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Abstract—Detailed brain modeling has been presenting sig-
nificant challenges to the world of high-performance computing
(HPC), posing computational problems that can benefit from
modern hardware-acceleration technologies. We explore the ca-
pacity of GPUs for simulating large-scale neuronal networks
based on the Adaptive Exponential neuron-model, which is
widely used in the neuroscientific community. Our GPU-powered
simulator acts as a benchmark to evaluate the strengths and
limitations of modern GPUs, as well as to explore their scaling
properties when simulating large neural networks. This work
presents an optimized GPU implementation that outperforms a
reference multicore implementation by 50×, whereas utilizing
a dual-GPU configuration can deliver a speedup of 90× for
networks of 20, 000 fully interconnected AdEx neurons.

Index Terms—computational neuroscience, neuromodelling,
GPU, simulation

I. INTRODUCTION

Neuroscientific research has been recently making signifi-

cant leaps forward in unveiling the intricacies of the human

brain [1], [2]. Currently, there is an acute research interest

in studying the behaviour of single-neurons, as well as small

networks of neurons and eventually brain-sized populations of

neurons. Software tools exist aimed at simulating neuronal

clusters ranging in size from a single neuron to networks

matching a small animal’s brain in size [3]. Utilizing modern

approaches in high-performance computing to help advance

neuroscientific goals constitutes the domain of computational

neuroscience. To this end, this work will help neuroscientists

gain better intuition of a commonly-used class of neural mod-

els when porting to high-performance accelerators, particularly

in the case of computationally demanding neural networks.
This paper is organized as follows: In Section II, a concise

presentation of related work in the field is given. Section III

describes the simulator presented in this paper. Section IV

details the GPU porting of the simulator. Section V contains

the experimental setup and evaluation of the simulator. Finally,

the paper concludes in Section VI, where a brief summation

of the most important points covered in this work is given.

II. RELATED WORK

Significant works concerning high-performance computa-

tional neuromodelling have been presented in relevant liter-

ature. The Computer Science and Cognitive Science depart-

ments of the University of California Irvine have implemented

a biologically realistic Spiking Neural Network (SNN) simu-

lator that runs on a single GPU [4]. The simulator allows

user-defined configuration of the exact model architecture in

C++. An NVIDIA GTX-280 simulates 100, 000 neurons with

50M synaptic connections, firing at an average rate of 7 Hz,

reaching up to 26× speedup over the CPU version.

The Imperial College of London developed NeMo, a plat-

form designed to operate on “highly parallel commodity

hardware in the form of graphics processing units (GPUs)” [5].

The implemented GPU kernel delivers up to 400M spikes per

second, which corresponds to a real-time simulation of around

40, 000 neurons, each connected through 1, 000 synapses, with

a mean firing rate of 10Hz.

The BRIAN Computation Laboratory of the Department

of Computer Science and Engineering of the University of

Nevada presented an updated version of their NeoCortical

Simulator, an open-source CPU/GPU simulation environment

for large-scale biological networks [6]. The simulator is cur-

rently able to simulate 1M neurons and 100M synapses in

quasi real time using eight nodes, each having 2 video cards.

Similarly to the aforementioned works, we opt for em-

ploying GPUs in our simulator design as the computational

fabric of choice. This work is the first, to our knowledge, to

extensively study the scaling differences between two different

AdEx network configurations; an externally stimulated net-

work as well as a self-stimulated one. Furthermore, the simu-

lator is part of an effort to develop an acceleration platform for

computationally challenging neuroscientific simulations [7].

III. APPLICATION DESIGN

We focus on a class of models that capture the timings

and propagation of signals within a neuronal network, the

Integrate-and-Fire models. A widely adopted and flexible

model is the Adaptive Exponential model, also known as

“AdEx”. The model consists of two equations, one describ-

ing dynamics of the membrane potential and one describing

adaptation. Introduced by Brette and Gerstner in 2005 [8],

the model has become popular in modern research due to its



Fig. 1. Two types of network setups examined by the simulator. A layer of N
spiking neurons feeds a layer of M AdEx neurons (N×M case); or M AdEx
neurons form interconnections and interact with one another (M×M case).

ability to reproduce qualitatively several electrophysiological

classes described “in vitro”. Synapses in the neuronal network

are modelled after Spike-Timing Dependent Plasticity (STDP),

a biological process that adjusts the strength of neuronal

connections in the brain.

