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This is a follow-up of my CHEP2018 talk about
binned fits of a parameter 6

Evaluation and training metrics:
Fisher Information Part

Previous CHEP2018 talk This CHEP2019 talk
Event selection /" Eventpartitioning
Binary classification Non-binary regression
| WEIGHT DERIVATIVE REGRESSION |
Bin-by-bin sensitivity to 0 Event-by-event sensitivity to 6
| MINIMUM ERROR WITH AN IDEAL DETECTOR |
Cross-section fits (FIP1, FIP2) Q/Iass fits, Coupling fits (FIPBU
Medical Diagnostics (AUC), Meteorology (MSE, Brier),
Information Retrieval (F1) Medical Prognostics

Talk: https://doi.org/10.5281/zenodo0.1303387
Paper: https://doi.org/10.1051/epjconf/201921406004 CO m p are to an d | earn
from other domains
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Outline

« 1 - HEP parameter fits and Weight Derivative Regression
2 - Learning from others

* Conclusions

This talk only provides some maths and some literature review

No toy model or concrete applications are presented

({E/RW A. Valassi — HEP parameter fits and Weight Derivative Regression CHEP2019, Adelaide — 7 Nov 2019 3/20

N




1 — Binned fit of a parameter 0

ALEPH Collaboration, Measurement of the W mass by
+

direct ecensirction in ¢+ colinions o 172 GV Pl There are two handles
. ALEPH _ to minimize the

statistical error 486 My CHEP2018 talk:
/ event selection

P
(=]

w
W

T o Data (not used to fit)
[ — MC (my, =81.30 GeV/c?)
] B Non-WW background

Events per 1.5 GeV/c®
w
S

—. 1. Event selection
] Signal-background discrimination

This CHEP2019 talk:

~ event partitioning

(selection is a special
case of partitioning)

, 2. Event partitioning _
Variable(s) for the distribution fit

68 70 72 74 76 18 8

my, = 81.30[+ 0.47(stat.)|+ 0.11(syst.) GeV /c?

o
| only discuss the statistical error 4@ in this talk

(I ignore systematic errors, even if at LHC they are the limitation)
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1 - Binned fit of a parameter 0

Fisher Information (Ae)z from bin-by-bin sensitivities

ALEPH Collaboration, Measurement of the W mass by
direct reconstruction in ete” collisions at 172 GeV, Phys.
Lett. B 422 (1998) 384. doi:10.1016/S0370-2693(98)00062-8

For a given partitioning scheme with K bins
(n, is the number of selected events in bin k):

P
(=]

T T T
£ ALEPH
[ 4q selection
o Data (used to fit)
T o Data (not used to fit)
[ — MC (my =81.30 GeV/c?)
B Non-WW background

w
W

Events per 1.5 GeV/c®
5 8

Statistical errors: Bin-by-bin sensitivity to 6

information adds up
(independent bins)

~

52018
68 70 72 74 76 78 80 82 84 86 ecap CHEP
M,, (GeV/c?) R

Minimizing A@ is
equivalent to
maximizing I

my, = 81.30[+ 0.47(stat.)[+ 0.11(syst.) GeV /¢’
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1 — Binned fit of a parameter 6

Fisher Information Part (FIP)

ALEPH Collabor M asurement f the W mass by
d irect remnstructmn z’n collis t 172 GeV, Phy
t. B 422 (1998) 384. doi: 10 1016/50370 2693(98)00062-8
40 T T j

ALEPH
4q select
Data (usr:d

There are two handles to
minimize the statistical error 48

w
o

Events per 1.5 GeV/c’ b
w
8
ne 2
s 2 5
5 2

JPH J1A' 1. Event selection _

Signal-background discrimination

N
o

20

2. Event partitioning
Variable(s) for the distribution fit

Tes 0 72 74 76 78 8082 84 8

M, (GeV/c")

My CHEP2018 talk:
FIP evaluation of event selection

For a given data set and given partitioning,
FIP compares I, to I9<idea') for the ideal
selection (select all signal, reject all bkq)

ez B

" Fisher Information Part (FIP): the
fraction of the information available “in an
ideal case” retained by a given analysis

FIP is a metric between 0 and 1 — higher is better

This CHEP2019 talk:
FIP evaluation of event partitioning

For a given data set,
FIP compares 1,to0 |£<idea') for the ideal
partitioning (and the ideal selection)

— But what is the smallest statistical

error achievable on a given data set

with ideal partitioning and selection?
Enter event-by-event sensitivities

\
~7 -
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1 — Binned fit of a parameter 6

Event-by-event Monte Carlo reweighting

ALEPH Collaboration, Measurement of the W mass by

direct reconstruction in ete” collisions at 172 GeV, Phys. Fit for 6 % Com pare data in bi n k to

Lett. B 422 (1998) 384. doi:10.1016/S0370-2693(98)00062-8

T model prediction n, as a function of 4

P
(=]

£ ALEPH |

35 [ 4q selection ] Sig Bkg
o Data (used to fit) 1 : : : : j :

T o _Data (not used to fit ] nk (9) — wl(g) = w?:(e) + w3 = Sk(9)+bk
2 'I— MC(mw=8LJOGeV/c:ZI ] ick i€k ick

B Non-WW \ackground

Events per 1.5 GeV/c®
w
S

20 |

1. Generate signal sample at ., with w,(8,.,)=1
(By definition, background does not depend on 6)

2. Full detector simulation
(MC truth event properties x;"¢) — observed event properties Xx;)

3. Reweight each event by matrix element ratio
PI’Ob(Q) (X(true)) B ‘M(ijgtrue))‘Q

78 80 82 84 86
M, (GeV/c?)

