
Hybrid CPU–GPU execution support in the skeleton
programming framework SkePU

Tomas Öhberg1 · August Ernstsson1 · Christoph Kessler1

© The Author(s) 2019

Abstract
In this paper, we present a hybrid execution backend for the skeleton programming
framework SkePU. The backend is capable of automatically dividing the workload
and simultaneously executing the computation on a multi-core CPU and any number
of accelerators, such as GPUs. We show how to efficiently partition the workload
of skeletons such as Map, MapReduce, and Scan to allow hybrid execution on het-
erogeneous computer systems. We also show a unified way of predicting how the
workload should be partitioned based on performance modeling. With experiments
on typical skeleton instances, we show the speedup for all skeletons when using the
new hybrid backend. We also evaluate the performance on some real-world appli-
cations. Finally, we show that the new implementation gives higher and more reli-
able performance compared to an old hybrid execution implementation based on
dynamic scheduling.

Keywords Heterogeneous computing · Hybrid execution · Skeleton programming ·
Workload partitioning

1 Introduction

The ever-growing demand for higher performance in computing, puts requirements
on modern programming tools. Today parallelism stands for the majority of the per-
formance potential and even if heterogeneous, multi-core and accelerator equipped
systems have been the norm for more than a decade, we still face the challenge of
automatically exploiting the performance potential of such systems. An effective
parallel programming framework should not only let the programmer implement the

 * August Ernstsson
 august.ernstsson@liu.se

 Tomas Öhberg
 tomasolof@hotmail.com

1 PELAB, Department of Computer and Information Science, Linköping University, Linköping,
Sweden

http://orcid.org/0000-0001-6514-4601
http://orcid.org/0000-0001-5241-0026

 T. Öhberg et al.

applications to run on any processing unit the hardware provides, but also to run on
all processing units, dividing the workload between multiple processing units, pos-
sibly of different kind. This way of simultaneously executing an algorithm on mul-
tiple, heterogeneous processing units is referred to as hybrid execution. To relieve
the burden of partitioning and scheduling from the programmers, the frameworks
should preferably figure out the best way to divide the workload automatically. Such
a system must take the relative performance of the hardware components of the sys-
tem executing the application into consideration, as well as the characteristics of the
computation.

One approach to hide the complexities of parallel architectures from the program-
mer is algorithmic skeletons [2]. The idea of skeletons is based on higher-level func-
tions (i.e., functions taking other functions as arguments) from the functional pro-
gramming paradigm. Skeleton programming uses this idea to provide a number of
algorithm templates to the programmer, which can be instantiated to solve the prob-
lem at hand and at the same time hide a potentially complex parallel implementation
of the skeleton behind its interface.

SkePU [6, 8] is a high-level C++ skeleton programming framework for heteroge-
neous architectures, providing a clean and flexible interface to the programmer. The
focus of SkePU is on multi-core, multi-accelerator systems.

A redesign of SkePU was accomplished in 2016 to give the library a new, more
flexible and type safe interface by utilizing modern C++11 metaprogramming fea-
tures. The new version of the library is referred to as SkePU 2. An experimental var-
iant of the old version of SkePU had support for simultaneous CPU–GPU execution
through partitioning of skeleton calls into multiple tasks scheduled by the runtime
system StarPU.

This paper presents a new hybrid execution backend for the SkePU 2 skeleton
framework. The work is based on Öhberg’s master’s thesis [13]. The main contribu-
tions of our work are the following:

• We introduce workload partitioning implementations for all data parallel skel-
etons in SkePU 2, capable of dividing the work between an arbitrary number of
CPU cores and accelerators.

• We present a way to automatically tune the workload partitioning of the skel-
etons, by using performance benchmarking.

• We show that our hybrid execution implementation can improve the execution
time compared to the already existing backends of SkePU, without any changes
to the application code.

• We show that the performance of our solution is faster and more robust than the
experimental StarPU-based hybrid execution implementation from SkePU 1, by
porting its implementation to SkePU 2.

Hybrid CPU–GPU execution support in SkePU

The rest of this paper is structured as follows: Sect. 2 starts by introducing SkePU 2
and its available skeletons. Section 3 introduces the task-based programming library
StarPU. Section 4 presents the new hybrid backend implementation and how the
workload is partitioned in all skeletons. This is followed by Sect. 5, where the auto-
tuner is described. Section 6 describes the evaluations made on the hybrid execution
implementation and presents the results. Section 7 discusses related libraries and
frameworks with support for heterogeneous architectures. Finally, Sect. 8 contains
conclusions and ideas for future work.