A. Implementation in x86

The simulator has been initially designed in C for x86

CPUs. An implementation of the described model [9], detail-

ing a small-scale experiment of 100 spiking neurons providing

stimulus to a single AdEx neuron, acted as our baseline. We

chose this implementation due to its scalable nature and well-

maintained, self-contained code repository, which eased its

adaptation into a more flexible and configurable simulator.

Our simulator allows for any number (referred to as number

N) of input spiking neurons to feed stimulus to any number

(referred to as number M) of AdEx neurons. Furthermore,

our simulator can also support self-feeding networks of AdEx

neurons (refer to Figure 1). This category of networks can

display interactions between the AdEx neurons not present

in N×M networks and are more difficult to scale due to the

significantly higher amounts of memory transactions imposed

by synaptic activity between the AdEx neurons.

Input neurons are represented by N integers. An array of

integers of length equal to the amount on neurons in the

network (i.e. either N+M or M) is used to represent spike

occurrences on the corresponding neurons, named SpikeArray.

SpikeArray also holds all necessary AdEx neuron data. AdEx

Neurons are represented as a struct which contains the double-

precision variables for voltage threshold, membrane potential,

input current and the models adaptation variable. Furthermore,

the struct holds an integer signifying whether a neuron has

fired a spike (SpikeSetting in Figure 2).

The STDP synaptic model necessitates a struct that records

all synapse-related data. Both neuron and synapse data are

stored as two arrays of structs (AoS). This layout boosts spatial

locality compared to a single struct of arrays (SoA).

In each step, the simulator processes three functions. Func-

tion SolveNeurons is responsible for the update of AdEx

neuron values. The function also checks neuronal membrane

potential for spike generation purposes. In case of spike

firing, function UpdatePreSynapses updates synapses connect-

ing the firing neuron to other neurons and calculates the

propagating current to post-synaptic neurons. Finally, func-

tion UpdatePostSynapses calculates synaptic variables when

postsynaptic AdEx neurons fire. CPU performance of these

functions is boosted by introducing OpenMP pragmas.

IV. APPLICATION ACCELERATION

A. GPU Porting

The simulator presented in Section III was accelerated in

a GPU using the CUDA library. The three main functions

mentioned in Section III-A were re-implemented as GPU

kernels. Computations of the model use data specific to each

neuron and synapse, with few data dependencies between

the respective data structs. As such, the approach chosen

for GPU was assigning neurons and synapses to CUDA

threads in a singular fashion. Depending on the GPU kernel,

a CUDA thread will handle the computations concerning a

single neuron, or a single synapse. This approach offers good

usage of the GPU’s computational resources while keeping

synchronization overheads low.

In order to process data in a GPU kernel, data must be

passed to the device. Array allocation and copying requires

array elements to be in adjacent memory addresses, as there is

no CUDA operation to handle discontinuity between elements.

Furthermore, row alignment in 2D CUDA arrays is critical to

memory transaction speed; cudaMallocPitch pads rows with

extra bytes if necessary. Transforming the 2D arrays to a

1D representation is another option in order to avoid using

cudaMallocPitch.

Simulation data is transferred to and from the device at

the beginning and end of the simulation; processed data is

stored locally in the GPU throughout the simulation. However,

function UpdatePostSynapses, mentioned in Section III-A,

requires the calculation of an average value between multiple

synaptic variables. In a GPU kernel, this operation is difficult

to parallelize; an initial implementation sends relevant data

back to the CPU host for processing, followed by the result

propagated back to the device in order to complete kernel

calculations. This splits the UpdatePostSynapses into two GPU

kernels, as it can be seen in Figure 2. This implementation sig-

nificantly increases memory transactions; an alternative GPU

kernel for calculation of the value in the GPU, using a library

called “Thrust”, allows the bypassing of memory transactions.

The library allows GPU “reduction”. After spawning N/2
GPU threads, the sum of two out of N elements is calculated

by each thread. This step is then repeated by spawning N/4
threads and operating on the N/2 results produced by the first

step. Iteratively, the reduction summation is achieved in log2 N
steps.

Moreover, in the interest of data locality, data arrangement

presented as an Array-of-Structs (AoS) in Section III-A was

transformed to a Struct-of-Arrays (SoA). In an SoA arrange-

ment, all data concerning one model parameter are stored

consecutively, for all neurons or synapses. As such, when

GPU threads process a particular model parameter, they access

adjacent memory addresses.



Fig. 2. Flow diagram for the GPU implementation of the simulator. A reduction summation kernel using the “Thrust” GPU library allows bypassing of costly
host-device memory transactions.

