in preparation of the plenary discussion later this afternoon

Introduction

Our point of departure:

- The model stems from 1977 and has been gradually evolving ever since.
- It has been serving its purpose, but is not perfect.
- Progress is continually requiring adaptations.

What to expect this afternoon:

- A few glances at the model in development.
- The current developments and the issues we are facing.
- That I present work in progress.

Past and Present Implementations

Over the years, parts of the data model have been implemented using

- Punch cards (from 1977)
- Structured plain text files in 6-bit Display character set on a mainframe from the CDC 6000 series (from 1984)
- Structured plain text files in ASCII on a UNIX server (from 1990)
- An Emdros database engine running on top of an SQL database server (from 2001)
- Text Fabric in a Python programming environment (from 2013)

Some Features of the Model

- Stand-off markup (it predates XML)
- Overlapping hierarchies
- Facilitate a form-to-function approach
- Several implementations

Rich Morphology

Figure: Grammatical functions marked by morphemes

• Form to function

The rich morphology of the semitic languages calls for a form-to-function approach.

Hence *morphemes* are the smallest objects (analytic non-primary data) in the model.

• Pattern recognition

The desire to *discover* the grammar beyond word level, rather than dictating it, drove us to use pattern recognition and not a rule-based approach.

Hence the model also contains strictly linear object types, which we call *atoms*.

Parallel Hierarchies

Coalescence

Figure: Coalescent hierarchies

Parallel Hierarchies

Document Structure

Figure: Parallel hierarchies

Syllables and morphemes present two parallel hierarchies.

Take, for instance, the German word Unterhaltungssendung (entertainment broadcast):

- Un-ter-hal-tungs-sen-dung (syllables)
- Unter-halt-ung-s-send-ung (morphemes)

The **ETCBC** Model: Points to Consider

- Preparation of the primary data
- Objects in the database
- Linguistic levels of analysis
- Query languages

191° 4 ב בטע £ , Ī, יחויספ -1; 1; 1; 1; نانا ذ יעודמוומ שחת TI ANTITI

> אם אינו 1 נפועמון בל מיש וחבו קול חוות אונו שבקר שלמו מסורבין וב אינו חוו נורש : במוב זי וראו האמני אשריובהו יכש אשר השאני רק חיו: קיש המל מוסמון לכוורשיפה לשיו מסורבין וב אינו חוו נורש : : במוב זי וראו אמני אשריובהו יכש קחו מס

> > Figure: Psalm 28 in Codex Leningradensis

Biblia Hebraica Stuttgartensia

תהלים 28.4 - 29.11אַ הָּן־לָהֶם כְּפַּעֵלָם וּכְרָעַ מַעַלְלֵיהֵם * יכַּמַעשׁהי יִדִיהָם יתו לָהֶםי הַשֶׁב וּמוּלָם לָהֶםי: ז כֵּי לָא יַבְינוּ אָל־פּעִלָּת יָהוָה וָאָל מַעַשָּה יַדֵיו נה בטע ר״ת בסית ל יהרסם ולא יבנם: 3 • ברוד יהוה כי שמעי קול תחנוני: יהנהועזי ומנני בו בטח לבי ⁶ל רמט ר״ת רתנה <u>וַנַעַזַרְהַיּ וַיַּע</u>ַלִזיּ לַבִּיּ וּמשיריי אהוֹדינוּ: 5.5 איהוה עז־למוי ומעוזי ישועות משיחו הוא: 850 t.72 פהושיעהואת־עמד וברד את־נחלתד 94 ורעם ונשאם עד העולם: 1.5

Figure: Psalm 28 in the Biblia Hebraica Stuttgartensia

Ps 28:7

"I will glorify Him." (JPS 1999)

אֲהוֹדֶנּוּ: ahodennu'

Figure: Five types of graphemes

Ps 28:7

"I will glorify Him." (JPS 1999)

אֲהוֹדֶנּוּ: ahodennu'

Figure: Five types of graphemes

Figure: Five types of graphemes

To One Dimension

- The text comes to us on a two-dimensional substrate as an arrangement of characters which are read in a certain order.
- The two-dimensional text is reduced to a one-dimensional string of graphemes.
- This yields a sequence of objects of which their textual position is mapped to the mathematical set of the integers.
- These integers, called monads, are the coordinate system of the database.