68 70 72 74 7

L# (my.Ty.pt.p2.pl.pt) |2

Wi(mWSFW) =

MC MC 1 2 3 4 2
|-/g(mw sFW 5pispi:pjspj)| w(e . 1
o (true)) o ‘ ( (true) ) ‘ 2
Prob(gref) (X,& M Qref, X,

Monte Carlo reweighting: used extensively at LEP

Simpler than Matrix Element Method (no integration)

[see Gainer2014, Mattelaer2016 for hadron colliders]
J. S. Gainer, J. 'Lykken7 K. T. Matchev, S. Mrenna, M. O. Mattelaer, On the maximal use of Monte Carlo samples:
Park, Ezploring theory space with Monte Carlo reweighting, re-weighting events at NLO accuracy, Eur. Phys. J. C 76
JHEP 2014 (2014) 78. doi:10.1007/JHEP10(2014)078 (2016) 674. doi:10.1140/epjc/s10052-016-4533-7
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1 — Binned fit of a parameter 0
Event-by-event sensitivities y;: MC weight derivatives

Bin-by-bin model prediction n,(6)

Bkg

Sig
ne(0)=>_ wi(0)=>_ wi(0)+>  w; = s,(0)+by,
i€k 1€k i€k

Define the event-by-event sensitivity y;to 0 as the
derivative with respect to ¢ of the MC weight w;

Yilg = w; 00 , —> Vi =Yil0=0,0r — (99 e
—Uref

(normalized by 1/w;, but w;(6,,;)=1 at the reference 6=0,)

The bin-by-bin sensitivity to 0 in bin k is the
average in bin k of the event-by-event sensitivity yto 6
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1 — Binned fit of a parameter 6

Beyond the signal-background dichotomy

Background events have =0
because by definition they are insensitive to 4

_(Low
"= Ww; o0

1 6’101 e .
~i= (w_z 89) € {—o0, o0}, ifi € {Signal}

=0, ifi € {Background}

Signal events may have sensitivity y>0, y;=0 or y,<0
(special case: cross-section fit y,=1/c)

For what concerns
statistical errors in a parameter fit,
there is no distinction between
background events and
signal events with low sensitivity (]%|~0)

(Sig)

of signal events alone:

Bin-by-bin sensitivity ¢, ij:('Y)k.Sig:l Dy %:i%
: Sk Sk

Bin-by-bin purity p, <1:

Effect of background:
it dilutes by a factor p, <1
the bin-by-bin
sensitivity and information

of signal + background:  '* nx 98 s, 06

N _ Sk _ sk Yiendi (5) .
={y el P TN e om ¢ for signal events alone
i i e . 19 9 . . K ) K ) K )
Bin-by-bin sensitivity <y>, e Pk OSk o4, Information from all bins =3 mn2=3 nloetn?=3 " sipot
k=1 k=1

for signal + background: Py
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1 — Binned fit of a parameter 0
ldeal case: partition by the evt-by-evt sensitivity v

K
Information I, in terms of T n 1 3nk n
average bin-by-bin sensitivities: 0= Z ke (nk 90 ; k<’7’>k

There is an information _gain
In partitioning two events i; and i, in o Yir i, \ 1 5
two 1-event bins rather than one 2-event bin | 420 =", +7%i, —2 5 =5 (¥, =)
if their sensitivities y; and y; are different

Q Goal of a distribution fit: partition events by their <J
different MC-truth event-by-event sensitivities y; to 0

How to achieve this in practice: next two slides (WDR)

Use | fidea) to compute FIP: following two slides

Knowing one’s limits: maximum achievable
|:> information with an ideal detector Ntot Stot

- Ideal acceptance, select all signal events S =S, Ié;.ideal) — E V= E 2
- Ideal resolution, measured v, is that from MC truth - :
(implies ideal rejection of background events, »=0)
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1 — Binned fit of a parameter 0

Weight Derivative Regression (WDR): train q, for vy,

Goal of a distribution fit: separate events with
different MC-truth event-by-event sensitivities vy; to 6

But y is not observable on real data events!

Weight Derivative Regression:

@ain a regressor g,=q(x;) Then determine 6
on detectordevel MC observables x; = by the 1-D fit of q(x;)
against the™|C-truth y, = ow;/00 for real data events X,

round MC events

for signal and ba

Some of many caveats:

- Dependency of weight derivative on reference 6
WDR easier for coupling fits than for mass fits? Training metric: maximize FIP
- How feasible is it to compute and store MC-truth weight derivatives? Evaluation metric: maximize FIP
- How useful is this for measurements limited by systematics? )
- Train g on signal + background and 1-D fit of g, or
train g on signal alone and 2-D fit on g and scoring classifier? (or equivalently minimize MSE? see final slides)

- How to deal with simultaneous fits of many parameters?

11/20
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1 — Binned fit of a parameter 0

WDR and Optimal Observables

H H H D. Atwood, A. Soni, Analysis f etic ment 1
The WDR Idea WaS Insplred by the and f.!‘::’;:(u drpr)i':m:nr)m::lzfyq};rw:)rf(::;i?:'r :j ?.’L:m:.";) lee OO! WDR Can be
wark via eTe” — tf, Phys. Rev. D 45 (1992) 2405.