Furthermore, the synaptic SoA, which requires the most

significant amount of accessing and processing, is allocated

on the on-chip GPU memory space, shared by all threads in a

GPU block. In order to reduce time spent in memory accesses,

threads first store data in shared memory and then store results

back to global memory. Despite the overhead of using the

shared memory as an intermediate between the GPU threads

and the global memory, shared memory “banks” offer reduced

memory access conflicts that improve execution time.

B. Large-Scale Network Support on the GPU

The amount of AdEx neurons (and STDP synapses) that can

be processed are limited by the device’s memory, since data

is stored locally in the GPU, with an upper limit of 12, 500
interconnected AdEx neurons in an M×M network, whereas

N×M networks require significantly less memory. In an effort

to surpass this mark, two different approaches were explored

for M×M networks, depending on the available hardware.

In the case of a single GPU, larger networks need to be

divided in smaller sub-networks whose data can “fit” in the

GPU memory. In each simulation step, the sub-networks are

processed sequentially. Data dependencies between the sub-

networks must be minimal or, in the best case, absent. The

few dependencies between data in different sub-networks must

be resolved and calculated in the CPU. The GPU kernels

are called in a loop, where each iteration processes a sub-

network. The sub-network’s data is passed to the device and

after kernel execution, data is transferred back to the host and

device memory is overwritten with the next iteration’s data.

This approach allows a single GPU to handle larger network

sizes but there is a vast performance cost caused by memory

transfers of the sub-network data between device and host in

every timestep.

When more than a single GPU are available in a single

socket, the amount of on-GPU memory that can be utilized

is increased respectively. The AdEx and STDP model permit

independent concurrent execution of different chunks of the

data on separate devices. The neuronal network can be divided

in two halves, each allocated to a different device. CUDA

function cudaMemcpyAsync allows asynchronous memory al-

location for parallel memory transfers.

V. PERFORMANCE EXPLORATION

TABLE I
RANGE OF PARAMETERS EXPLORED

Parameter Range

Parameter Name M×M Networks N×M Networks

M (AdEx neurons) 100 to 20, 000 5, 000 to 50, 000
N (input neurons) N/A 200 to 1, 000
Connectivity (%) 25% to 100% 25% to 100%

In this Section, we will present an evaluation of the per-

formance offered by the designed simulator. As mentioned in

Section III, two types of experiments have been tested. The

first type of network (N×M) consists of a layer of N spiking

neurons feeding a layer of M AdEx neurons. The second type

(M × M) is a network of M AdEx neurons with interconnec-

tions between them. Details on the nature of the experiments

and the exact hardware used to measure performance will be

detailed here. The results of the experimentation will then, be

presented and elaborated on.

A. Experimental Setup

Performance measurements were collected by running sim-

ulation experiments on a dual GPU node. The GPU node



Fig. 3. M×M network size exploration.

TABLE II
SPEEDUP OF N×M NETWORKS BY SIZE (SINGLE GPU)

Network Size Parameters, N input neurons, M AdEx neurons

N=200 N=500 N=1000

M=5k M=10k M=50k M=5k M=10k M=50k M=5k M=10k M=50k

Speedup vs Single-Threaded 325.89 339.48 351.2 346.98 346.61 354.34 382.5 351.65 388.67
Speedup vs OpenMP 54.95 53.87 57.57 58.31 55.91 55.36 65.94 57.64 61.69

contains 2 CPUs of the Haswell - Intel(R) Xeon(R) E5-2660v3

type, each equipped with 10 cores and 64 GBs of memory. The

GPU node features two NVIDIA Tesla K40 accelerators with

12 GB accelerator memory each. The CUDA version used for

the GPU implementation was 7.5 with CUDA capability 3.5.

The CPU implementation was also provided as a baseline to

evaluate the GPU implementation against. The CPU node used

contained dual Ivy Bridge Intel Xeon E5-2680v2 processors,

with 2.8 GHz operating frequency, 10 cores per processor and

64 GBs of RAM.

In parameter Table I, M has been used for the number of

AdEx neurons modeled in the network, whereas N stands for

the number of spiking neurons feeding the AdEx neurons in

two-layer N×M networks. M×M networks have been signif-

icantly more computation-heavy than N×M networks and as

such, their M2 size has been a limiting factor. Connectivity

is expressed as a percentage out of all possible network

connections.

