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Abstract—Technical debt (TD) is commonly used to indicate
additional costs caused by quality compromises that can
yield short-term benefits in the software development process,
but may negatively affect the long-term quality of software
products. Predicting the future value of TD could facilitate
decision-making tasks regarding software maintenance and assist
developers and project managers in taking proactive actions
regarding TD repayment. However, no notable contributions
exist in the field of TD forecasting, indicating that it is a scarcely
investigated field. This study constitutes an initial attempt
towards this direction. To this end, in the present study, we
empirically evaluate the ability of time series analysis to model
and predict TD evolution. To create our dataset, we obtain
weekly snapshots of five open source software projects over
three years and compute their TD values. We find that the
autoregressive integrated moving average model ARIMA(0,1,1)
can provide accurate predictions over a fairly long time period
for all sampled projects. The model can be used to facilitate
planning for software evolution budget and time allocation. The
approach presented in this paper provides a basis for predictive
TD analysis, suitable for projects with a relatively long history.

Keywords—technical debt, technical debt forecasting, time series
analysis, ARIMA

I. INTRODUCTION

The Technical Debt (TD) metaphor, a term inspired by
the financial debt of economic theory, was introduced in
1992 by Ward Cunningham [1] to describe the problem of
making quality compromises that can yield short-term benefits
in the software development process, but may negatively
affect the long-term quality of software products. The TD
metaphor was initially related to software implementation (i.e.
at the code level) but was gradually extended to other phases
of the software development lifecycle (SDLC), i.e. software
architecture, design, documentation, requirements, and testing
[2]. In the same manner like financial debt, TD incurs interest
payments in the form of increased future software costs usually
caused by poor design and code quality. To effectively manage
the identification, quantification, and repayment of TD during
the SDLC, researchers and practitioners have developed and
adopted a multitude of theories, methods and tools [3].

However, prediction of accumulated TD during the soft-
ware evolution is an open and challenging research issue,
as both software system and its TD emerge in parallel [4].
A possibility to predict TD is primarily crucial for software
maintainability, which is recognized as one of the most-effort
intense activities in the SDLC [5]. System engineers and

project managers need the right tools and appropriate training
support to be able to perform long-term effective software
maintenance [5]. Hence, forecasting the evolution of TD could
be valuable for estimating the point in which the software
product could become unmaintainable.

Although various aspects, which are relevant for the TD
concept, such as code smells [6], fault-proneness [7] and
evolution trends [8], have attracted the attention of both
academia and industry, to the best of our knowledge no
studies are focusing on TD itself [9]. Hence, a method or
tool that would provide practical decision-making support by
predicting future TD of a software system in uncertainty is
of eminent importance. Consequently, software architects and
project managers would be able to gain a better understanding
of future TD issues and plan appropriate refactoring activities.

The SDK4ED European project aims to address this
challenging issue by developing a TD Forecasting toolbox
for various design-time and run-time software qualities, as a
part of integrated Energy Optimization and TD Elimination
framework. As a first step towards TD Forecasting toolbox
realization, we have developed and applied specific time
series models for TD forecasting. Time series models have
been widely used in previous studies for predicting software
evolution trends, future change requests or software defects
[8], [10]-[13]. To this end, in the present paper we attempt to
empirically evaluate the ability of time series to adequately
forecast future TD trends. The problem that the present
work attempts to solve can be summarized in the following
research question:

RQ: Is the usage of time series models a valid and
accurate approach to forecasting Technical Debt in a
long-lived, open-source software?

A positive answer to this question will suggest that time
series models can potentially be used as the basis for the
construction of the TD forecasting toolbox. We will also
investigate the extent to which these models can properly
capture the evolution of TD values.

In order to provide answers to the research question men-
tioned above, we conducted an empirical study. In particular,
we initially constructed a relatively large code repository com-
prising five real-world open-source Java applications retrieved



from the GitHub! online repository. For each application,
we collected 150 snapshots (commits) in weekly intervals,
spanning up to 3 years of each system’s evolution. This
approach led to a dataset containing up to 750 snapshots in
total. For each snapshot, we calculated the TD value using
SonarQube?, a popular static code analysis tool. Subsequently,
for each application, we employed the Box-Jenkins modelling
method to construct and identify the parameters of our models.
Finally, we compared the accuracy of these models with a
random walk model for various steps ahead into the future in
order to reach safer conclusions regarding the significance of
the observed results. To the best of our knowledge, this is the
first study in the field of TD that examines the applicability
of time series models for TD forecasting.