2 SkePU 2

SkePU1 is a high-level C++ skeleton programming framework targeting multi-core,
multi-accelerator systems. SkePU was initially presented in 2010 by Enmyren and
Kessler [6] as a macro-based library for computations using algorithmic skeletons.
SkePU was revised in 2016 by Ernstsson [8] to replace the preprocessor macros by
a precompiler and type safe metaprogramming using modern C++11 features. The
new version is called SkePU 2 and the rest of this paper will refer to this version
of SkePU unless otherwise stated. The old macro-based version of SkePU will be
referred to as SkePU 1. Earlier research on SkePU has demonstrated features such
as automatic backend selection tuning [5] as well as smart containers for implicit
multi-device memory management [3]. SkePU 1 also had an experimental version
including support for hybrid execution using the dynamic task parallel runtime
system StarPU [4]. Several industry-class applications have been parallelized with
SkePU, such as the computational fluid dynamics flow solver EDGE [15].

SkePU has four different backends, implementing the skeletons for different hard-
ware. These are:

• Sequential CPU backend, mainly used as a reference implementation and base-
line.

• OpenMP backend, for multi-core CPUs.
• CUDA backend, for NVIDIA GPUs, both single and multiple.
• OpenCL backend, for single and multiple GPUs of any OpenCL supported

model, including other accelerators such as Intel Xeon Phis.

The skeletons in SkePU are instantiated with user functions to create skeleton
instances. The programmer can write the user functions as regular C++ functions
or lambda expressions and let the precompiler translate and generate kernels for the
desired backends. An example of a dot product skeleton using MapReduce is shown
in Listing 1.

1 https ://www.ida.liu.se/labs/pelab /skepu /.

https://www.ida.liu.se/labs/pelab/skepu/

 T. Öhberg et al.

SkePU 2 includes the following skeletons:

• Map, a generic element-wise data parallel skeleton working on vectors and matri-
ces. It has support for element-wise arguments of arbitrary number, as well as ran-
dom access and uniform user function arguments.

• Reduce, generic reduction operation with a single binary, associative operator.
Available for vectors and row-wise or column-wise matrix reduction.

• MapReduce, an efficient combination of a Map skeleton followed by Reduce.
• MapOverlap, stencil operation in one or two dimensions with support for different

edge handling schemes.
• Scan, a generalize prefix sum with a binary, associative operator.
• Call, a generic, multi-variant component.

The Call skeleton will not be discussed further in this paper, as the semantics of the
multi-variant component implies that the user must provide a hybrid execution imple-
mentation themselves.

SkePU implements its own container types, called smart containers [3]. They are
available as vectors and matrices, building upon the interface of the C++ standard
library containers. Smart containers reside in main memory, but can temporarily copy
subsets of its data to accelerator memory to be accessed by skeleton backends execut-
ing on these devices. The containers automatically handle all data movement and keep
track of which devices have copies of the data including the validity of these copies.
Lazy memory copying is applied to ensure data is only copied back to CPU memory
when actually needed.

3 StarPU

The old implementation of hybrid execution in SkePU 1 used the StarPU library
as a backend. This implementation was ported to SkePU 2 as a baseline to com-
pare the new hybrid backend to. StarPU2 is a C-based task programming library for

2 http://starp u.gforg e.inria .fr.

Listing 1: Dot product computation in SkePU 2.

float add(float a, float b) {
return a + b;

}

float mult(float a, float b) {
return a * b;

}

skepu2 ::Vector <float > v1 , v2;

auto dotprod = skepu2 ::MapReduce <2>(mult , add);
float res = dotprod(v1, v2);

http://starpu.gforge.inria.fr

Hybrid CPU–GPU execution support in SkePU

hybrid architectures. The goal of StarPU is to provide a unified runtime system for
heterogeneous computer systems, including different execution units and program-
ming models. StarPU also offers a high-level C++ interface or, optionally, compiler-
extension pragmas.

A task in StarPU is defined in terms of codelets. Describing a computational task,
codelets are combined with input data to form tasks. Tasks are passed to the runt-
ime system asynchronously, and later mapped and scheduled to be executed on any
of the available computing resources. The codelets can contain code written in C/
C++, CUDA, and OpenCL. StarPU’s modular implementation ensures that different
scheduling policies and performance models can be used. Examples of scheduling
policies include eager-based, priority-based, and random-based schedulers. It is
also possible to construct custom schedulers using the pre-implemented scheduling
components. Similar to SkePU, StarPU performs its own data transfer optimization
by caching data on the computational units where it was last accessed [18].

StarPU has been used in a number of application scenarios, recent examples
including finite-volume CFD [1] and seismic wave modeling [12].

4 Workload partitioning and implementation

The new hybrid execution implementation in SkePU is made as a new backend,
allowing the programmer to explicitly choose whether or not to use it. During
precompilation the hybrid backend is automatically included if the OpenMP and
either CUDA or OpenCL is selected. The hybrid backend works with both CUDA
and OpenCL. Which accelerator implementation will be used is determined by
availability and the programmer’s preference.