٦

This grapheme in the database is a Syriac letter *qof* in initial position, written in estrangela and is the seventh grapheme on line twelve of folio 34 *verso*. The letter was not recognised with absolute certainty. It could also be a *beth* or a *pe*, but with a lower probability (estimated 24% and 5% repectively). The last five features give some more details of the optical character recognition.

Every object has:

- An *object type*, which determines to which class of object it belongs. For example, morpheme, word, clause.
- A unique identifier.
- A *monad set*, which determines its position in the text and hence the graphemes which are part of it.
- One or more *features*, with their values.

	>	: A	Η	0	W	D	Е	75	N	•	W	•	00	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

So, for instance:

```
[word
  self = 0x24633f88, monad_set = {38-47},
  surface = ">:AHOWDEN.", part_of_speech = verb,
  verbal_tense = imperfect, person = first
]
[word
  self = 0xd357091d, monad_set = {48-49},
  surface = "W.", part_of_speech = personal_pronoun,
  person = third, number = singular, gender = masculine
]
```

	>	: A	Η	0	W	D	Е	75	N	•	W	•	00	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

But also:

```
[phrase
  self = 0xc3071235, monad_set = {38-47},
  type = verbal_phrase, function = predicate
]
[phrase
  self = 0x176d84f1, monad_set = {48-49},
  type = personal_pronoun_phrase, function = object
]
```

Current Developments

- Atoms The relationship between the linear and hierarchical analysis, which used to be practical, now becomes formalised.
- Elisions Analytical objects (words, phrases) that do not actually appear in the text, but influence the linguistic analysis of that text as if they did, need to be recorded.
- Dislocation The *casus pendens* construction, with which we address left dislocation, gets generalised so we can deal with right dislocation as well.
- Participants Research into coreference resolution and participant analysis makes it necessary to have objects and relations which can store its outcome and make retrieval possible.
 - Valency In order to link predicates to the active valency pattern, we are going to rearrange our parsing labels into three dimensions: grammatical relations, complementariness, and semantic roles.

Atoms

- Atoms represent the text as a linear stream of tokens pertaining to a certain object type.
- They are called *atoms* because their monad sets are continuous.
- They exist if some object types are ordered in such a way that the relational operations *less than, equal to,* and *greater than* are defined on them.

```
procedure find head node(node, type)
  atom set: monad set t;
begin
  if node.type <> type then
    for every child of node do
      find_head_node(child, type)
  else begin
    atom set := node.monad set;
    visit(node, type, atom_set);
    print_atom_set(node, atom set)
  end
end
```

Pseudo-code of the first step in the algorithm for the division into atoms: finding the headnodes.

```
procedure visit(node, type, monad_set)
begin
for every child of node do
    if child.type <= type then
        visit(child, child.type, monad_set)
    else begin
        monad_set := monad_set - child.monad_set;
        find_head_node(node, child.type)
    end
</pre>
```

end

Pseudo-code of the second step in the algorithm for the division into atoms: visiting the headnodes.

Elision of the Article

After a one-letter preposition, the article is absorbed by the two encompassing morphemes. It is no longer there, but has left its traces.

Dt 32:10	desert	MID:B.@R	מִרְבָּר
?	in a desert	B.:MID:B.@R	<mark>ה</mark> ַמִּרְבָּר
Gn 14:6	<mark>the</mark> desert	HAM.ID:B.@R	<mark>ה</mark> מִרְבָּר
Gn 16:7	in the desert	B.AM.ID:B.@R	ב <u>ּ</u> מִּרְבָּר

Yet elision does not *always* occur:

Chr 23:10	to the altar	<pre>LAM.IZ:B.;XA</pre>	ל מּזְבֵּחַ
Chr 29:27	to the altar	L:HAM.IZ:B.;XA	<mark>לְה</mark> ַמִּזְבֵחַ

Elements without a Textual Representation

Gn 31:10

וָאֶשְׂא צֵינַי וָאֵרֶא בַּחֲלוֹם

"I lifted up mine eyes, and saw in a dream" (JPS 1917)