Optl m al Obs ervab | es (OO) m et h 0 d cl\ic[n[l)(:nl‘:i)il,iPllzn)\]:ﬂR](t\L)‘ 4L:é)-i::[)1 A o, e o useful in Coupllng/EFT fits
G (more than in mass fits)

method for the measurement of tau polarization, Phys,
B 306 (1993) 411. doi:10.1016/0370-2693(93)9010A1

M. Diehl, O. Nachtmann, Optimal observghles for the

iti measurement o, hree-gauge-boson(couplings) in (+!’7 —?‘I O With
BOth OO and WDR partltlon data by an WIW", Z rihy{,-.uc 62 (J}m)iq) !397, doi: gjt fr/m‘(llaaamn Some Slml’aﬂtles a’SroaCh
approximation of a MC-truth sensitivity 3 to @ 0 N b N Qe et o he MadMiner b o sis06
(OO does not use MC weight derivatives but it is similar) doi:10.1140/epje/s2005-02153-9 See CHEP 20;3:?,’9,(; theories with h ML

«Constraining effec

Data observable
MC-truth event properties x;PATA

I > functional dependence |:> Fit optimal observable

MC-truth yi(MC truth) — fi( Xi(MC truth) ) ooi(DAI\TA/;) = f( Xi('\DAiTA) )
sensitivity y,MC truth) OO,MA = f( ;M)
MC-truth The difference is in where the f
event properties x (MC truth) effect of detector resolution
prop i / is taken into account

MC observable ‘ Data observable

event properties xM¢) Weight Derivative event properties x,CATA
|—> Regression |:> _
Fit WDR regressor
,Yi(MC truth) — q( Xi(MC) ) qi(DATA) = q( Xi(DATA) )
qMO = q( x;M))
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1 — Binned fit of a parameter 6
FIP decomposition: efficiency, sharpness, purity

Numerator: Information retained by a given analysis

using N¢,=2n, events with the given detector K 2 K 2

) ” _ ) ) _ ) FIP. = IQ _ Zk‘:l nk<7>k‘ _ Zk‘:l Skpk(,bk
Denominator: maximum theoretically available information 3— I[Sideal) — Siot — Stor _ 2
from the given sample of N, events (S, Signal events) Zz 1 ’73 Zi:l Y

if the true y; were known for each event (ideal detector)

FIP; _ i swpid — FIPyg X FIPy, X FIP,

Stot
Zz—l ’7?,
sel K 2 K 2
_ Z%—l ; « Zk:l kP, « D k1 SkPEPE, R
o Stot sel K 2 ' \
Z"'—l /Y?’ Zz—l ,}/1 Zk:l Sk(’bk Sensitivity-weighted
_ 1 signal purity
\ or equivalently
Sensitivity-weighted shargn_ess in separating
signal efficiency: Sharpness signal events
keep S, of S, events in separating signal events f_ror_n background events:
with different sensitivities: dilution of signal sensitivity
partition S, signal events shapness’as  caused by bin-by-bin purity p,

into K bins in meteorology:
see later why

EE/}‘W A. Valassi — HEP parameter fits and Weight Derivative Regression CHEP2019, Adelaide — 7 Nov 2019  13/20

<7/




1 — Binned fit of a parameter 6
Limits to knowledge: FIP for a realistic detector

SALL; Vi, 0
Iéidoal, SaLL) — Z

SaLL .2
i=1 i

Limited detector acceptance
(detector geometry, trigger rate):
factor this out in FIPpcc <1

FIPacc < 1

St.oty 'Yz': 61,

FlP.g

FIPsr1, = FIPACC X FIP3
FIP3 = FIPeg X FIPyp, X FIPpy,

0 < FIP; < FIPY™ <1

Stot 2

i=1 Il

Iéidcal) _ Z

Stot» ﬁb(X),- 0;
(Zy= [ s(x)p(x)*dx)

|

Stot, (X)), p(x)

73" = [ s(x)p(x)2p(x)dx

Sscl ] rY’L 1 52
Ssel 2

(Zo=>_:20;

‘/Flpsha

SSCI: f,bka 5?,
(Zo=>"1y kb})

‘/FIPPM

Seels Ok, Pl
To=3"10, skb}pn

)

Limited detector resolution

In the multi-dimensional space
of event observables x,
it is impossible to resolve:

- signal events
with high sensitivity v,
from signal events
with low sensitivity v;:
average sensitivity is ¢(x)

- signal events §;=1
from background events §=0:
average purity is p(x)

FIP is a metric in [0,1], but
the detector acceptance and resolution
limit it to 0 < FIP < FIPMa) < 1

FIP>FIPMa) while training g;
implies overtraining...