In the first stage of a skeleton invocation, the workload is partitioned into two
parts by the hybrid backend: one for the CPU and one for the accelerators. The CPU
and accelerator parts are then further divided between the CPU threads and any num-
ber of accelerators, respectively. The hybrid skeleton implementations use OpenMP,
where the first thread will manage the accelerators and the rest of the threads will
work on the CPU partition. The implementation is very similar to the already exist-
ing OpenMP backend, in order to match its performance. To reduce duplication of
code within SkePU, the accelerator partition is computed by the already existing
CUDA or OpenCL backend implementations. To make this work, some of the inter-
nal APIs of the accelerator backends (CUDA and OpenCL) had to be generalized to
work on subparts of containers. As both accelerator backends already have support
for multi-accelerator computations, also the hybrid backend has support for hybrid
execution with multiple accelerators. The workload partitioning in the accelerator
backends is however, still limited, as the work is evenly divided between all accel-
erators. This works well when all accelerators are of the same type, but will not be
optimal in case different accelerator models are used.

 T. Öhberg et al.

Listing 2: Using the hybrid backend with a manually set partition ratio.
const int NUM_THREADS = 16;
const int NUM_GPUS = 1;
const float PARTITION_RATIO = 0.2;

skepu2 ::Vector <int > in, out;

skepu2 :: BackendSpec spec(skepu2 :: Backend ::Type:: Hybrid);
spec.setCPUThreads(NUM_THREADS);
spec.setDevices(NUM_GPUS);
spec.setCPUPartitionRatio (PARTITION_RATIO);
skeleton_instance .setBackend(spec);

skeleton_instance (out , in);

The workload is partitioned according to a single parameter: the partition ratio.
The ratio defines the proportion of the workload that should be computed by the
CPU; the rest is computed by the accelerators. The partition ratio can either be man-
ually set by the programmer, or automatically tuned per skeleton instance to make
SkePU predict the optimal partition ratio for a given input size. The auto-tuning
will be described later in this paper. How to use hybrid execution with a manually
configured partition ratio is shown in Listing 2. This example shows how to set up
hybrid execution for 16 CPU threads and one accelerator, where 20% of the work-
load will be computed by the CPU threads, the rest by the accelerator. Which accel-
erator implementation (CUDA or OpenCL) to use is specified by compiler flags.

Map is highly data parallel by nature and is therefore straightforward to parti-
tion. The ratio defines how many output elements to compute on the CPU, the rest
is computed by the accelerator backend. The CPU partition is further divided into
equal-sized blocks, one for each CPU thread. The partitioning scheme of the Map
skeleton is shown for three CPU threads in Fig. 1.

Fig. 1 Partitioning of the Map skeleton

Hybrid CPU–GPU execution support in SkePU

Reduce is performed in two steps. The partition ratio defines how many input
elements to be reduced on the CPU, the rest is reduced by the accelerators. The CPU
partition is further divided into equally sized blocks, one per CPU thread. First, each
CPU thread and the accelerator backend reduce their block of the input data to pro-
duce a temporary array of partial reductions. This small array is then reduced by a
single CPU thread to a global result. Partitioning of the Reduce skeleton for one-
dimensional input containers with two CPU threads is shown in Fig. 2.

MapReduce is implemented in a similar way to the Reduce skeleton. The input
arrays are first partitioned as in the Reduce skeleton and the CPU partition is evenly
divided between the threads. Each CPU thread and the accelerator backend reduce
their part of the data, by first performing the Map step. The intermediate results are
then reduced down by a single CPU thread. Partitioning of the MapReduce skeleton
is shown in Fig. 3.

MapOverlap is similar to the Map skeleton. The partition ratio defines how
many output elements to compute on the CPU, the rest being computed by the accel-
erators. The CPU partition is then divided into one block per CPU thread. Extra
consideration had to be taken to all variations of edge handling and different corner
cases caused by the size of the overlap region. Partitioning of the one-dimensional
MapOverlap skeleton with an overlap of 1 element on each side is shown in Fig. 4.
The work of a single user function call is highlighted in yellow.

Scan has more data dependencies than the other skeletons and requires a
more complex partitioning implementation. The input array is partitioned into a
CPU and an accelerator part as before, and the CPU partition is further divided
into equally sized blocks, one per CPU thread. Each CPU thread and the accel-
erator backend start by performing a local Scan of their block of the input data.
After this step, each block misses the Scan offset of the preceding blocks. The
last resulting element of the local Scan of each CPU block are collected into an
temporary array and a single CPU thread performs a Scan on that array. This
produces an array of the missing offset values of each block. In the second step,

Fig. 2 Partitioning of reduce skeleton

 T. Öhberg et al.

each CPU thread (except for the first, as its block is already complete) combine
their local Scan result with the missing value from the array. For the CPU, the
local Scan step and the combining step require the same number of operations,
one per element in the block. This makes the two steps take approximately the
same amount of time. This is not the case for the accelerators on the other hand,
especially not a GPU. The first step is much less data parallel and takes longer
than the second step where a number of independent operations are made on dif-
ferent data elements. This means that a GPU will go idle if the first and second
steps are to be made synchronized with the CPU, as it will finish its second step
much faster than the CPU. This was solved by letting the accelerator backend take
care of the last part of the input array. As nothing is dependent of the result of the
last block, the result of the local Scan of the accelerators’ partition is not needed

Fig. 3 Partitioning of MapReduce skeleton

Fig. 4 Partitioning of MapOverlap skeleton

Hybrid CPU–GPU execution support in SkePU

in the missing values array. We can thus let the accelerators spend more time on
the first step than the CPU threads are spending, and only make the accelerators
check that the CPUs have produced the array of missing values before starting the
second step. This makes load balancing between CPU and accelerators much eas-
ier and utilizes the available processing capacity better. Partitioning of the Scan
skeleton is shown in Fig. 5.