The rest of the paper is structured as follows: Section II
discusses the related work in the field of TD forecasting and
background on time series forecasting. Section III describes
the experiment setup, while Section IV presents the analysis
and a discussion on the results of the experiment. Finally,
Section V concludes the paper and discusses ideas for future
work.

II. BACKGROUND
A. Software Evolution and TD Forecasting Trends

Various researchers have addressed the topic of forecasting
the evolution of various aspects of a software project (e.g. code
smells [6], fault-proneness [7], [14]-[16]) which are directly
or indirectly related to the TD concept. Gaining a higher level
of information about the evolution of large software systems is
a critical challenge in dealing with increasing complexity and
decreasing software quality [17]. For this reason, the various
attempts to analyze, understand and predict the evolution of a
software system, have increased considerably in the last years
[8], [10]-[13].

In a recent study, Chaikalis and Chatzigeorgiou [8] employ
Network Models to forecast software evolution trends of Java
systems and evaluate the predictive power of the proposed
model against the actual evolution of 10 open-source projects.
They conclude that the achieved accuracy in the prediction of
several network and software properties appears to be promis-
ing. A commonly used technique to analyze the evolution of
software systems is time series. In their study, Yazdi et al.
[10] model the evolution of the design of software systems
by applying ARMA time series to several typical projects
successfully. Based on the empirical results the authors point
out that time series models can predict the future changes of
the next revisions of the systems with good accuracies. In
another study, Raja et al. [11] use the time series approach to
predict defects in software evolution. They use defect reports
for eight open source projects and build time series models to
predict software defects which leads to the conclusion that the
model may be used to facilitate planning for software evolution
budget and time allocation. Likewise, Gouldo et al. [12] build
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a time series model to forecast the change requests evolution
based on data collected from Eclipse’s change request tracking
system. Additionally, they include the identification of sea-
sonal patterns and tendencies, which is important to validate
that usage of seasonal information significantly improves the
estimation ability of this model, when compared to other
ARIMA models. Finally, in [13] Kenmei et al. use time series
models to forecast future change requests evolution and to
identify trends based on data collected from three large open
source applications. They highlight that time series are capable
to model change requests and act as a support tool for project
staffing and planning.

In addition to time series analysis, a multitude of studies
address the problem of forecasting the evolution of various
aspects of a software project by employing machine learning
techniques. In their study Fontana et al. [6] compare 16
different supervised machine learning techniques for code
smell detection using over 74 software systems. Regarding
fault-proneness prediction, in a study conducted by Arisholm
et al. [7], the authors propose a multivariate model for
predicting fault-prone components of object-oriented, legacy
systems by using history change and fault data from previous
releases. Moreover, in [14], Gondra et al. propose the use of
machine learning to predict software fault-proneness. Their
approach first employs sensitivity analysis to select software
metrics that are more likely to indicate the existence of errors,
and afterward, trains an Artificial Neural Network (ANN) to
predict future fault-proneness. In a relative study, Nagappan et
al. [15] use principal component analysis on code metrics to
build regression models that accurately predict the likelihood
of post-release defects. Finally, Khoshgoftaar et al. [16] use
regression and classification trees to identify fault and not-fault
prone modules on multiple releases of a large scale legacy
telecommunications system, concluding that these algorithms
result in predictions with satisfactory accuracy and robustness.

The multitude of models that are available in the literature
for predicting the evolution of specific quality attributes and
quality properties reveal the importance of quality prediction
and forecasting in the software engineering community. How-
ever, no concrete approaches have been proposed so far regard-
ing the forecasting of TD evolution. The need for forecasting
the evolution of TD has been highlighted by a recent study, in
which Tsoukalas et al. [9] raise the awareness of the gap in the
field of TD. They claim that an interesting topic would be to
investigate different efficient ways to produce TD forecasting
models for accurate prediction of TD principal and interest
evolution. In addition, they stress that it would be useful to
examine if TD forecasting could foster the development of
high-quality software products.