=

14/20
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2 — Learning from others

Reading Room, British Museum
Diliff (own work, unmodified) CC BY 2.5

erum@ NV A N
§ Reading is arevolutionary act g
“ (Inge Feltrlnelll 1930- 2018)

Different problems in different domains require different metrics and tools...
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2 — Learning from others

Evaluating the evaluation metrics

Evaluation metrics of (binary and non-binary) classifiers
have been analysed and compared in many ways

There are two approaches which | find particularly useful:

1. Studying the symmetries and invariances of evaluation metrics

M. Sokolova, G. Lapalme, A Systematic Analysis of A. Luque, A Carrasco, A. Martin, J. R. Lama, Fxploring
Performance Measures for Classification Tasks, Infor- Symmetry of Binary Classification Performance Metrics,
mation Processing and Management 45 (2009) 427. Symmetry 11 (2019) 47. doi:10.3390,/sym11010047.

doi:10.1016/j.ipm.2009.03.002

Example: (ir)relevance of True Negatives:
in my CHEP2018 talk

2. Separating threshold, ranking and probabilistic metrics

R. Cé,ruana, A. Niculescu-Mizil, Data mining in metric C. Ferri, J. Hernandez-Orallo, R. Modroiu, An Fz-
space: an empirical analysis of supervised learning per- perimental ~ Comparison  of  Classification  Perfor-
formance criteria, Proc. 10th Int. Conf. on Knowledge mance Metrics, Proc. Learning 2004, Elche (2004).
Discovery and Data Mining (KDD-04), Seattle (2004). http://dmip.webs.upv.es/papers/Learning2004.pdf

doi:10.1145/1014052.1014063 C. Ferri, J. Herndndez-Orallo, R. Modroiu, An Ezperi-

mental Comparison of Performance Measures for Clas-

Example: AUC (ranking) vs. MSE (probabilistic): sification, Pattern Recognition Letters 30 (2009) 27
in this CHEP2019 talk (next 3 slides) doi:10.1016 /j. patrec. 2008.08.010

EE/RW A. Valassi — HEP parameter fits and Weight Derivative Regression CHEP2019, Adelaide — 7 Nov 2019  16/20

~7 -




2 — Learning from others: Meteorology

MSE decomposition: Validity and Sharpness

Ntot
MSE (mean squared error) MSE — 1 (gi—;)?| MSE s aprobabiistic metrc
of regressor predlctlon qi . o N gﬂ Vi for both evaluation and training
versus the true y; for event i: tot
MSE decomposition G W, i Vet of ot oy i o

Paraphrases the “Brier score ” 0493(1950)078%3C0001: VOFEIT%3E2.0.CO;2
d ecom D 0S Itl onin Meteo ro I 0 qv F. Sanders, On  Subjective  Probability — Fore-

casting, J. Applied Meteorology 2 (1963) 191.

(if the N,.; events are split into

K partltlons, Wlth q|:q(k) VI € k): https://www.jstor.org/stable/26169573
Validity, Reliability, Calibration Sharpness, Resolution, Refinement
1 K ) 1 Ntiot K
_ 2 2
MSE = N E N (Q'(k) —<’}/>,t,¢) + N E Vil — E Nk <'Y>k
tot | %7 tot | \i=1 k=1
Validity: in a partition with given true Sharpness: how well do we separate
average sensitivity <>, Is the predicted events with different true sensitivities y?
sensitivity o, well calibrated? !
~0 in training by construction This is what determines the statistical error
~0 in evaluation if there are no systematics on the measurement of & related to FIP!
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2 — Leaning from others: Meteorology

FIP is related to Sharpness (MSE)

-y
-~ S~

1 K , ;f~.-_i_——’llla\rtct \\\ ,,, 1% ~ .
MSE= E — ’ 2 ) 2
N L:l n (4er) (’7)&)/,}+Nt0t [{‘( %’)l ‘\( (V) k ]

SA
Ntot Stot

FIP is related to Sharpness:

In the ideal case: MSE,,=0 and FIP=1
(events with different y;, can be resolved)

I{-‘,l Ntot X MSEsha
FIP = Iéidcal) o (1 - Iéidcal) )

Practical implication for Weight Derivative Regression:
MSE is the most appropriate loss function for training the WDR regressor
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2 — Learning from others: HEP does not need ranking, or ranking metrics
HEP needs partitioning, and probabilistic metrics

Ranking, and ranking metrics Partitioning, and probabilistic metrics
Pick two events at random and rank them Group events and make a forecast on each subset
Medical Diagnostics — ranking evaluation of diagnostic prediction Meteorology — probabilistic evaluation of weather prediction

Patient A is diagnosed as more likely sick than B: how often am I right? | Rain forecast was 30% for these 10 days: actual rainy days?

Medical Prognostics — probabilistic evaluation of survival prediction
5yr survival forecast was 90% for these 10 patients: actual survivors?

(=]
o

D. M. Green, General Prediction Relating Yes-No and

Toreer- Gy i nemnetieal oo e (o | HEP parameter fits — probabilistic evaluation of measurement of ¢
1042. doi:10.1121/1.2143339 MC forecast for #events in this bin is 10 (20) for 6=1 (2): actual data?

