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This is a follow-up of my CHEP2018 talk about

binned fits of a parameter 

Previous CHEP2018 talk

Event selection 

Binary classification

Bin-by-bin sensitivity to 

Cross-section fits (FIP1, FIP2)

Medical Diagnostics (AUC), 

Information Retrieval (F1)

Compare to and learn 

from other domains

Evaluation and training metrics:

Fisher Information Part 

Talk: https://doi.org/10.5281/zenodo.1303387

Paper: https://doi.org/10.1051/epjconf/201921406004

This CHEP2019 talk

Event partitioning

Non-binary regression

Event-by-event sensitivity to 

Mass fits, Coupling fits (FIP3)

Meteorology (MSE, Brier), 

Medical Prognostics

WEIGHT DERIVATIVE REGRESSION

MINIMUM ERROR WITH AN IDEAL DETECTOR

https://doi.org/10.5281/zenodo.1303387
https://doi.org/10.1051/epjconf/201921406004
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Outline

• 1 - HEP parameter fits and Weight Derivative Regression

• 2 - Learning from others

• Conclusions

This talk only provides some maths and some literature review

No toy model or concrete applications are presented
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1 – Binned fit of a parameter 

There are two handles 

to minimize the 

statistical error  :

1. Event selection
Signal-background discrimination

2. Event partitioning
Variable(s) for the distribution fit

I only discuss the statistical error  in this talk
(I ignore systematic errors, even if at LHC they are the limitation)

My CHEP2018 talk: 

event selection

This CHEP2019 talk: 

event partitioning
(selection is a special 

case of partitioning)
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1 – Binned fit of a parameter 

Fisher Information 
𝟏

()𝟐
from bin-by-bin sensitivities

For a given partitioning scheme with K bins
(nk is the number of selected events in bin k):

Bin-by-bin sensitivity to Statistical errors:

information adds up

(independent bins)

Minimizing  is 

equivalent to 

maximizing I
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My CHEP2018 talk: 

FIP evaluation of event selection

For a given data set and given partitioning, 

FIP compares I to I
(ideal) for the ideal 

selection (select all signal, reject all bkg) 

There are two handles to 

minimize the statistical error  :

1. Event selection
Signal-background discrimination

2. Event partitioning
Variable(s) for the distribution fit

1 – Binned fit of a parameter 

Fisher Information Part (FIP)

FIP is a metric between 0 and 1 – higher is better

Fisher Information Part (FIP): the 

fraction of the information available “in an 

ideal case” retained by a given analysis

This CHEP2019 talk: 

FIP evaluation of event partitioning

For a given data set,

FIP compares I to I
(ideal) for the ideal 

partitioning (and the ideal selection)

But what is the smallest statistical 

error achievable on a given data set 

with ideal partitioning and selection?

Enter event-by-event sensitivities
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1 – Binned fit of a parameter 

Event-by-event Monte Carlo reweighting

Fit for   Compare data in bin k to

model prediction nk as a function of 

1. Generate signal sample at ref, with wi(ref)=1
(By definition, background does not depend on )

2. Full detector simulation
(MC truth event properties xi

(true)  observed event properties xi) 

3. Reweight each event by matrix element ratio

Monte Carlo reweighting: used extensively at LEP

Simpler than Matrix Element Method (no integration)

[see Gainer2014, Mattelaer2016 for hadron colliders]
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1 – Binned fit of a parameter 

Event-by-event sensitivities i: MC weight derivatives

Bin-by-bin model prediction nk()

The bin-by-bin sensitivity to  in bin k is the

average in bin k of the event-by-event sensitivity i to 

Define the event-by-event sensitivity i to  as the

derivative with respect to  of the MC weight wi

(normalized by 1/wi, but wi(ref)=1 at the reference =ref)
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1 – Binned fit of a parameter 

Beyond the signal-background dichotomy

For what concerns 

statistical errors in a parameter fit,

there is no distinction between 

background events and

signal events with low sensitivity (|i|~0)

Background events have i=0

because by definition they are insensitive to 

Signal events may have sensitivity i>0, i=0 or i<0

(special case: cross-section fit i=1/s)

Effect of background:

it dilutes by a factor k  1

the bin-by-bin 

sensitivity and information

for signal events alone

Bin-by-bin purity k  1:

Bin-by-bin sensitivity k

of signal events alone:

Bin-by-bin sensitivity <>k

of signal + background:

Information from all bins 

for signal + background:
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1 – Binned fit of a parameter 