B. Forecasting with ARIMA models

A time series is a collection of consecutive observations
made at equally spaced time intervals. A fundamental as-
sumption in time series analysis is stationarity, as statistical
properties such as mean, variance, and autocorrelation are con-
stant over time. Box and Jenkins introduced the Autoregressive



Integrated Moving Average (ARIMA) technique to deal with
the modeling of non-stationary time series [18]. ARIMA
models have been successfully used in software evolution
modelling [10]-[13] for forecasting based on historical data.
These models are suited for stationary and non-stationary
series and can be adjusted easily if significant changes take
place in the trends.

The ARIMA model is parameterized by adjusting three
distinct integers: p, d and g. Parameter p represents the auto-
regressive (AR) part of the model, i.e., regression of the
time series onto itself. Basic assumption is that current series
values depend on previous values with some lags, where p is
the maximum lag in the model. Parameter d stands for the
integrated (I) part of the model and incorporates the amount
of differencing (i.e. the number of past time points to subtract
from the current value) to apply to the time series. Parameter
q is the moving average (MA) part of the model. Basic
assumption is that current error depends on the previous with
some lag, which is referred to as ¢. This allows to set the
error of the model as a linear combination of the error values
observed at previous time points in the past. The Box and
Jenkins ARIMA modelling strategy involves four steps:

Identification: In order to successfully apply an ARIMA
model for prediction, the observed time series has to be
analyzed for stationarity. If non-stationarity is identified during
this process, the effect can be removed by differencing or
seasonal differencing the series. The number of differences
performed before a time series becomes stationary corresponds
to the d parameter of the model.

Estimation: Once stationarity is ensured, the next step is to
plot the Auto-Correlation Function (ACF) and Partial Auto-
Correlation Function (PACF) of the time series to determine
the appropriate values of p and ¢ parameters. The ACF
correlogram reveals the correlation between the residuals of
the data at specific lags. Then, the actual time series has to
be modelled using the ARIMA(p,d,q) parameters previously
defined.

Diagnostic testing: Once a series has been estimated, the
next step is to test the model against competing models.
Appropriate tests, such as fit statistics and goodness of fit are
used to select the best model, by analyzing the residuals of
the series for any possible correlations.

Application: During a training phase, the model is optimized
for the data it is built from. As a final step, it is critical to test
the model on observations that have not been used to train it.
Hence, to ensure the ability of the model to generalize well,
it is important to hold out some observations that can be used
to evaluate the predictive power of the model on unseen data.

III. EXPERIMENTAL SETUP AND METHODOLOGY
A. Data Collection

The data used in this study were obtained from five pop-
ular open source projects from GitHub repository, namely
Apache Kafka, Apache SystemML, Square OkHttp, Square
Retrofit and Jenkins. The selection criteria were based on
the popularity, activity level, data availability, and the Java

programming language. For each system, we collected 150
snapshots (commits) in weekly intervals, spanning up to 3
years of each system’s evolution.

B. Variable Specification

In the present work, we decided to use the Software Quality
Assessment based on Lifecycle Expectations (SQALE) method
[19] for quantifying the TD of the selected software products.
Specifically, we use the SQALE Index plugin that is provided
by SonarQube, a popular open source platform for continuous
inspection of code quality. The SQALE Index quantifies the
effort that is required to fix all the code violations (i.e. code
smells, bugs and vulnerabilities) that reside in the analyzed
software product. SonarQube expresses the effort in minutes.
Finally, in order to avoid being biased by the size of the
software products, similarly to [4], we decided to express
the SQALE Index as a ratio i.e., SQALE Index divided by
size (lines of code) of the software products. We term the
normalized SQALE Index as TD Density and we model it via
time series.

C. ARIMA Technique

Although there exist several forecasting methods that have
proven to yield high predictive power, like Artificial Neural
Networks (ANNs), support vector regression (SVR), or Re-
gression Trees (RT), the application of these methods usually
requires extensive parameter tuning and computational power.
Moreover, these methods depend on the availability and reli-
ability of data on independent variables over the forecasting
period, which requires further efforts in data collection and
estimation. Thus, as an initial approach towards TD forecasting
we decided to employ time series models. The reason is that
time series models, compared to machine learning models, are
more straightforward, less computationally expensive and less
data hungry, in a sense that they provide another modelling ap-
proach, which only requires the historical data of the variable
of interest to forecast its future evolution behavior.

IV. ANALYSIS, RESULTS AND DISCUSSION

This section reports the empirical study results for the five
analyzed projects. Due to space limitation, we describe the
ARIMA approach in detail only for the Apache Kafka project,
while for the rest of the projects we present only the results
of the selected models.