B. Experimental Results

The execution times achieved by the GPU will be compared

against the CPU implementation and expressed as speedup

over the CPU respective data point. For clarity purposes, in the

case of M×M networks, the results will be presented in graph

format, whereas N×M network performance will be displayed

in table format. For the simulation runs in this section, spiking

frequency was set to 1 kHz, meaning spikes appear in every

timestep, as a measurement of the most demanding case

computationally. For the same purpose, connectivity in all

cases is also set to 100%.

The SolveNeurons GPU kernel occupies a minimal percent-

age of the overall simulation time. This results in synaptic

operations being the ones dictating simulator performance. In

M×M experiments, a heavier computational load results in

greater speedup, as long as there are enough CUDA threads

for the GPU thread grid to cover the entire synaptic grid of

the simulation. Maximum GPU acceleration on the M×M
simulation runs score more than 300× speedup compared to a

single-threaded CPU simulation and close to a 50× speedup

against an OpenMP-based parallel CPU implementation.

On the other hand, for M×M networks of 20,000 neurons,

network partitioning is necessary in order to meet GPU

memory requirements. Due to the penalty described in Section

IV-B, a single GPU only achieves a 31× speedup over a single-

threaded CPU version of the simulator and improves on the

OpenMP parallel CPU version by less than 4×. By using a

second GPU in Figure 3, more than 90× acceleration over the

OpenMP CPU implementation is achieved.

In Table II N×M simulation results, speedup rates follow

a similar trend, with higher maximum speedup rates achieved

for sufficiently large networks. Due to connections existing

solely between input neurons and AdEx neurons, only the

relevant variables of synapses that connect such neuron pairs

are updated, whereas for M×M networks, all AdEx neurons

update their status in every simulation step. Therefore, in

the N×M case, updating synapses based on postsynaptic

STDP expressions is omitted. As the postsynaptic GPU kernels

present the heaviest workload, N×M simulations are lighter

for the GPU, slightly increasing performance. Maximum GPU

acceleration on the N×M cases surpasses 380× speedup

against a single-threaded CPU and reaches 60× acceleration

against the parallel CPU implementation.

In Figure 4, we alter network connectivity from fixed 100%



TABLE III
SPEEDUP OF N×M NETWORKS BY NETWORK DENSITY (SINGLE GPU)

Network Size Parameters, N input neurons, M AdEx neurons

N=200 N=500 N=1000

M=5k M=10k M=50k M=5k M=10k M=50k M=5k M=10k M=50k

100% Connectivity 325.89 339.48 351.2 346.98 346.61 354.34 382.5 351.65 388.67
25% Connectivity 183.32 190.48 198.61 195.14 194.92 236 194.93 202.5 230.35

Fig. 4. Single-GPU acceleration for different M×M network densities.

values to only 25%. This change in M×M networks means

that each AdEx neuron is connected to only a quarter of

the network, whereas in N×M networks, each input neuron

feeds spikes to a quarter of the AdEx neurons. Figure 4

denotes the decline in acceleration when network connectivity

is significantly reduced. Inactivity in the network translates to

less GPU threads being active in any simulation step, since

there is a one-to-one mapping of GPU threads to network

synapses. On the other hand, the CPU can take advantage of

inactivity by processing a smaller total number of synapses,

resulting in a reduced performance gap.

VI. CONCLUSION

In this work, neuronal networks based on adaptive-

exponential models with STDP-modelled synapses have been

ported to GPUs for acceleration. Two network configurations

have been used, a bilayer network of input and AdEx neurons

and a self-feeding AdEx network. After implementing the

model originally found in a neuromodelling library (modelDB)

in C for CPU, we documented the process of optimizing its

performance in GPU.

The implementation was evaluated against its single-

threaded CPU implementation, as well as an OpenMP-parallel

version. We identified a threshold in the performance of a

single GPU at 12, 000 neurons due to the limitations of the

available device memory. In an effort to tackle this obstacle,

increasing hardware to a dual-GPU configuration can acceler-

ate the simulation of a network of 20, 000 AdEx neurons, fully

interconnected with one another, by a factor greater than 90×,

when compared to the OpenMP-parallel CPU simulation.

Furthermore, the bilayer category of networks explored

in this paper proved to be a significantly lighter workload,

allowing larger network sizes without the use of dual GPUs,

since the amount of synaptic data to be processed was smaller.

Performance patterns were similar in both categories, with

bilayer networks of input and AdEx neurons offering slightly

larger speedups than the self-feeding AdEx networks. In

both categories, reducing connectivity density in the network

benefitted the CPU more than the GPU, thus reducing the

achievable GPU speedup rate.
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