Ideal case: partition by the evt-by-evt sensitivity i

There is an information gain

in partitioning two events i1 and i2 in

two 1-event bins rather than one 2-event bin

if their sensitivities i1
and i2

are different

Goal of a distribution fit: partition events by their

different MC-truth event-by-event sensitivities i to 

Knowing one’s limits: maximum achievable 

information with an ideal detector

- Ideal acceptance, select all signal events Ssel=Stot

- Ideal resolution, measured i is that from MC truth

(implies ideal rejection of background events, i=0) 

Information I in terms of 

average bin-by-bin sensitivities:

How to achieve this in practice: next two slides (WDR)

Use I
(ideal) to compute FIP: following two slides
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1 – Binned fit of a parameter 

Weight Derivative Regression (WDR): train qi for i

Some of many caveats:

- Dependency of weight derivative on reference ref:

WDR easier for coupling fits than for mass fits?

- How feasible is it to compute and store MC-truth weight derivatives?

- How useful is this for measurements limited by systematics?

- Train q on signal + background and 1-D fit of q, or

train q on signal alone and 2-D fit on q and scoring classifier? 

- How to deal with simultaneous fits of many parameters?

Goal of a distribution fit: separate events with 

different MC-truth event-by-event sensitivities i to 

But i is not observable on real data events!

Weight Derivative Regression:

train a regressor qi=q(xi)

on detector-level MC observables xi

against the MC-truth i = wi/
for signal and background MC events

Then determine 

by the 1-D fit of q(xi) 
for real data events xi

Training metric: maximize FIP

Evaluation metric: maximize FIP

(or equivalently minimize MSE? see final slides)
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1 – Binned fit of a parameter 

WDR and Optimal Observables
The WDR idea was inspired by the 

Optimal Observables (OO) method

Both OO and WDR partition data by an 

approximation of a MC-truth sensitivity i to 
(OO does not use MC weight derivatives but it is similar)

MC-truth 

sensitivity i
(MC truth)

MC-truth 

event properties xi
(MC truth)

MC observable 

event properties xi
(MC)

MC-truth 

functional dependence

i
(MC truth) = f( xi

(MC truth) )

Data observable 

event properties xi
(DATA)

Fit optimal observable
OOi

(DATA) =  f( xi
(DATA) )

OOi
(MC) =  f( xi

(MC) )

Weight Derivative 

Regression

i
(MC truth) ~ q( xi

(MC) )

Data observable 

event properties xi
(DATA)

Fit WDR regressor
qi

(DATA) =  q( xi
(DATA) )

qi
(MC) =  q( xi

(MC) )

The difference is in where the

effect of detector resolution 
is taken into account

Like OO, WDR can be 

useful in coupling/EFT fits 
(more than in mass fits) 

https://indico.cern.ch/event/773049/contributions/3476179
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1 – Binned fit of a parameter 

FIP decomposition: efficiency, sharpness, purity

Numerator: Information retained by a given analysis 

using Nsel=nk events with the given detector

Denominator: maximum theoretically available information 

from the given sample of Ntot events (Stot signal events) 

if the true i were known for each event (ideal detector)

Sensitivity-weighted

signal efficiency:

keep Ssel of Stot events

Sharpness

in separating signal events 

with different sensitivities:

partition Ssel signal events 

into K bins

Sensitivity-weighted 

signal purity

or equivalently

sharpness in separating 

signal events 

from background events:

dilution of signal sensitivity 

caused by bin-by-bin purity k“sharpness” as 

in meteorology: 

see later why
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 1

1 – Binned fit of a parameter 

Limits to knowledge: FIP for a realistic detector

Limited detector resolution
In the multi-dimensional space 

of event observables x,

it is impossible to resolve:

- signal events 

with high sensitivity i

from signal events 

with low sensitivity i:

average sensitivity is (x)

- signal events i=1 

from background events i=0:

average purity is (x)

Limited detector acceptance
(detector geometry, trigger rate):

factor this out in FIPACC  1

FIP is a metric in [0,1], but 

the detector acceptance and resolution 

limit it to 0  FIP  FIP(max) < 1
FIP>FIP(max) while training qi

implies overtraining…
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Reading is a revolutionary act
(Inge Feltrinelli, 1930-2018)

2 – Learning from others

Different problems in different domains require different metrics and tools…

Reading Room, British Museum
Diliff (own work, unmodified) CC BY 2.5

https://commons.wikimedia.org/w/index.php?curid=564849
https://creativecommons.org/licenses/by/2.5/deed.en
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2 – Learning from others

Evaluating the evaluation metrics

Evaluation metrics of (binary and non-binary) classifiers 

have been analysed and compared in many ways

There are two approaches which I find particularly useful:

1. Studying the symmetries and invariances of evaluation metrics

2. Separating threshold, ranking and probabilistic metrics

Example: (ir)relevance of True Negatives: 

in my CHEP2018 talk  

Example: AUC (ranking) vs. MSE (probabilistic): 

in this CHEP2019 talk (next 3 slides)  
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2 – Learning from others: Meteorology

MSE decomposition: Validity and Sharpness

MSE (mean squared error) 

of regressor prediction qi
versus the true i for event i:

MSE is a probabilistic metric 

for both evaluation and training

MSE decomposition
(if the Ntot events are split into 

K partitions, with qi=q(k) i  k):

Paraphrases the “Brier score” 

decomposition in Meteorology

Validity, Reliability, Calibration Sharpness, Resolution, Refinement

Validity: in a partition with given true 

average sensitivity <k>, is the predicted 

sensitivity q(k) well calibrated?

~0 in training by construction

~0 in evaluation if there are no systematics 

Sharpness: how well do we separate

events with different true sensitivities i?

This is what determines the statistical error 

on the measurement of : related to FIP!
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2 – Leaning from others: Meteorology

FIP is related to Sharpness (MSE)

(Validity, Reliability, Calibration) MSEsha (Sharpness, Resolution, Refinement)

FIP is related to Sharpness:

In the ideal case: MSEsha=0 and FIP=1

(events with different i can be resolved)

Practical implication for Weight Derivative Regression:

MSE is the most appropriate loss function for training the WDR regressor
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2 – Learning from others: HEP does not need ranking, or ranking metrics 

HEP needs partitioning, and probabilistic metrics

AUC (Area Under the ROC Curve): probability 

that a randomly chosen diseased subject 

is correctly rated or ranked with greater suspicion 

than a randomly chosen non-diseased subject

Ranking, and ranking metrics
Pick two events at random and rank them

Meteorology  probabilistic evaluation of weather prediction

Rain forecast was 30% for these 10 days: actual rainy days?

Medical Prognostics  probabilistic evaluation of survival prediction

5yr survival forecast was 90% for these 10 patients: actual survivors?

HEP parameter fits  probabilistic evaluation of measurement of 
MC forecast for #events in this bin is 10 (20) for =1 (2): actual data? 

Medical Diagnostics  ranking evaluation of diagnostic prediction

Patient A is diagnosed as more likely sick than B: how often am I right? 

Partitioning, and probabilistic metrics
Group events and make a forecast on each subset

Sharpness (from MSE): how well can I resolve 

days with 10% and 90% chance of rain?

Patients with 10% and 90% 5yr survival rate?

Signal events with high sensitivity to  from 

(signal or background) events with low sensitivity? 

Validity, Reliability, Calibration Sharpness, Resolution, Refinement

IRRELEVANT FOR HEP PARAMETER FITS? ESSENTIAL FOR HEP PARAMETER FITS!
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Conclusions – HEP measurement of a parameter 

• MC weight derivatives (event-by-event sensitivities i to ) may be used :

–To determine the ideal partitioning strategy: partition by i

–To derive the minimum error on the measurement of  (ideal detector)

–To derive training and validation metrics to optimize the measurement

–To train a regressor qi of i (optimal observable) for a 1-D fit of 

• HEP parameter fits are closer to Meteorology than to Medical Diagnostics

–They use partitioning and need probabilistic metrics (sharpness, MSE)

–They do not use ranking and do not need ranking metrics (AUC)
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Backup slides
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Binary classifier metrics outside HEP – beyond binary classification

Non-dichotomous truth: examples

Response: partitioning + ranking

Response: yes/no decision

HEP-like: 

probabilistic!

• Medical Diagnostics  continuous scale gold standard

– The Obuchowski measure, e.g. five stages of liver fibrosis, 

• Information Retrieval  graded relevance assessment and DCG

– Discounted Cumulated Gain

• ML (for finance)  example-dependent cost-sensitive classification

– Payoff matrix for transaction x$:

• Meteorology  probabilistic evaluation of weather forecasts

– Rain forecast was 30% for these 10 days: actual rainy days?

• Medical Prognostics  probabilistic evaluation of survival forecasts

– 5yr survival forecast was 90% for these 10 patients: actual survivors?

• HEP measurement of   evt-by-evt sensitivity to 
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1 – Binned fit of a parameter 

Weight Derivative Regression – in practice
• Compute event-by-event sensitivities i from signal MC weight derivatives 

–Possibly at various reference values of 

• Pre-select events to remove most backgrounds

–Possibly maximizing a sensitivity-weighted signal efficiency?