Apart from the partitions shown here, there are also variants for Map on matri-
ces, one-dimensional and two-dimensional Reduce on matrices as well as row-
wise MapOverlap on matrices. The Map implementation partitions the elements
between the PUs based on the partition ratio, just as if it was an array. In the
case of Reduce and MapOverlap, the matrix is partitioned row-wise, so all PUs
get whole rows to operate on. This can make it hard to balance the workload for
matrices with few rows. However, in connection with automatic backend selec-
tion tuning [5], such cases would probably not select the hybrid execution at all.
A more sophisticated partitioning for matrices would be hard to realize, espe-
cially for the MapOverlap skeleton, due to the many corner cases and complex
data access patterns.

Fig. 5 Partitioning of Scan skeleton

 T. Öhberg et al.

4.1 StarPU backend implementation

To show the advantages of the static workload partitioning in the new hybrid exe-
cution backend, the experimental StarPU integration from SkePU 1 was ported to
SkePU 2. Similar to SkePU, StarPU uses its own custom data management system.
In order to keep SkePU’s smart container API [3], the smart containers automati-
cally transfer the control to StarPU once they are used with the StarPU backend.
The control is taken back by SkePU once the container is used with one of the other
backends. The memory management code in SkePU 2 was not changed since SkePU
1, allowing this part of the code to be reused from the old SkePU 1 integration of
StarPU. StarPU is integrated into SkePU 2 as a separate backend, just as our hybrid
execution implementation. This, together with the memory management imple-
mentation, allows the already existing SkePU backends to be used alongside the
StarPU backend. No changes had to be made to the API of SkePU, apart from add-
ing StarPU as an extra backend type. Currently, only the main features of the Map,
Reduce and MapReduce skeletons are ported, but more skeletons and features will
be ported in the future.

As StarPU is a task-based programming framework, a SkePU skeleton invocation
must be mapped to a number of tasks. This is done by splitting the workload into a
number of equal-sized chunks. The programmer can manually tweak the number of
chunks, as this affects the performance. More chunks are desirable for larger input
sizes as it makes load balancing easier, but for small input sizes, too many chunks
will lead to significant scheduling overheads. The StarPU backend has two imple-
mentation variants, one using OpenMP and one using CUDA. The already exist-
ing OpenMP and CUDA backend implementations could not be reused due to the
abstraction gap between SkePU and StarPU. This gap was noticed already during
the integration of StarPU into SkePU 1, and it has since grown even more in SkePU
2 with the increased use of metaprogramming and other high-level C++ features.
StarPU uses a lower level C-style API and passes arguments using void pointers and
runtime type casting. SkePU 2, on the other hand, builds argument lists at compile
time using variadic templates and parameter packs. It was still possible to integrate
them by implementing the StarPU functions as static member functions, creating the
argument handling code at compile time.

5 Auto‑tuning

Apart from manually setting the partition ratio, SkePU can automatically predict a
suitable partition ratio by performance benchmarking. Due to how general and flex-
ible the SkePU framework is, implementing an auto-tuner that works well for every
imaginable skeleton instance may not be possible. The execution time could, for
example, be bound by the size of the random access containers, by uniform argu-
ments, or even be data-dependent on container elements. Predicting optimal parti-
tion ratio for such skeleton instances would require very sophisticated and time-con-
suming algorithms and/or user interaction. Instead focus was put on implementing a
tuner that would give good predictions for common cases, where the execution time

Hybrid CPU–GPU execution support in SkePU

grows linearly with the size of the element-wise accessed containers. For specific
skeleton instances, the partition ratio can always be set by hand.

The auto-tuning presented in this paper resembles the tuning presented by Luk
et al. [11] in their Qilin framework, although our tuner extends this work by sup-
porting multiple accelerators. This is possible as our implementation sees multiple
accelerators as one single device, thanks to the already existing multi-device imple-
mentations in the CUDA and OpenCL backend. Our tuner builds two execution time
models, one for the CPU and one for the accelerator backend. At tuning time, the
programmer must choose the number of CPU threads and accelerators to tune for.
The tuning is performed once per each skeleton instance in the application for a
specific machine. In case the configuration of the machine changes (for example if
accelerators are added/removed or if more or less CPU cores are used), the skeleton
instance has to be re-tuned. The tuning is performed on the OpenMP and CUDA/
OpenCL backends. The OpenMP backend will be executed with one thread less than
specified by the programmer, as one thread in the hybrid backend will be fully dedi-
cated to running the accelerator backend. The programmer can choose upper and
lower limits to the input size, as well as the number of input sizes to benchmark.
The input sizes to benchmark is then evenly spread over the interval defined by the
limits. The OpenMP and CUDA/OpenCL backends are executed five times on each
input size, and the median value is inserted into the execution time model of that
backend. This is made to minimize the impact of temporary fluctuations.