Gn 31:11

וַיּאׁמֶר אֵלַי מַלְאַך הָאֶלֹהִים בַּחֲלוֹם

"And the angel of God said unto me in the dream" (JPS 1917)

Objects Without Realisation Virtual objects

- 'next'-edges determine word sequence: B-(H-MDBR/
- (H- has an *empty monad set* {}.
- (H- can be located, within monads $\{3-4\}$, 'between' 3 and 4
- B-, (H- and MDBR/ are *consecutive*

Adjacency

Several notions of adjacency:

- Objects can be *contiguous* (actually touching): the last monad of O_1 is one less than the first monad of O_2 . They are side-by-side in the *primary data*.
- Objects can be *adjacent* (like two houses with a driveway in between them): O₁ and O₂ are adjacent when on the monads between O₁ and O₂ no objects of the object type of O₁ or O₂ can be found. They are side-by-side within their *object type*.
- Objects can be *consecutive* (the one comes immediately after the other): O_1 and O_2 are consecutive if the relation 'next' of O_1 points to O_2 . They are side-by-side on an *analytical path*.

Dislocation

Left dislocation: Gn 42:11

<mark>כָּלְנוּ</mark> בְּנֵי אִישׁ־אֶחָד נְחְנוּ

We all, sons of one man are we.

Right dislocation: Gn 35:6

נַיָּבאׁ יַעֲקֹב לוּזָה אֲשֶׁר בְּאֶרֶץ כְּנַעַן הִוּא בֵּית־אֵל הוּא וְכָל־הָעָם אֲשֶׁר־עָמוֹ

"Thus Jacob came to Luz—that is, Bethel—in the land of Canaan, he and all the people who were with him." (JPS 1999)

New in the data model:

- Introduction of a clause type Right Dislocation.
- Introduction of a grammatical relation Dislocated Element.

Clause atom 50 LDis [KLNW <DE>] Clause atom 51 NmCl [BNJ >JC >XD <PC>] [NXNW <Su>] Figure: Gn 42:11 (left dislocation)

Clause atom 30	WayX	[W- <cj>] [JB> <pr>] [J<qb <su="">] [LWZH <co>]</co></qb></pr></cj>
Clause atom 31	NmCl	[>CR <re>] [B->RY KN<n <pc="">]</n></re>
Clause atom 32	NmCl	[HW> <su>] [BJT_>L <pc>]</pc></su>
Clause atom 33	RDis	[HW> W-KL H- <m <de="">]</m>
Clause atom 34	NmCl	[>CR <re>] [<mw <pc="">]</mw></re>

Figure: Gn 35:6 (right dislocation)

Legend	DE =		Dislocated Element
	LDis	=	Left Dislocation
	NmCl		Nominal Clause
	RDis	=	Right Dislocation

Communication Types

Narrative The narrator is telling a story. (N)
Quotation Direct speech: A participant is speaking. (Q)
Discursive The narrator suspends the story and addresses the reader directly. (D)

speaker Actor who is the *source* of the communication, viewed from outside the domain.

- audience Actor to whom the communication is directed, viewed from outside the domain.
 - sender Actor who is the *source* of the communication, viewed from within the domain.
- addressee Actor to whom the communication is directed, viewed from within the domain.

Domain A domain is characterised by the four main participants that constitute the communication. In theory there are two sets of 'owners', one viewed from the outside (*Speaker* and *Audience*), and one viewed from the inside of the domain (*Sender* and *Addressee*).

Table: Properties of a Domain

Ex 2:7 shows a domain in which all main participants are explicit.

WayX	N	32	30	5.#	[W- <cj>] [T>MR <pr>] [>XTW <su>] [>L BT PR<h <co="">]</h></su></pr></cj>
					+=====================================
xYq0	NQ	321	31	6.q	[H- <qu>] [>LK <pr>]</pr></qu>
WQtO	NQ	321	32	7	[W- <cj>] [QR>TJ <pr>] [LK <co>] [>CH MJNQT MN H-<brjt <ob="">]</brjt></co></pr></cj>
WYq0	NQ	321	33	8	[W- <cj>] [TJNQ <pr>] [LK <aj>] [>T H-JLD <ob>]</ob></aj></pr></cj>
	=====				+=/

Then his sister said to Pharaoh's daughter:

Ex 19:8 shows a domain in which only the speaker and the sender are explicit.