A. Apache Kafka

1) Identification: As described in Section III, the first step
is the time series plot, which provides an understanding of
the nature of the series. When visualizing the weekly Apache
Kafka TD evolution over the last three years, we can observe
an increasing variation of TD density values. To eliminate
this variation and linearize the series, we performed a natural
log(In) transformation. As a result, the fluctuations in the
transformed series were far less than the original series.

After the logarithmic transformation, we removed the mean
and analyzed the transformed series for stationarity, i.e. sea-
sonality and trends. The decomposition of time series is a



statistical task that deconstructs a time series into several com-
ponents, each representing one of the underlying categories of
patterns, i.e. trend, seasonality, and residual components of the
data. By applying seasonal decomposition to the series, the
existence of trend and seasonality becomes even more clear.
This can be depicted in Fig. 1.
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Fig. 1. Seasonal decomposition of the Technical Debt evolution of the Apache
Kafka project

By looking at Fig. 1, we observe that the seasonal compo-
nent and the decreasing trend of the data are nicely separated,
leading to the conclusion that the series is not stationary in
nature and needs to be adjusted in order to successfully apply
an ARIMA model for prediction. The most common practice
for making a series stationary is to transform the series through
differencing. The process below describes all the required steps
to make the series stationary and involves ACF and PACF
correlograms analysis, as well as Dickey—Fuller tests [20],
which test the null hypothesis that a unit root is present in
an autoregressive model. Detailed results of the Dickey-Fuller
test on original data are presented in TABLE L.

TABLE I
DICKEY-FULLER TEST ON ORIGINAL DATA

Test Statistic -0.572788
p-value 0.877013
Critical Value (1%) -3.475325
Critical Value (5%) -2.881275
Critical Value (10%) | -2.577293

For a time series to pass the stationarity test, the “Test
Statistic” value should be lower than the “Critical Value”.
For the original time series, clearly this is not the case. This
can be further supported by the fact that the ACF chart is
characterized by the slow linear decay in the spikes. As a next
step, we performed the test on the In-transformed time series
rather than the original. Detailed results of the Dickey-Fuller
test on In-transformed data are presented in TABLE II.

TABLE II
DICKEY-FULLER TEST ON LN-TRANSFORMED DATA

Test Statistic -0.453466
p-value 0.900782
Critical Value (1%) -3.475325
Critical Value (5%) -2.881275
Critical Value (10%) | -2.577293

While the In-transformation helped to improve the stationar-
ity of the data, it did not completely eliminate the fluctuations
and alternating factors. Again, the ACF chart is characterized
by a slow linear decay in the spikes. The next step is to take a
first-order difference of the data to eliminate the overall trend
from the series. If the original series is Y%, then the differenced
series is indicated by Y; = Y; — Y;_1. The ACF and PACF
plots of first-order differenced time series are presented in Fig.
2, while Dickey-Fuller test results are presented in TABLE III.
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Fig. 2. Dickey-Fuller, ACF and PACF of the first-order differenced time series
data

TABLE III
DICKEY-FULLER TEST ON FIRST-ORDER DIFFERENCED DATA

Test Statistic -10.53053
p-value 9.177006e-19
Critical Value (1%) -3.475325
Critical Value (5%) -2.881275
Critical Value (10%) -2.577293

The table above indicates that the time series is now
stationary, as the Test Statistic value is lower that the Critical
Value. The significance of p—value (p<0.05) also confirms that
taking the first-order difference has made the data stationary.
This is also illustrated on the plot itself, as there is no visible
trend. The number of required transformations until the series
becomes stationary corresponds to the d parameter of the
ARIMA(p,d,q) model, thus setting the value of d = 1 can
be safely supported by the analysis performed in this step.

2) Estimation: During the previous analysis, we applied
first-order differencing on the original data to make it station-
ary and then identified the d parameter of the ARIMA model.



During this phase of the analysis, we have to identify the auto-
regressive (AR) p and moving average (MA) g parameters.
The selection process of these parameters is not trivial task,
but we followed the practical recommendations for selection of
parameters p and g through visual inspection of the ACF and
PACF correlograms [21]. In short, if the ACF of the series
disappear gradually, and the PACF of the series disappear
abruptly, it indicates an AR component. An opposite behavior,
i.e., ACF disappear abruptly and PACF disappear gradually,
indicates an MA component. If both ACF and PACF disappear
gradually or disappear abruptly, various models can be tested
to identify the p and g parameters accurately.