Once the execution time benchmarks are stored in the model, the model is fitted
to a linear curve using least-squares fitting. As the execution time grows linearly
with all skeletons (assuming the user function takes (1) time), a linear approxima-
tion of the execution time is sufficient for our needs. The fitting will create two lin-
ear equations on the form:

where t is the execution time, x is the input size and a and b are parameters found by
the least-squares fitting.

Let us consider a problem size N and a (CPU) partition ratio R. The partition size
of the CPU will then be NR and the partition size of the accelerator N(1 − R) . This
gives us execution times tcpu and tacc for the CPU and accelerator, respectively:

The workload is perfectly balanced between the CPU and the accelerator if
tcpu = tacc . Combining the Eqs. 2 and 3 and solving for the partition ratio R gives:

At runtime Eq. (4) is used to predict the optimal partition ratio for a given input
size N. In practice, the value of R can be in three intervals: the interval 0 < R < 1 ,
where hybrid execution is predicted the optimal strategy, and the value of R is used

(1)t = ax + b

(2)tcpu = acpuNR + bcpu

(3)tacc = aaccN(1 − R) + bacc

(4)R =
aaccN + bacc − bcpu

N(acpu + aacc)

 T. Öhberg et al.

as the partition ratio; R ≤ 0 , where accelerator-only execution is considered optimal;
or R ≥ 1 , where CPU-only execution is considered optimal. In the last two cases,
the hybrid backend will automatically fall back to executing the skeleton using the
OpenMP or CUDA/OpenCL backends, as the overhead of hybrid execution is pre-
dicted to be too high.

6 Performance evaluation

The implementation was evaluated on a system consisting of two octa-core Intel
Xeon E5-2660 (16 cores in total) clocked at 2.2 GHz with 64 GB of memory and
a NVIDIA Tesla K20x GPU with 2688 processor cores and 6 GB of device mem-
ory. The programs were compiled with nvcc (v7.5.17) using g++ (v4.9.2) as host
compiler.

6.1 Single skeleton evaluation

First each skeleton type was evaluated with typical user functions. Input sizes rang-
ing from 100,000 to 4,000,000 in increments of 100,000 were used. Each input size
and backend combination was executed seven times, and the median execution time
was noted to eliminate outliers caused by other operating system processes occa-
sionally running on the CPU. The predicted partition ratio used in the hybrid back-
end was also noted for each input size. The hybrid backend was tuned with the auto-
tuner a single time, and the same execution time model was then used for all input
sizes. The results are shown in Fig. 6. As can be seen in the graphs, the hybrid back-
end improves upon the performance of the OpenMP and CUDA backends for all
skeletons, at least as the input size grows. For most skeletons, the hybrid backend
even manages to match the performance of the OpenMP and CUDA backends for
small input sizes, by switching to CPU-only or GPU-only execution. For the Scan
skeleton however, a leap in the hybrid backend curve can be seen, where the parti-
tion ratio prediction switches from CPU-only to hybrid too early, as the predictor
overestimates the performance of hybrid execution. This is likely due to the extra
complexity of the hybrid execution implementation of the Scan skeleton, where the
performance of the CPU and the accelerator partitions do not completely match the
performance of the OpenMP and CUDA/OpenCL backends used in the auto-tuning.

6.2 Generic application evaluation

To evaluate the implementation in a more realistic context, we also compared the
performance of the new hybrid scheme on some of the example applications pro-
vided with the SkePU source code. A presentation of the applications and which
skeletons they use is shown in Table 1. In the Skeletons column, the number within
<> tells the arity of the skeleton instance, i.e., how many element-wise accessed
input containers it uses.

Hybrid CPU–GPU execution support in SkePU

The applications were executed with five different configurations. First with
the sequential CPU backend as a baseline. Then the OpenMP, CUDA and hybrid
backends. For the hybrid backend, all skeletons were tuned with the auto-tuner.
Tuning was done with 10 steps and the tuning time was not included in the meas-
ured execution time. Finally, we used an oracle to find the upper limit to the
speedup possible to achieve with the hybrid backend implementation, given an

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
xe
cu
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

0 0.5 1 1.5 2 2.5 3 3.5 4

· 106

0

2

4

6

8

10

Problem size [num elems]

E
xe
cu
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

· 106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
xe
cu
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100
P
ar
ti
ti
on

ra
ti
o
[%

]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
xe
cu
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

2

4

6

8

10

Problem size [num elems]

E
xe
cu
ti
on

T
im

e
[m

s]