D. J. Goodenough, K. Rossmann, L. B. Lusted, Radiographic
applications of signal detection theory, Radiology 105 (1972)
199. doi:10.1148/105.1.199

J. A. Hanley, B. J. McNeil, The meaning and use of the area
under a receiver operating characteristic (ROC) curve, Ra-
diology 143 (1982) 29. doi:10.1148 /radiology.143.1.7063747
A. P. Bradley, The use of the area wnder the ROC Ntot

K K
1 2 1
curve in the evaluation of Machine Learning algorithms, — E _ E 2 _ E 2
—— AUC=0.900 (RED) Pattern Recognition 30 (1997) 1145. doi:10.1016/S0031- MSE_ N ng (Q(k') <’Y>k) + N ’Y?, Ty <7)k‘ '
tot Tl tot —L

--- AUC=0.750 (BLUE) 3203(96)00142-2 i=1

=
o

Validity, Reliability, Calibration Sharpness, Resolution, Refinement

(=]
FS

TPR (signal efficiency)

B2
¥

(=]

. 0 .
0 0.2 0.4 0.6 0.8 1
FPR (1 - background rejection)

Sharpness (from MSE): how well can | resolve

AUC (Area Under the ROC Curve): probability days with 10% and 90% chance of rain?
that a randomly chosen diseased subject Patients with 10% and 90% 5yr survival rate?
is correctly rated or ranked with greater suspicion Signal events with high sensitivity to 8 from
than a randomly chosen non-diseased subject (signal or background) events with low sensitivity?
IRRELEVANT FOR HEP PARAMETER FITS? ESSENTIAL FOR HEP PARAMETER FITS!

CERN
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~7 -




Conclusions — HEP measurement of a parameter 0

« MC weight derivatives (event-by-event sensitivities y, to 8) may be used :

—To determine the ideal partitioning strategy: partition by v;
—To derive the minimum error on the measurement of 6 (ideal detector)

Niot Stot
Iéideal) _ Z ,YZQ _ Z ,YZQ
i=1 i=1

—To derive training and validation metrics to optimize the measurement

FIP = Lo _ 2 PRV _ Dk SRPRDE Evaluation
— ideal) ~— Sto - Sto and frai=
Iél Zz;f 732 Zz;f 732 metricS: Fl;a’nlng

—To train a regressor q; of y; (optimal observable) for a 1-D fit of 6

« HEP parameter fits are closer to Meteorology than to Medical Diagnostics

—They use partitioning and need probabilistic metrics (sharpness, MSE)

_ ;ZG —(1— Ntot X- MSESha Compare t
I(Sldeal) I(Sldeal)

—They do not use ranking and do not need ranking metrics (AUC)

FIP
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Binary classifier metrics outside HEP — beyond binary classification

Non-dichotomous truth: examples

N. A. Obuchowski, An ROC-Type Measure of Diagnos-
tic Accuracy When the Gold Standard is Continuous-Scale,

« Medical Diagnostics — continuous scale gold standard s i
of discrimination in survival analysis: model specific popu-
. . . . . lalioTx ‘valzf; m‘;d (‘an{id(‘l(lr(: :‘:ix.[r{rfra‘[(;:::iyir::fiz;:a;)Sti\tislics in
— The Obuchowski measure, e.g. five stages of liver fibrosis, i v v v
T i gl Ko
d0i:10.1373 /clinchem.2007.097923
* Information Retrieval — graded relevance assessment and DCG
k K. Jarvelin lI\'«kl nen,
G in w@nh
— Discounted Cumulated Gain pccp =3y S i i
Response: partitioning + ranking i1 min(1, log, %) : 0137 (““bd“
B { 0{1)/);)'”17 m;,,:fl‘(.‘ .:,l ;\(;x\l ’f‘:‘axl:z(;lllhlnf. Sys. (TOIS) 20
ML (for finance) — example-dependent cost-sensitive cIaSS|f|cat|on
fraudulent | legitimate e siint “ont.
— Payoff matrix for transaction x$: e T 520 | —s20 T i
Response: yes/no decision approve —x 0.02z z'?‘fﬁ:"ﬁgﬁﬁtf on Antical Inelge HLF cRio,
* Meteorology — probabillistic evaluation of weather forecasts
G. W. Bricr, Verification of fun::‘f sts expressed in irrr;ri
— Rain forecast was 30% for these 10 days: actual rainy days? mmimiom . ™
g sy S T
https://www.jstor.org/stable/26169573 |
» Medical Prognostics — probabilistic evaluation of survival forecasts | oo
— 5yr survival forecast was 90% for these 10 patients: actual survivors?
D. J. Spiegelhalter, Probabilistic prediction in patient man-
agement and clinical trials, Statist. Med. 5 (1986) 421.
doi:10.1002/sim.4780050506
Y A imltdnlrl::;:;r:liiil\ssil(‘ML:;:‘d‘]'J:wrfim\r:;wl’l:loc’i‘:‘;im:zu;;:ﬁi;ﬂ?::ir:,
« HEP measurement of 8 — evt-by-evt sensitivity to 6 i
0258(19960229)15:4<361: AID-SIM168>3.0.CO;2-4

CERN
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1 — Binned fit of a parameter 6

Weight Derivative Regression — In practice

« Compute event-by-event sensitivities » from signal MC weight derivatives
—Possibly at various reference values of 6

* Pre-select events to remove most backgrounds
—Possibly maximizing a sensitivity-weighted signal efficiency?

« Train aregressor g; for the MC-truth ¥ from measured event properties
—Possibly using MSE as the loss function in the training (see next slides)

» Determine #from a 1-D fit on the optimal observable q;
—Or possibly a 2-D fit on (qg;, D;) including the pre-selection classifier D,

Some of the many limitations of this approach
— MC weight derivative depend on 0: coupling fits easier than mass fits
— | ignored systematic errors
— | only discussed fits of a single physics parameter at a time
— But | still find this approach better than maximizing an AUC...