EXO 19,08 WayX N 1121 29 5.# [W-<Cj>] [J<NW <Pr>] [KL H-<M <Su>] [JXDW <Mo>] EXO 19,08 Way0 N 1121 30 6... [W-<Cj>] [J>MRW <Pr>] ____ EXO 19.08 Defc NQ 11211 31 7da || [KL <Ob>] EXO 19,08 xQtX NQ 11211 32 9.e | [>CR <Re>] [DBR <Pr>] [JHWH <Su>] EXO 19,08 ZYq0 NQ 11211 33 8.. [N<FH <Pr>] ----

And all the people answered together, and said:

Concepts and Notions Referential

- PRef (participant reference): phrase or subphrase that introduces or refers to a participant.
- PSet: set of participant references within one domain, that refer to the same actor.
- PAct (actor): collection of sets of participant references identified across domain borders, referring to the same actor.
- Participant: set of actors that share the same referent in the text.

Ex 2:7 "Then his sister said to Pharaoh's daughter" (JPS 1999)

Here in represents two phrases and two participant references.

ps	nu	gn		
	sg	f	אֲחֹתוֹ	his sister
3	sg	m	i-	he

ותאמר אחתו אל-בת-פרעה

PRef Participant references are phrases with the grammatical functions of person, number or gender. This means that phrases can be nested and inherit these grammatical functions from the way they are constructed.

Ex 2:7 הַאַלֵּדְ וְקָרָאתִי לָדְ אִשֶׁה מֵינֶקֶת מִן הָעִבְרִיֹת וְתֵינִק לָדְ אֶת־הַיָּלֶד "Shall I go and call thee a nurse of the Hebrew women, that she may nurse the child for thee?" (JPS 1917)

PRef	PSet	ps	nu	gn	phrase
81	22	1	sg		<u>85</u>
82	22	1	sg		קָרָאָתִי
83	23	2	sg	f	7-
84	24		sg	f	אשה
86	26		pl	f	אָבְרִיּת
87	24	3	sg	f	תֵינָק
88	23	2	sg	f	
89	27		sg	m	ؾؚڎؚڮؚ۫ٮ

PSet Within the confines of a single domain, the participant reference set unites the participant references which refer to the same actor.

Ex 2:5-10

PSet	ps	nu	gn		
9	3	sg	f	תַּחְמֹל ,לִרְחֹץ ,בַת־פַּרְעֹה ,-דָ ,-ָה,	her, her,
				אַקָרָא א <mark>ָקַקֶדָ</mark> ד, אַפְּתַד, אֵכֶר, אָכָר,	Pharaoh's
				תאמר, תִשְׁלַח, הִרָאָהוּ	daughter,, she
					said
23	2	sg	f		you
34	1	sg		י ,אֶתֵּן ,אֲנִי-	I, I shall give, me
38	1	sg		משיתהו	I drew him

Table: PAct 9, $27 \times$, label = בת פרעה

PAct A PAct is a collection of sets of participant references identified across domain borders, which refer to the same actor.

Ez 8:17 "...that they must fill the country with lawlessness" (JPS 1999) [KJ <Cj>] [ML>W <Pr>] [>T H->RY <Ob>] [XMS <Ob>]

"And God set them in the expanse of the sky" (JPS 1999) [W-<Cj>] [JTN <Pr>] [>TM <Ob>] [>LHJM <Su>] [B-RQJ< H-CMJM <Co>]

Conjecture

The textgrammatical rules that govern the clauses (sentences) that connect domains, differ from the classical textgrammatical rules, because those are only valid within the confines of a domain.

C. F. J. Doedens.

Text Databases. One Database Model and Several Retrieval Languages.

PhD thesis, Rijksuniversiteit Utrecht, November 1994.

Dick Grune and Ceriel J. H. Jacobs. *Parsing Techniques. A Practical Guide.* Springer, second edition, 2007.

Eep Talstra.

Approaching the mountain of Exodus 19: thou shalt explore syntax first.

HIPHIL Novum, 3(1):2-24, June 2019.