0 0.5 1 1.5 2 2.5 3 3.5 4

·106

0

20

40

60

80

100

P
ar
ti
ti
on

ra
ti
o
[%

]

(a) Map (b) Reduce

(c) MapReduce (d) MapOverlap

(e) Scan

OpenMP
CUDA
Hybrid
(CPU) Partition ratio

Fig. 6 Execution time of skeletons

 T. Öhberg et al.

optimal partition ratio choice. Oracles has been used in earlier research to show
the upper bound of hybrid execution implementations [9, 11, 14]. We let the ora-
cle execute the application using the hybrid backend with a manually set parti-
tion ratio for each skeleton instance, ranging from 0 to 100% in increments of
five percentage points. For multi-skeleton applications, all combinations of ratios
were tested. The fastest of these execution times was then saved as the oracle’s
time. All backends, including all partition ratio combinations tested by the oracle,
were executed seven times, and the median execution time was used. The results
are shown in Fig. 7. The figure shows that the hybrid backend improves upon the
OpenMP and CUDA backends in most applications. By comparing the hybrid bar
to the oracle bar we can see that the auto-tuning finds good partition ratios, but
there is some room for improvement. According to the oracle, two of the applica-
tions (PSNR and Taylor) does not gain from hybridization, at least not the tested
problem sizes. This is also found by the auto-tuner in the Taylor case, as it falls
back to CPU-only execution. PSNR is the only application where the hybrid back-
end fails to improve upon the performance of the OpenMP and CUDA backends.
The reason for this is that the auto-tuning finds the optimal partition ratio to be

Table 1 List of applications used in the evaluation

Application Algorithm Skeletons

CMA Cumulative moving average Map<1> , Scan
Coulombic Coulombic potential Map<1>
Dotproduct Dot product MapReduce<2>
Mandelbrot Mandelbrot fractal Map<0>
PPMCC Pearson product-moment correlation coeff. Reduce, MapReduce<1> ,

MapReduce<2>
PSNR Peak signal to noise ratio Map<2> , MapReduce<2>
Taylor Taylor series expansion of log(1 + x) MapReduce<0>

CM
A

Do
tp
ro
du
ct

Ga
us
sia
n

M
an
de
lbr
ot

PS
NR

PP
M
CC

Ta
ylo
r

0

10

20

30

Sp
ee
du

p
ov
er

se
qu

en
ti
al

C
P
U OpenMP

CUDA
Oracle
Hybrid

Fig. 7 Speedups comparisons of example applications

Hybrid CPU–GPU execution support in SkePU

40% for the Map skeleton and CPU-only for the MapReduce skeleton. Although
this is the optimal partition ratio for each individual skeleton instance, it is not
the optimal choice when both skeletons are considered because of the need to
move data between CPU and GPU memory. According to the oracle, offloading
all data to the GPU gives the best execution time in this case.

6.3 Comparison to dynamic hybrid scheduling using StarPU

Finally, we show the improvement over the experimental hybrid execution imple-
mentation based on the StarPU runtime system that was implemented in SkePU 1.
To make a fair comparison, parts of the old StarPU implementation was ported to
SkePU 2. We also compared the execution time to the OpenMP and CUDA back-
ends. As StarPU is supposed to get better over time by learning how to schedule
the work, we tried executing the same skeleton multiple times. Each backend was
executed 30 times in a row. New input containers were allocated each time to rule
out the impact of data locality. The results are shown in Fig. 8. In the graphs, we

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
xe
cu
ti
on

T
im

e
[m

s]

· 106 elements

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
xe
cu
ti
on

T
im

e
[m

s]

· 106 elements

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

Iteration

E
xe
cu
ti
on

T
im

e
[m

s]

(a) Map, 20 (b) Reduce, 90

(c) MapReduce, 20 · 106 elements

OpenMP

CUDA

Hybrid

StarPU

Fig. 8 Execution time of repeated invocations of the same skeleton

 T. Öhberg et al.

can see the stability of the OpenMP, CUDA and hybrid backends. It is also apparent
that the hybrid backend with the auto-tuning manages to find a good load balance
and improves upon the execution time of the individual processing units. The per-
formance of the StarPU backend is unstable, even though it manages to match the
performance of the hybrid backend in some iterations. For the Reduce skeleton, both
the hybrid and the StarPU backend have a hard time to improve the performance, as
the skeleton works much better on the CPU compared to the GPU.

The execution time of the StarPU backend stabilizes somewhat with time, but it
is still uneven after 20–30 repeated executions. This is likely due to the low number
of tasks (manually found to be between 3 and 14) each skeleton instance had to be
divided into for the best performance. This in turn is a result of the relatively small
input size that was used in the evaluation. StarPU comes with a substantial overhead
and might therefore be better suited for applications with even larger input sizes.
The StarPU backend can also be of interest for special kinds of user functions with
a very skewed workload, where adaptation is needed at runtime. But as these corner
cases were not the target of the new auto-tuning implementation, no experiments
were performed with such applications for this paper.