We analyzed the ACF and PACF plots of the first-order
differenced values illustrated in Fig. 2 in accordance with the
ARIMA guidelines. In general, the x-axis of the ACF plot
indicates the lag at which the autocorrelation is computed. The
y-axis indicates the value of the correlation (between -1 and
1). For the dataset, both ACF and PACF plots indicate a cut off
at lag 1. In this case, three competing models, ARIMA(1,1,0),
ARIMA(0,1,1) and ARIMA(1,1,1), need to be compared using
goodness of fit tests and residual analysis to accurately identify
the p and g parameters. We excluded ARIMA(0,1,0) from
further analysis as we used it as a “random walk” for the
purpose of comparing it with the selected model during the
application step. The next step is to compare the three models
for goodness of fit by applying fit statistics and select the most
suitable one based on the optimal results.

3) Diagnostic testing: During this phase of the ARIMA
analysis, we analyzed goodness of fit of the selected models
as well as the residuals (i.e., the difference between the
predicted and the actual values) for any possible correlations
to verify adequacy of these models. A summary of the fitted
models ARIMA(1,1,0), ARIMA(O,1,1) and ARIMA(1,1,1) is
presented in TABLE IV.

TABLE IV
ARIMA CANDIDATE MODEL RESULTS

Model Model Results
AIC Ljung-Box | Prob | coef P > |z]
ARIMA(0,1,1) -987.52 39.62 049 | ma | 0.001
ARIMA(0,1,1) -985.69 40.66 044 | ar 0.016
ma 0.727
ARIMA(1,1,0) | -985.366 41.19 0.42 ar 0880

The coef P > |z| column indicates the significance of each
feature weight. MA parameter of the first model has a p—value
below 0.05, so it is reasonable to retain it in our model. The
same applies to AR parameter of the second model. However,
the AR and MA parameters of the third model have the
p—value above 0.05, which indicates that there is room for
adjustments, and that retaining both AR and MA parameters
may decrease the predictive performance of the model.

One of the most common goodness of fit tests is the
Ljung—Box [22] statistics for residual analysis. The Ljung—Box
Q test indicates, through its high significance value (>0.05),
that the residuals are independent and all three models are

suitable and well-adjusted to the time series. Another indi-
cator that can facilitate our selection process is the Akaike
information criterion (AIC) [23], which measures the goodness
of fit of statistical models for a given set of data. Given a
collection of models for the data, AIC estimates the quality
of each model, relative to each of the other models. Hence,
models that have a better fit will receive a better (lower) AIC
score than similar models that fit worse. Both ARIMA(1,1,0)
and ARIMA(1,1,1) models have similar AIC scores, with
values -985.687 and -985.366 respectively. For ARIMA(O,1,1),
the value is slightly lower (better), i.e. -987.523. In general,
the three models seem identical and their scores are close.
However, the fact that the first model has a slightly better
AIC and Ljung—Box Q test score indicates that it is a more
appropriate candidate. Therefore, we chose ARIMA(0,1,1) as
the most suitable model.
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Fig. 3. Residual analysis results of the ARIMA(0,1,1) time series forecasting
model

A residual analysis also evaluates the model’s goodness
of fit and helps to investigate for any unusual behavior.
Fig. 3 presents the residual analysis and diagnostics of the
ARIMA(0,1,1) model. The primary concern is to ensure that
the residuals of the model are uncorrelated and normally
distributed with zero-mean. If the seasonal ARIMA model
does not satisfy these properties, it is a good indication that
it can be further improved. In our case, the model diagnostics
suggests that the model residuals are normally distributed
based on the following:

e In the top right plot, the red kernel density estimation
(KDE) line follows the N(0,1) line. This is a good
indication that the residuals are normally distributed.

e The QQ-plot on the bottom left shows that the ordered
distribution of residuals (blue dots) follows the linear
trend of the samples taken from a standard normal
distribution with N(0O, 1). This is also an indication that
the residuals are normally distributed.

o The residuals over time (top left plot) do not display any
obvious seasonality. This can be further confirmed by the
ACEF on the bottom right, which shows that the time series



residuals have low correlation with lagged versions of
itself.