(Note: | did not try a real measurement — | did a few tests with a toy model, but | am not presenting them today)
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Estimation of parameter 6 in a binned distribution fit

Weight derivative regressors and their training
(a frequentist dinosaur’s view of Machine Learning)

Choosing a ML methodology
mainly implies two choices:

1. The shape of the function R (x):

l.e. how we choose to model y(x)

Examples: decision tree (sparsely uniform),
neural network (sigmoids), linear discriminant

2. The training metric: a “distance”
of R, (x;) to y(x;) or y; to minimize, or

a property of R (x;) to maximize
Examples: Gini, Shannon entropy/information, MSE

| __

EE/RW A. Valassi — HEP parameter fits and Weight Derivative Regression
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Classic ML problem: create a model g(x)=R (x) to predict
the value of y(x) in a multi-dimensional space of variables x

| focus on Decision Trees
because of the similarities
to binned distribution fits

| suggest to use |, or FIP both
for training and for evaluation
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Estimation of parameter 6 in a binned distribution fit

Event selection and partitioning: a blurred boundary

(1) The scoring classifier D for signal/background
discrimination is related to the average purity p(X):

it would be a pity to use it only for a yes/no decision

It can be used both for measuring cross-sections (1-D fit of D) or
for measuring a mass or coupling (2-D fit against another variable)

Use the scoring classifier D to partition events,
not only to accept or reject events

(2) Signal events with zero or low sensitivity to 0
and background events are equally irrelevant

Separating signal events with high sensitivity to 6
from background events

IS as important as

Separating signal events with high sensitivity to 6
from signal events with low sensitivity to 0
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Estimation of a parameter 6

NB: Shannon information

Fisher information (about a parameter 6)

« Fisher information |, is a useful concept because
— 1. It refers to the parameter 6 that is being measured

— 2. It is additive: the information from independent measurements adds up
— 3. The higher the information Lo, the lower the error AO achievable on 0

Cramer-Rao lower bound CRLB N 2 A 1
(lowest achievable variance A0?) (AH) — V&I’(Q) Z f

6

F. James, Statistical Methods in Experimental Physics, 2nd
edition, World Scientific (2006).

» Some estimators achieve the CRLB and are called efficient
— Example: a maximum likelihood fit (given the event counts in a given partitioning scheme)

* In the following | will express statistical error 46 in terms of information I,

l.e. | will treat errors 46 and :Z,- _ 1
information |, as equivalent concepts 0 —
0

(A0)
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Binary classifier metrics outside HEP — discrete classifiers (yes/no decisions)

HEP cross-section in a counting experiment

* Measurement of a total cross-section o in a counting experiment

* A distribution fit with a single bin

» Well-known since decades Iif final goal is to minimize statistical error Ao,
— Maximise &.*p (*common knowledge” in the LEP2 experiments) — “FIP1”
—NB: This metric only makes sense for this specific HEP optimization problem!

1 1 1 52
° 2 Cs0tot 0_32 (Ssel+Bsel)

:> FIP, = Jsi eal) —€s0

= Jifpo=1landes=1

By the way: p/e;=1 where oFIP1/0p=0FIP1/0e (just like for F1)
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Binary classifier metrics outside HEP — discrete classifiers (yes/no decisions)

A brief comparison of MD, IR and HEP

« Medical Diagnostics
— All patients are important, both truly ill (TP) and truly healthy (TN)

—e.g. ACC metric depends on all four categories: average over TP+TN+FP+FN
AGC — TP + TN

TP + TN +FP + FN

 Information Retrieval
— Based on qualitative distinction between “relevant” and “non relevant” documents

—e.g. F1 metric does not depend on True Negatives 2 TP
* Rejected “irrelevant” documents are utterly irrelevant Fi = 2 TP + FP + FN

« HEP (cross section measurement by counting) —
— Based on qualitative distinction between signal and background |FIP; = (TP+FN)(TP+FP)

—e.g. FIP1 metric does not depend on True Negatives
» Measured cross section cannot depend on how many background events are rejected

HEP is more similar to Information Retrieval than to Medical Diagnostics
(qualitative asymmetry between positives and negatives)

Invarlance under TN Change IS Only One M. Sokolova, G. Lapalme, A Systematic Analysis of A. Luque, A Carrasco, A. Martin, J. R. Lama, Ezploring
Performance Measures for Classification Tasks, Infor- Symmetry of Binary Classification Performance Metrics,

Of many UserI SymmetrleS to analyse mation Processing and Management 45 (2009) 427.  Symmetry 11 (2019) 47. doi:10.3390 /sym11010047.
[SOkO|Ova-Lapa|me, Luque et al] doi:10.1016/j.ipm.2009.03.002
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TPR (signal efficiency)

Binary classifier metrics outside HEP — scoring classifiers

HEP: cross section in a counting experiment
(maximize FIP1 —the AUC is misleading!)