7 Related work

The skeleton programming library Marrow [16] consists of a mixed set of data and
task parallel skeletons. The library uses nesting of skeletons to allow for more com-
plex computations. Marrow has support for multi-GPU computations using OpenCL
as well as hybrid execution on multi-core CPU, multi-GPU systems. The workload
is statically distributed between the CPU threads and the GPUs, just like it is in
SkePU. Marrow identifies load imbalances between the CPU and the GPUs and
improves the models continuously to adapt to changes in the workload of the sys-
tem. The partitioning between multiple GPUs is determined by their relative perfor-
mance, as found by a benchmark suite.

Muesli (Muenster skeleton library) [7] is a C++ skeleton library built on top
of OpenMP, CUDA and MPI, with support for multi-core CPUs, GPUs as well as
clusters. Muesli implements both data and task parallel skeletons, but does not have
support for as many data parallel skeletons with the same flexibility as in SkePU 2.
Muesli has support for hybrid execution using a static approach [20], where a sin-
gle value determines the partition ratio between the CPU and the GPUs, just as in
SkePUs hybrid backend. The library also supports hybrid execution using multiple
GPUs, with the assumption that they are of the same model. The library currently
does not provide an automatic way of finding a good workload distribution which
requires the user to manually specify it per skeleton instance.

Qilin [11] is a programming model for heterogeneous architectures, based
on Intel’s Threading Building Blocks (TBB) and CUDA. Qilin provides the user
with a number of pre-defined operations, similar to the skeletons in SkePU 2. The
library has support for hybrid execution by automatically splitting the work between
a multi-core CPU and a single NVIDIA GPU. Just as in SkePU, one of the CPU
threads is dedicated to communication with the GPU. The partitioning is based on

Hybrid CPU–GPU execution support in SkePU

linear performance models created from training runs, much like SkePU’s auto-
tuner implementation.

The open source skeleton library SkelCL [17] is an extension to the OpenCL pro-
gramming language. The library contains skeletons similar to the ones available in
SkePU 2. SkelCL has support for dividing the workload between multiple GPUs,
but does not support simultaneous hybrid CPU–GPU execution. As it is based on
OpenCL and lacks a precompilation step, the user functions must be defined as
string literals, lacking the compile time type checking available in SkePU 2.

Recent work in hybrid CPU–GPU execution of skeleton-like programming con-
structs include Lapedo [10], an extension of the Skel Erlang library for stream-based
skeleton programming, specifically providing hybrid variants of the Farm and Clus-
ter skeletons where the workload partitioning is tuned by models built through per-
formance benchmarking; and Vilches’ et al. [19] TBB-based heterogeneous parallel
for template, which actively monitors the load balance and adjusts the partitioning
during the execution of the for loop. Both approaches exclusively use OpenCL for
GPU-based computation.

8 Conclusions and future work

In this paper, we have presented a new hybrid execution backend for the skeleton
programming framework SkePU, while preserving the existing API. This has been
done by letting the hybrid backend partition the workload of a skeleton into a CPU
part and an accelerator part. By reusing the already existing accelerator backend
implementations, code duplication was avoided and future optimizations to the
CUDA and OpenCL backends will automatically also improve the performance of
the hybrid backend. Although not yet shown in this paper, but planned for a future
version, the implementation also works for any number of accelerators using either
CUDA or OpenCL.

The contribution of this paper has several benefits: the performance of already
written SkePU applications can be increased without any code modification by
using the hybrid backend, programmers will get an easy-to-use tool with support for
hybrid execution, and the SkePU framework can now fully utilize the potential of
heterogeneous computer systems.

Future work includes adding auto-tuning also in the accelerator backend to
improve the load balancing for multi-accelerator systems with mixed accelerator
models. The hybrid performance of applications with multiple skeletons can be
improved by taking the data dependencies between consecutive skeleton calls into
consideration when predicting the partition ratios. We would also like to exam-
ine whether the auto-tuner could use static code analysis based on data from the
precompiler, similar to the work of Grewe and O’Boyle [9].

Acknowledgements This work has been partly funded by EU H2020 project EXA2PRO (801015), by
SeRC (http://www.e-scien ce.se), and by the Swedish National Graduate School in Computer Science
(CUGS). We want to thank Samuel Thibault for his help with the StarPU integration. We also thank the
National Supercomputing Centre (NSC) and SNIC for access to their GPU-based computing resources.

http://www.e-science.se

 T. Öhberg et al.

References

 1. Carpaye JMC, Roman J, Brenner P (2017) Design and analysis of a task-based parallelization over
a runtime system of an explicit finite-volume CFD code with adaptive time stepping. J Comput Sci
28:439–454. https ://doi.org/10.1016/j.jocs.2017.03.008

 2. Cole MI (1989) Algorithmic skeletons: structured management of parallel computation. Pitman/
MIT Press, Cambridge

 3. Dastgeer U, Kessler C (2016) Smart containers and skeleton programming for GPU-based systems.
Int J Parallel Program 44(3):506–530