Those observations led us to conclude that the model pro-
duces a satisfactory fit that could help forecast future values.
The next step is to evaluate the selected model’s performance
on the dataset.

4) Application: The fourth and final ARIMA modelling
step is Application. During this step, the selected model is
optimized for the data it is built from and then tested on
observations that have not been used during training to ensure
the ability of the model to generalize well. For this purpose,
it is important to hold out some observations that can be used
to evaluate the predictive power of the model on unseen data.
Validation methods extensively used in machine learning, such
as k-fold cross-validation, cannot be directly used with time
series data due to the temporal order in which values were
observed. Hence, observations cannot be randomly split into
groups without respecting the temporal order.

To assess prediction accuracy and compare different models
we adopted walk-forward validation [24], a strategy inspired
by k-fold cross-validation. Walk-forward validation is a com-
monly used way to evaluate time series models’ performance,
based on the notion that models are updated when new
observations are made available. In brief, during walk-forward
validation a subset of n consecutive points extracted from the
original time series is used to train an initial model. Then,
accuracy of the model is tested against future time steps and
prediction is evaluated against the known value to compute
prediction errors. Finally, the time window is moved one-step
forward to include the known value into the training set and
the process is repeated.

We choose the n = 52 (one year) as our sliding training
window. Then, we applied three independent walk-forward
validation processes, where predictions were made for the next
n+4 (1 month), n+8 (2 months), and n+12 (3 months) future
steps respectively. In time series analysis, it iS common to
include a random walk model for the purpose of comparing it
with the selected model. The random walk model excludes the
auto-regressive (AR) and moving average (MA) parameters.
Since the proposed model is ARIMA(0,1,1), the random walk
model to be used is ARIMA(0,1,0).

We evaluated forecasts for both, the proposed model as well
as the random walk model using Root Mean Squared Error
(RMSE). The benefit of RMSE is that it penalizes large errors
and the scores are in the same units as the forecast values
(TD density per week). We also computed Mean Absolute
Percentage Error (MAPE) as well as Mean Absolute Error
(MAE). In TABLE V, we report a comparison of prediction
errors of both, our selected model as well as the random walk
model for multiple (4, 8 and 12) time steps into the future.

Results indicate that the model is stable over the holdout
sample for all steps ahead and that the proposed model
outperforms the random walk model for 4 and 8 steps ahead.
Of course, the predictive power of this modelling approach
decreases as we forecast longer into the future. For 12 steps
ahead, RMSE and MAE errors are equal for both models,

TABLE V
ARIMA(0,1,1) AND RANDOM WALK MODEL COMPARISON

Model Fit statistics

Model Steps ahead RMSE | MAPE | MAE

4 0.010 1.349 0.008

ARIMA(0,1,1) 8 0.017 2.430 0.014
12 0.025 3.623 0.021

4 0.011 1.372 0.010

ARIMA(0,1,0) 8 0.018 2.455 0.015
12 0.025 3.612 0.021

while the MAPE error of our model is bigger that the MAPE
of the random walk.

B. Apache SystemML, Square OkHttp, Square Retrofit and
Jenkins

1) Identification: For the rest of the applications, similar to
the Apache Kafka case, we performed a log(In) and first-order
differencing to eliminate the non-stationarity of the series. The
results of applying a Dickey-Fuller test on the initial and first-
order differenced time series are presented in TABLE VI.

TABLE VI
DICKEY-FULLER TESTS ON FIRST-ORDER DIFFERENCED DATA

Series Test Statistic (Critical Value)
Apache SystemML
Initial -1.043719 (3.475018)
1Ist difference -11.31556 (3.475018)
Square OkHttp
Initial -1.800630 (-3.456355)
1Ist difference -10.03932 (-3.456355)
Square Retrofit
Initial -1.426334 (-3.498198)
1Ist difference -10.24958 (-3.498198)
Jenkins
Initial -1.796879 (-3.475637)
1Ist difference -9.991324 (-3.475637)

TABLE VI indicates that for every project, taking the
first-order difference of the values has made the time series
stationary. The Dickey-Fuller test statistic is lower than the
critical value so we reject the null hypothesis of unit root. As
stated above, the number of required transformations until the
series becomes stationary corresponds to the d parameter of
the ARIMA(p,d,q) model, thus setting the value of d = 1 can
be safely supported by the above analysis.