• Train a regressor qi for the MC-truth i from measured event properties

–Possibly using MSE as the loss function in the training (see next slides)

• Determine  from a 1-D fit on the optimal observable qi

–Or possibly a 2-D fit on (qi, Di) including the pre-selection classifier Di

Some of the many limitations of this approach

– MC weight derivative depend on : coupling fits easier than mass fits

– I ignored systematic errors

– I only discussed fits of a single physics parameter at a time  

– But I still find this approach better than maximizing an AUC…

(Note: I did not try a real measurement – I did a few tests with a toy model, but I am not presenting them today)
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Estimation of parameter  in a binned distribution fit 

Weight derivative regressors and their training
(a frequentist dinosaur’s view of Machine Learning)

Classic ML problem: create a model q(x)=R(x) to predict 

the value of (x) in a multi-dimensional space of variables x
https://openclipart.org

Choosing a ML methodology 

mainly implies two choices:

1. The shape of the function R(x):

i.e. how we choose to model (x)
Examples: decision tree (sparsely uniform), 

neural network (sigmoids), linear discriminant

2. The training metric: a “distance” 

of R(xi) to (xi) or i to minimize, or 

a property of R(xi) to maximize
Examples: Gini, Shannon entropy/information, MSE

I focus on Decision Trees 

because of the similarities 

to binned distribution fits

I suggest to use I or FIP both 

for training and for evaluation 

https://openclipart.org/
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Estimation of parameter  in a binned distribution fit 

Event selection and partitioning: a blurred boundary

Separating signal events with high sensitivity to 

from background events

is as important as

Separating signal events with high sensitivity to 

from signal events with low sensitivity to 

(2) Signal events with zero or low sensitivity to 

and background events are equally irrelevant

(1) The scoring classifier D for signal/background 

discrimination is related to the average purity (x):

it would be a pity to use it only for a yes/no decision
It can be used both for measuring cross-sections (1-D fit of D) or 

for measuring a mass or coupling (2-D fit against another variable)

Use the scoring classifier D to partition events, 

not only to accept or reject events
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NB: Shannon information 

is a very different metric!

i.e. I will treat errors  and 

information I as equivalent concepts

Estimation of a parameter 

Fisher information (about a parameter ) 

• Fisher information I is a useful concept because

– 1. It refers to the parameter  that is being measured

– 2. It is additive: the information from independent measurements adds up

– 3. The higher the information I, the lower the error  achievable on 

Cramer-Rao lower bound CRLB

(lowest achievable variance 2)

• Some estimators achieve the CRLB and are called efficient

– Example: a maximum likelihood fit (given the event counts in a given partitioning scheme)

• In the following I will express statistical error  in terms of information I
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Binary classifier metrics outside HEP – discrete classifiers (yes/no decisions)

HEP cross-section in a counting experiment

By the way: /s=1 where FIP1/=FIP1/s (just like for F1)

• Measurement of a total cross-section σs in a counting experiment

• A distribution fit with a single bin

• Well-known since decades if final goal is to minimize statistical error σs

– Maximise εs*ρ (“common knowledge” in the LEP2 experiments)  “FIP1”

– NB: This metric only makes sense for this specific HEP optimization problem!
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• Medical Diagnostics
– All patients are important, both truly ill (TP) and truly healthy (TN)

– e.g. ACC metric depends on all four categories: average over TP+TN+FP+FN

• Information Retrieval
– Based on qualitative distinction between “relevant” and “non relevant” documents

– e.g. F1 metric does not depend on True Negatives
• Rejected “irrelevant” documents are utterly irrelevant

• HEP (cross section measurement by counting)
– Based on qualitative distinction between signal and background

– e.g. FIP1 metric does not depend on True Negatives
• Measured cross section cannot depend on how many background events are rejected

HEP is more similar to Information Retrieval than to Medical Diagnostics

(qualitative asymmetry between positives and negatives)

Binary classifier metrics outside HEP – discrete classifiers (yes/no decisions)

A brief comparison of MD, IR and HEP

Invariance under TN change is only one 

of many useful symmetries to analyse
[Sokolova-Lapalme, Luque et al.]
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Binary classifier metrics outside HEP – scoring classifiers

HEP: cross section in a counting experiment
(maximize FIP1 – the AUC is misleading!)