To minimize the statistical error Ao:
Maximize FIP| =¢40

Choice of operating point is simple:
- Plot e,xp as a function of ¢

Choice between two classifiers is simple: - Choose the point where g xp is maximum
- Determine max (g ,xp) for each

- Choose the classifier with the higher max

) But there are better ways
NB1: The choice depends on prevalence than a counting experiment

[which is fixed by physics and approximately known in advance] to measure a total cross section

NB2: AUC is misleading and irrelevant in this case in this case...
1 1 1
Stot=0.50*(Stot+Btot) Stot=0.05*(Stot+Btot)
= — MAX=0.684 (RED) z — MAX=0.400 (RED)
0.8 508~ --- MAX=0.500 (BLUE) 3 087 === MAX=0.499 (BLUE) FIP1 [ AUC
g g BLUE:
6 s . 206 g 0.6 Range
.- RED: g0 g% % LOWEST in [091] YES | YES
HIGHEST T Ll 5 gt )
04-{ ROC AUC S04+ EfffPur o4 EfffPur Ao? Higher
~ RED: > 77 is better =
o a 1
0.2 & 02 LOWEST & 02 \ ;
— AUC=0.900 (RED) | & AG? £ \ Numerically YES
--- AUC=0.750 (BLUE) Sl .
0 T T T T 0 T T T T 0 T T T T meanlng|
] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
FPR (1 - background rejection) TPR (signal efficiency) TPR (signal efficiency)
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Binary classifier metrics outside HEP — scoring classifiers

HEP: cross section by a fit to the score distribution

Use the scoring classifier D to partition events,
not to accept or reject events

This is the most common method
to measure a total cross section
(example: a BDT or NN output fit)

Keep all Stot events and partition them in K bins

FIP, = Iﬂ's_ _ stkﬂk _ st?c/nk _ ankrgz
Zgdeal) 3 sk > Sk >k Sk

ning

AL, =———(p1—p2)*
ni+no

There is a benefit in partitioning events
into subsets with different purities because

Better than a counting experiment for two reasons
- All events are used, none are rejected
- Those which were previously in a single bin are now subpartitioned
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FIP2 from the ROC (+prevalence) or from the PRC

FIP2: integrals on ROC and PRC,

» From the previous slide:

* FIP2 from the ROC (+prevalence -

Ssel = Shot €5
Bic1 = Byot €

s; = dSse1 = Stot des

[—
b; = dBsc1 = Biot dep

* FIP2 from the PRC:

Ssel = Shot €5

8; = dSsel = Stot des

e
FIP2 = Lfnl Pisi
2oi—15i

Stot

_ 1

- Biot @
L+ g a.

-1

- Stot + Brot )'

—

more relevant to HEP than AUC or AUCPR!

(well-defined meaning for distribution fits)

1
FIPsz
0o l+

des

1—m. dey

s des

Bicl = Sacl (p - 1) bi = dBse) = Stot [des ( ) —e. ] !
P

Compare FIP2(ROC) to AUC

1 1
AUC:/esdeb = lf/ebdes
0 0

i
FIPQ:/
ol

pdes

_ e dp

p deg

T
AUCPR:fpdes
0

« Easier calculation and interpretation from ROC (+prevalence) than from PRC
— region of constant ROC slope = region of constant signal purity

— decreasing ROC slope = decreasing purity
« technicality (my Python code): convert ROC to convex hull* first

1.0 1.0
—_ c
> o T
0 | de = | |
5 0.8 * de,: proportional 3 0.8 dp
iv] dsb to #signal events o des
£ 0.6 in bin 20.6
o S
© de/de,: related >
c 0.4 s b e 204
o to purity in bin =
2 ROC 5 PRC
o 0.2 4 02— prevalence N=0.5
o = (Btot=Stot)
[ o
o
0.0 T | | T 0.0 | | T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

FPR (background efficiency)
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TPR (efficiency or recall)

1.0

0 T 1 T
*Convert ROC to convex hull 00 02 04 06
- ensure decreasing slope

Compare FIP2(PRC) to AUCPR

1.0
5
£ 0.8 [
2 e ROC
£ 0.6
(]
g
S 0.4
2
E 0.2—|fee - original ROC
= ‘ —— ROC convex hull
0.

I
0.8

FPR (background efficiency)

- avoid staircase effect that would artificially inflate FIP2
(bins of 100% purity: only signal or only background)
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TMZD03 - FIM RandaimForest

TM2D03 - FIM_RandomForest

1.0

FIP2 (limit=0.6830)
_| mmm 0.8198 mean (0.0364 std)

0.8 e [min, max] = [0.731, 0.902]
Pl a
S 06 ROC o
b= w
@ a
s ]
c 19—
o4 g 10
E TRAINING TRAINING
0.2 100 training sets 57 100 training sets
training set size: i .
100 sig, 300 bikg 16058 S0
0.0 T T T T 0 T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FPR (background efficiency) FIP2
1.0 TMDO3 - FiM_RandomForest TM2003 - FIM_RandamForest
50— FIP2 (limit=0.6830)
 0.6324 mean (0.0133 std)
c [min, max] = [0.592, 0.660]
- E+]
= S 40
3
So ¢
S 230 i
o a
5 § ‘
il & 20
E VALIDATION VALIDATION
0.2 100 training sets 10 100 training sets
validation set size: P .
100 x training set ‘{E'.;'d:‘(';?ns.ﬁﬁéf
0.0 T T T T (0] T T : T
0.0 0.2 0.4 0.6 0.8 Lo 0.0 0.2 0.4 0.6 0.8 10
FPR (background efficiency) FIP2
10 ...-...-' TM2D03 - FIM RandomForest
AFIP2
et 50— 0.1875 mean (0.0383 std)
0.8 ot k= [min, max] = [0.088, 0.277]
- . £
506 ROC S 157
i+ . u
(1] . o
T 8
80.4- @107
2 i
b
E | 100 training sets
b .
-4 1 training set size:
0.2 ! 5 100 sig, 300 bkg
: validation set size:
| = a0 AUC=0.9107, FIP2=0.6830 (TRUE PDF LIMIT) 100 x training set
0.0 T T T T 0 T T T
0.0 0.2 04 06 0.8 L0 -1.0 -0.5 0.0 0.5 1.0