2) Estimation: During this phase of the analysis, the auto-
regressive (AR) p and moving average (MA) g parameters
have to be defined. We analyzed the ACF and PACF plots
of the four series in accordance with the ARIMA guidelines
in Section III to accurately identify the p and g parameters.
Based on this analysis, competitive models for each project
were identified. These models are presented below:

o Apache SystemML: ARIMA(1,1,0), ARIMA(0,1,1) and
ARIMA(1,1,1).



e Square  OkHrtp:  ARIMA(O,1,2), ARIMA(l1,1,2),
ARIMA(0,1,1), ARIMA(1,1,0) and ARIMA(1,1,1).

e Square  Retrofit:  ARIMA(1,1,0), ARIMA(0,1,2),
ARIMA(0,1,1) and ARIMA(1,1,1).

o Jenkins: ARIMA(1,1,0), ARIMA(O,1,2), ARIMA(0,1,1)

and ARIMA(1,1,1).

3) Diagnostic testing: During this phase of the ARIMA
analysis, goodness of fit of the selected models as well as the
residuals (i.e., the difference between the predicted and the
actual values) have to be analyzed for any possible correlations
to verify adequacy of these models. A summary of the fitted
models for each project is presented in TABLE VII.

TABLE VII
ARIMA CANDIDATE MODEL RESULTS

Model ] Model Results
AIC | Ljung-Box | Prob | coef P > [z]
Apache SystemML

ARIMA(0,1,1) | -1265.54 25.99 0.96 | ma | 0.562
ARIMA(1,1,0) | -1265.49 25.99 0.96 ar 0.581
ma 0.124

ARIMA(1,1,1) | -1264.89 24.90 0.97 ar 0056

Square OkHttp

ARIMA(0,1,1) | -1069.41 6.89 1.00 | ma | 0.040
ARIMA(1,1,0) | -1068.50 9.14 1.00 | ar 0.626
ARIMA(0,1,2) | -1052.98 8.06 1.00 | ma | 0.504
ar 0.899

ARIMA(1,1,2) | -1067.47 6.96 1.00 ma T 0312
ar 0.752

ARIMA(1,1,1) | -1067.81 7.96 1.00 e 0709

Square Retrofit

ARIMA(0,1,1) -632.89 27.70 093 | ma | 0.035
ARIMA(1,1,0) -632.87 27.90 0.93 ar 0.926
ARIMA(0,1,2) -631.93 26.92 094 | ma | 0.49%4
ar 0.156

ARIMA(1,1,1) -631.32 27.10 0.94 nd 0.099

Jenkins

ARIMA(0,1,1) | -1047.50 34.84 070 | ma | 0.042
ARIMA(1,1,0) | -1047.22 35.57 0.67 ar 0.103
ARIMA(0,1,2) | -1046.86 29.55 089 | ma | 0.116
ar 0.854

ARIMA(1,1,1) | -1045.99 33.71 0.75 ma T 0793

Models with the lowest AIC value are presented in bold.
Based on the AIC test score we identified ARIMA(0,1,1) as
the best candidate for all projects under analysis. A residual
analysis also evaluated that the residuals of the selected model
are uncorrelated and normally distributed with zero-mean.
Those observations lead us to conclude that ARIMA(O,1,1)
produced a satisfactory fit that could help forecast future values
for the four projects under analysis.

4) Application: The fourth and final ARIMA modelling
step is Application. Similarly, to the Kafka project, we com-
pared our models to the random walk. We choose the n = 52
(one year) as our sliding training window. Then, we applied
three independent walk-forward validation processes, where
predictions were made for the next n+4 (1 month), n+8 (2
months), and n+12 (3 months) future steps respectively. In
TABLE VIII, a comparison of prediction errors is reported
for multiple (4, 8 and 12) time steps into the future for each
project.