 4. Dastgeer U, Kessler C, Thibault S (2011) Flexible runtime support for efficient skeleton program-
ming on heterogeneous GPU-based systems. In: Advances in parallel computing, volume 22: appli-
cations, tools and techniques on the road to exascale computing, vol 22, pp 159–166

 5. Dastgeer U, Li L, Kessler C (2013) Adaptive implementation selection in the SkePU skeleton pro-
gramming library. In: Wu C, Cohen A (eds) Advanced parallel processing technologies. Lecture
notes in computer science, vol 8299. Springer, Berlin, Heidelberg

 6. Enmyren J, Kessler CW (2010) SkePU: a multi-backend skeleton programming library for multi-
GPU systems. In: Proceedings of the Fourth International Workshop on High-Level Parallel Pro-
gramming and Applications. ACM, pp 5–14

 7. Ernsting S, Kuchen H (2012) Algorithmic skeletons for multi-core, multi-GPU systems and clusters.
Int J High Perform Comput Netw 7:129–138

 8. Ernstsson A, Li L, Kessler C (2017) SkePU 2: flexible and type-safe skeleton programming for
heterogeneous parallel systems. Int J Parallel Program 46(1):62–80. https ://doi.org/10.1007/s1076
6-017-0490-5

 9. Grewe D, O’Boyle MFP (2011) A static task partitioning approach for heterogeneous systems using
openCL. In: Knoop J (ed) Compiler construction. Lecture notes in computer science, vol 6601.
Springer, Berlin, Heidelberg

 10. Janjic V, Brown C, Hammond K (2016) Lapedo: hybrid skeletons for programming heterogeneous
multicore machines in Erlang. Parallel Comput Road Exascale 27:185

 11. Luk CK, Hong S, Kim H (2009) Qilin: exploiting parallelism on heterogeneous multiprocessors
with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, pp 45–55

 12. Martínez V, Michéa D, Dupros F, Aumage O, Thibault S, Aochi H, Navaux POA (2015) Towards
seismic wave modeling on heterogeneous many-core architectures using task-based runtime system.
In: 2015 27th International Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD), pp 1–8

 13. Öhberg T (2018) Auto-tuning hybrid CPU–GPU execution of algorithmic skeletons in SkePU. Mas-
ter’s thesis, Linköping University, Linköping, Sweden. LIU-IDA/LITH-EX-A-18/019-SE

 14. Shen J, Varbanescu AL, Lu Y, Zou P, Sips H (2016) Workload partitioning for accelerating applica-
tions on heterogeneous platforms. IEEE Trans Parallel Distrib Syst 27(9):2766–2780

 15. Sjöström O, Ko SH, Dastgeer U, Li L, Kessler C (2016) Portable parallelization of the EDGE CFD
application for GPU-based systems using the SkePU skeleton programming library. In: Joubert GR,
Leather H, Parsons M, Peters F, Sawyer M (eds) Advances in parallel computing, volume 27: paral-
lel computing: on the road to exascale. Proceedings of the ParCo-2015 Conference, Edinburgh, UK,
Sep. 2015. IOS Press, pp 135–144

 16. Soldado F, Alexandre F, Paulino H (2016) Execution of compound multi-kernel OpenCL computa-
tions in multi-CPU/multi-GPU environments. Concurr Comput Pract Exp 28(3):768–787

 17. Steuwer M, Gorlatch S (2013) SkelCL: Enhancing OpenCL for high-level programming of multi-
GPU systems. In: International Conference on Parallel Computing Technologies. Springer, Berlin,
pp 258–272

 18. Universite de Bordeaux, CNRS, Inria: StarPU handbook ver. 1.2.4. Tech. rep. (2018)

https://doi.org/10.1016/j.jocs.2017.03.008
https://doi.org/10.1007/s10766-017-0490-5
https://doi.org/10.1007/s10766-017-0490-5

Hybrid CPU–GPU execution support in SkePU

 19. Vilches A, Navarro A, Corbera F, Rodriguez A, Asenjo R (2017) Heterogeneous parallel for tem-
plate based on TBB. In: Informal Proceedings; presented at HLPP 2017, Valladolid, Spain

 20. Wrede F, Ernsting S (2018) Simultaneous CPU–GPU execution of data parallel algorithmic skel-
etons. Int J Parallel Program 46(1):42–61

	Hybrid CPU–GPU execution support in the skeleton programming framework SkePU
	Abstract
	1 Introduction
	2 SkePU 2
	3 StarPU
	4 Workload partitioning and implementation
	4.1 StarPU backend implementation

	5 Auto-tuning
	6 Performance evaluation
	6.1 Single skeleton evaluation
	6.2 Generic application evaluation
	6.3 Comparison to dynamic hybrid scheduling using StarPU

	7 Related work
	8 Conclusions and future work
	Acknowledgements
	References