FPR (background efficiency)

\
~7 -

AFIP2 (VALIDATION - TRAINING)
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HEP estimation of parameter 8 in a binned distribution fit

FIP2(max) example
(and overtraining)

FIP2 is a metric in [0,1]
but the detector resolution
effectively determines a FIP2(Mmax) < 1
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HEP estimation of parameter 0 in a binned distribution fit

Fisher information | about 0 (statistical errors)

For a given partitioning scheme with K bins
(n, is the number of selected events in bin k) Bin-by-bin sensitivity to 6

Statistical errors: information adds up . .
Each bin is an independent measurement with error (A9).= (ﬁ) Ankz(ﬁ) Vi

(Combination more complex with systematic errors, or for searches)

C{E/}‘W A. Valassi — HEP parameter fits and Weight Derivative Regression CHEP2019, Adelaide — 7 Nov 2019

~7 -




HEP estimation of parameter 0 in a binned distribution fit

Optimal partitioning

1 Koo 1 ongY
_ _ _ i)
Zo= (Ah)2 —; (40)2 _;”’“ (nk 89)

Is there a benefit (information inflow) Az, 1 (9m)", L (9n2)" 1 (9(mi+na)\"
Q in splitting bin 0 into two bins 1, 2 m (59) ”2(‘3‘9) ”1+n2( R )

e _ g Kia_)_(ié‘_)]
Wlth no—n1+n2 _n1+n2 ni 89 N9 89

Information increases if the two new bins have different sensitivities to 0

1 6711 1 67@2
AL
0 > V= T 89 7& o 89

Goal of a distribution fit: partition events
Into subsets with different bin-by-bin sensitivities to 6
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HEP estimation of parameter 8 in a binned distribution fit

Signal and background are not dichotomous classes
(with one exception: cross section measurements)

Background events by definition are insensitive to 0 H

Signal events may have positive, zero or negative sensitivity Ng:NT[;SCSHg%p,\I,:g%S

The distinction between
signal events with low (|#|~0) sensitivity
= ( 1 8w1—) € {—co.too . ific {Signall and background events is blurred

w_?; 00 (example: events far from an invariant mass peak)

Vi = (ul)z ({?;;t) =0, ifi € {Background}

|5- B { 1 if i € {Signal} I
|0 ifi€ {Background} | Changing the signal cross section ~is a
global rescaling of all differential distributions

In a cross section measurement 51(05) = — X 540 re)
All background events are equivalent to one another e

All signal events are equivalent to one another

1
’Yz‘z—&::

Os

5 ifi € {Signal}, 0= o 0: cross section oy
0 ifi e {Background}, - DICHOTOMOUS LR
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HEP estimation of parameter 8 in a binned distribution fit

FIP1 and FIP2 revisited

FIP,, =1 for both

(dichotomous, all signal events are equivalent)

FIP; = _ Y S6Pi0k _prp ot X FIPgpa X FIP, FIP; =es0

i FIP1:
122 5811 v? Zk:l Skék Z£1 Skpkﬁb%c .

o Stot se K l FIP :8
Zz 1 ’71 Zz i’yz Zk:l Sk(’b% eff

I:”:)pur:p
7, D RSEPE D iSh/Tk D Py
Kb = ey = S5k S5k S sk FIP;= Z’ﬁls Ok =FIP.g X FIPsya X FIP,
Z 1’71
se K
FIP2: Z 11"/1 Zk:l 3k¢k Zk:l SkPkﬁbﬁ
Stot =3 K ‘
FIPeff:]' Zz 1 ’Yz Zz 1172 Zk:l Skﬂbi

FIP,,=FIP2

EE/}‘W A. Valassi — HEP parameter fits and Weight Derivative Regression CHEP2019, Adelaide — 7 Nov 2019  36/20

N




HEP estimation of parameter 8 in a binned distribution fit

From CRLB to Fisher Information Part (FIP)

Particles produced Iéideal)

in beam collisions

Detector | g

Trigger
Raw data events s (Ag(ideal))Q
FIP = deal) — 5 < 100%
Data processing Ié (AQ)
Analysis object data
PHYSICS ANALYSIS F| P

Event selection (Sig vs BkQ)
Event partitioning

Event counts in individual
bins of a distribution

Lo

Max likelihood fit (1/46%)/Zy is 100% A max likelihood fit is 100%
' ] efficient: it achieves the CRLB,

S=SfYEVEIR
CRLB

Measured value of the
parameter M + AM
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HEP estimation of parameter 0 in a binned distribution fit

Two optimization handles: event selection and partitioning

Particles produced Iéideal) SALL signal

events

in beam collisions
Detector
Trigger FIPA FIPacc
| factor out

Raw data events detector/trigger acceptance
and compute FIP3

with respect to S

Data processing

- Analysis objectdata @|————————————— _ Stot sign?l
events

PHYSICS ANALYSIS FIP,

Event selection (Sig vs BkQ)
\ signal ‘
I@ Ssel events

Event partitioning

Event counts in individual

1 bins of a distribution

Max likelihood fit

1/A0% =

Measured value of the
parameter M £+ AM
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