TABLE VIII
ARIMA(0,1,1) AND RANDOM WALK MODEL COMPARISON

Model Steps ahead 7 Mh;gde[:l E;;t‘;m[sn;; iE
Apache SystemML

4 0.005 0.476 0.003

ARIMA(0,1,1) 8 0.006 0.740 0.005
12 0.008 1.024 0.006

4 0.005 0.482 0.004

ARIMA(0,1,0) 8 0.006 0.741 0.006
12 0.008 1.016 0.006

Square OkHttp

4 0.006 0.998 0.004

ARIMA(0,1,1) 8 0.010 1.502 0.006
12 0.012 2.074 0.009

4 0.008 1.348 0.006

ARIMA(0,1,0) 8 0.010 1.784 0.007
12 0.011 1.921 0.008

Square Retrofit

4 0.011 1.215 0.007

ARIMA(0,1,1) 8 0.015 2.082 0.013
12 0.020 3.000 0.018

4 0.011 1.223 0.008

ARIMA(0,1,0) 8 0.016 2.096 0.014
12 0.020 2.948 0.018

Jenkins

4 0.009 0.962 0.005

ARIMA(0,1,1) 8 0.012 1.602 0.009
12 0.016 2271 0.013

4 0.011 0.987 0.007

ARIMA(0,1,0) 8 0.012 1.599 0.009
12 0.016 2.283 0.013

As in the Apache Kafka case, results indicate that the
ARIMA(0,1,1) model is stable over the holdout sample for
all steps ahead and outperforms the random walk model for 4
and 8 steps ahead. Of course, also in this case it is reasonable
to expect that the predictive power decreases as we forecast
longer into the future. In the following section, we discuss our
results in more details.

C. Discussion

Across the five independently developed, maintained, and
managed open source projects, a single first-order moving
average model with one order of non-seasonal differencing
and constant term ARIMA(0,1,1) was shown to fit and forecast
the pattern of weekly TD density evolution. The comparison
of ARIMA(0,1,1) with the random walk indicates that a more
complex model performs better when the forecast horizon is
from 4 to 8 weeks. ARIMA model has shown better fitness
statistics and higher predictive power compared to the random
walk, which leads to the conclusion that the TD patterns can
be modeled adequately by time series techniques.

However, when trying to forecast for 12 weeks ahead,
the random walk model performs equally or even better in
almost all of the cases. This is a reasonable finding as trying
to forecast longer into the future, increases the uncertainty
of the predictions. The only exception is the Jenkins case,
where our model performs better. This finding deserves more
investigation and will be the subject of future work.



Furthermore, the fact that the same ARIMA(0,1,1) model
fits across the five time series could possibly point out that the
pattern of TD is persistent across the five studied projects. This
is a very interesting finding indicating that we can sacrifice
the benefits of fine-tuning the prediction models to each of
the products in favor of the simplicity of always applying the
same model. However, the validity of this model assumes that
no dramatic changes are made into the evolution process of
the projects. In any case, the applicability of this model needs
to be investigated on more projects in order to further support
this conclusion.

More generally, we conclude that time series analysis is a
useful technique for analyzing the evolution of the TD density
over a relatively long period. However, these models build
on the assumption that reliable historic data are available and
that the data is collected in constant time intervals (e.g. daily,
weekly, or monthly frequency). Generally, this is hardly the
case as sufficient historic data are usually hard to acquire.
Moreover, although time series models can yield satisfactorily
accuracy, they demand a relatively long history of past data,
require frequent re-training on new data, and are difficult to
tune properly.

V. CONCLUSIONS AND FUTURE WORK

This research work examines the usage of time series
models as a valid and accurate approach to forecasting TD
in long-lived, open-source, software projects. To the best of
our knowledge, this is the first time that time series fore-
casting, and more specifically ARIMA methodology has been
employed for this purpose.

For the purpose of our study we obtained 3 years of TD
evolution history, computed from the static code analysis of
five independently developed, maintained, and managed open-
source software systems. Based on this data, we observed
that a single time series model, ARIMA(0,1,1), can accurately
predict the pattern of software evolution TD for each of five
projects. The results shown indicate that ARIMA time se-
ries models outperform purely random processes and random
walks up to 8 weeks into the future.

However, we have observed that predictive power decreases
considerably for longer forecasting horizons. In addition,
the fact that sufficient historic data are rarely available and
hard to acquire, leads us to the conclusion that we should
also consider other forecasting techniques. Machine learning
algorithms, compared to classical methods for time series
forecasting, include the ability to handle irrelevant features,
as well as to support complex relationships and tolerance to
noise between variables. As a future work, the suitability of
popular methods such as Causal or Associative models as
well as Machine Learning models, such as Support Vector
Regression, Regression Trees, or ANNs for forecasting the
evolution of TD especially in the case of longer forecasting
horizons will be examined.
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