Choice of operating point is simple:

- Plot s as a function of s 

- Choose the point where s is maximum

To minimize the statistical error Δσ:

Maximize             F

Choice between two classifiers is simple:

- Determine max (s) for each

- Choose the classifier with the higher max

NB1: The choice depends on prevalence
[which is fixed by physics and approximately known in advance] 

NB2: AUC is misleading and irrelevant in this case

FIP1 AUC

Range 

in [0,1]
YES YES

Higher 

is better
YES NO

Numerically

meanigful
YES NO

RED: 

HIGHEST 

AUC RED: 

LOWEST 

Δσ2

BLUE: 

LOWEST 

Δσ2

But there are better ways 

than a counting experiment 

to measure a total cross section 

in this case…
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Binary classifier metrics outside HEP – scoring classifiers

HEP: cross section by a fit to the score distribution

This is the most common method 

to measure a total cross section

(example: a BDT or NN output fit)

Use the scoring classifier D to partition events, 

not to accept or reject events

Keep all Stot events and partition them in K bins

There is a benefit in partitioning events 

into subsets with different purities because

Better than a counting experiment for two reasons

- All events are used, none are rejected

- Those which were previously in a single bin are now subpartitioned
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FIP2 from the ROC (+prevalence) or from the PRC

Compare FIP2(ROC) to AUC

Compare FIP2(PRC) to AUCPR

*Convert ROC to convex hull

- ensure decreasing slope

- avoid staircase effect that would artificially inflate FIP2

(bins of 100% purity: only signal or only background)

dεs: proportional 

to #signal events 

in bin

dεs/dεb: related 

to purity in bin

FIP2: integrals on ROC and PRC,

more relevant to HEP than AUC or AUCPR!

(well-defined meaning for distribution fits)

• From the previous slide:

• FIP2 from the ROC (+prevalence             ):

• FIP2 from the PRC:

• Easier calculation and interpretation from ROC (+prevalence) than from PRC
– region of constant ROC slope = region of constant signal purity

– decreasing ROC slope = decreasing purity
• technicality (my Python code): convert ROC to convex hull* first
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HEP estimation of parameter  in a binned distribution fit 

FIP2(max) example
(and overtraining)

FIP2 is a metric in [0,1]

but the detector resolution 

effectively determines a FIP2(max) < 1
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For a given partitioning scheme with K bins
(nk is the number of selected events in bin k)

Statistical errors: information adds up

Each bin is an independent measurement with error

(Combination more complex with systematic errors, or for searches)

Bin-by-bin sensitivity to 

HEP estimation of parameter  in a binned distribution fit 

Fisher information I about  (statistical errors) 
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Is there a benefit (information inflow) 

in splitting bin 0 into two bins 1, 2 

with n0=n1+n2?  

Information increases if the two new bins have different sensitivities to 

Goal of a distribution fit: partition events 

into subsets with different bin-by-bin sensitivities to 

HEP estimation of parameter  in a binned distribution fit 

Optimal partitioning
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Background events by definition are insensitive to 

Signal events may have positive, zero or negative sensitivity

The distinction between 

signal events with low (|i|~0) sensitivity

and background events is blurred
(example: events far from an invariant mass peak)

: mass, coupling

NON-DICHOTOMOUS

: cross section σs

DICHOTOMOUS

Changing the signal cross section ~is a 

global rescaling of all differential distributions

In a cross section measurement

All background events are equivalent to one another

All signal events are equivalent to one another

HEP estimation of parameter  in a binned distribution fit 

Signal and background are not dichotomous classes
(with one exception: cross section measurements)
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FIP1:

FIPeff =

FIPpur=

HEP estimation of parameter  in a binned distribution fit 

FIP1 and FIP2 revisited

FIPsha=1 for both 
(dichotomous, all signal events are equivalent)

FIP2:

FIPeff =1

FIPpur=FIP2
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Detector

Trigger

Data processing

PHYSICS ANALYSIS

Event selection (Sig vs Bkg)

Event partitioning

Max likelihood fit

Particles produced 

in beam collisions

Raw data events

Analysis object data

Event counts in individual 

bins of a distribution

Measured value of the 

parameter M ± M

A max likelihood fit is 100% 

efficient: it achieves the CRLB, 

for the given event selection 

and event partitioning

FIP

CRLB

HEP estimation of parameter  in a binned distribution fit 

From CRLB to Fisher Information Part (FIP)
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signal 

events

signal 

events

signal 

events

I factor out 

detector/trigger acceptance 

and compute FIP3 

with respect to Stot

Detector

Trigger

Data processing

PHYSICS ANALYSIS

Event selection (Sig vs Bkg)

Event partitioning

Max likelihood fit

Particles produced 

in beam collisions

Raw data events

Analysis object data

Event counts in individual 

bins of a distribution

Measured value of the 

parameter M ± M

HEP estimation of parameter  in a binned distribution fit 

Two optimization handles: event selection and partitioning

FIPALL
FIPACC

FIP3


