Improving Traversability Estimation through
Autonomous Robot Experimentation

Christos Sevastopoulos, Katerina Maria Oikonomou, and
Stasinos Konstantopoulos

Institute of Informatics and Telecommunications,
NCSR ‘Demokritos’, Ag. Partaskevi, Greece
sev_chris@yahoo.com, k.m.oikonomou@gmail.com, konstant@iit.demokritos.gr

Abstract. The ability to have unmanned ground vehicles navigate un-
mapped off-road terrain has high impact potential in application ar-
eas ranging from supply and logistics, to search and rescue, to plane-
tary exploration. To achieve this, robots must be able to estimate the
traversability of the terrain they are facing, in order to be able to plan a
safe path through rugged terrain. In the work described here, we pursue
the idea of fine-tuning a generic visual recognition network to our task
and to new environments, but without requiring any manually labelled
data. Instead, we present an autonomous data collection method that al-
lows the robot to derive ground truth labels by attempting to traverse a
scene and using localisation to decide if the traversal was successful. We
then present and experimentally evaluate two deep learning architectures
that can be used to adapt a pre-trained network to a new environment.
We prove that the networks successfully adapt to their new task and
environment from a relatively small dataset.

Keywords: Robot vision - adaptability - self-assessment.

1 Introduction

The ability to have unmanned ground vehicles (UGV) navigate unmapped off-
road terrain has high impact potential in application areas ranging from supply
and logistics, to search and rescue, to planetary exploration. The core concept in
outdoors navigation is the computation of a 2D traversability grid upon which
path planning algorithms can operate. This grid is computed by using knowledge
of the physical and mechanical properties and capabilities of a specific UGV in
order to estimate if each grid cell can be safely traversed of not.

The two main lines of research in traversability estimate are appearance-
based and geometry-based methods. The former rely on computer vision either
directly estimate traversibility from raw images [1, 10] or to extract intermediate
information that is then used in a separate traversability estimation step. Such
information can be either terrain features such as roughness, slope, discontinuity
and hardness [7] or terrain classes such as soil, grass, asphalt, vegetation [2].
Geometry-based methods, on the other hand, extract terrain features such as

2 C. Sevastopoulos et al.

roughness, slope, and discontinuity from digital elevation maps (DEM) obtained
from stereoscopic or depth sensors [4, 13].

Methods that rely on DEM are more popular in recent literature as they
estimate terrain features more directly and accurately than appearance-based
methods. However, they lack the ability to distinguish between different classes
of obstacles. For instance, a concrete obstacle and a patch of bushy vegetation
can be practically impossible to distinguish in the DEM alone, although the
distinction is important: a bush that can be easily overrun by the UGV should
not be considered an obstacle. To address this, hybrid methods combine different
types of sensory input to assess different aspects of traversability [5].

Hybrid methods, combined with recent advances in vision brought about by
deep learning, can re-introduce appearance-based methods, and computer vision
in general, as relevant to the outdoors traversability estimation problem. As
demonstrated by recent work [1], a priorly learned network can be efficiently fine-
tuned to a new environment using only a fraction of the data needed to initially
train it. The fine-tuned network achieved an accuracy of 91% on unseen data, a
marked improvement over the 75% achieved by the original network. However,
in order to conduct their experiment Adhikari et al. had to manually annotate
more than 5000 areas from 10 frames as ‘traversible’ or ‘non-traversible’.

In the work described here, we also develop the idea of fine-tuning a generic
network for a specific environment, but without requiring any manually labelled
data. Instead, we present an autonomous data collection method that allows the
robot to derive ground truth labels for scenes it observes and a network architec-
ture that is fine-tuned from a relatively small, autonomously collected, collection
of scenes. We prove the concept that the robot can autonomously assess the ac-
curacy of its visual traversability estimation method, by attempting to traverse a
scene and using localisation to decide if the traversal was successful (Section 2).
We then discuss how the outcomes of this autonomous experimentation can be
used to adapt the robot’s visual traversability estimation models (Section 3),
present experimental results that validate that where substantial adaptation is
achieved from a feasible number of autonomous experiments (Section 4). We
close the paper with conclusions and future reserach directions (Section 5).

2 Autonomous Data Collection

In order to have the robot autonomously fine-tune its traversability estimation,
we want it to be able to measure the traversability of a path after traversing
it (or having failed to traverse it). One key concept we are putting forward in
this work is that traversability can be measured as the error in proprioceptive
localization, that is, in localization that relies on the wheel encoder and IMU
signals. The rationale is that along an easily traversible path, encoder drift is
small and when fused with IMU becomes negligible. The more difficult a path
is, the more the wheels drift and this error increases. In order to calculate this
error, we will compare proprioceptive localization against the full 3D localization
that fuses the encoders, IMU, and stereoscopic camera signals.

Traversability Estimation through Autonomous Experimentation 3

3

Fig. 1: Indicative scenes for the localization error experiments.

In order to prove this concept, we executed the following experiment using a
DrRobot Jaguar rover fitted with a Zed stereoscopic camera: we selected several
locations with varying degrees of traversability ranging from paved path, to
vegetation that appears as an obstacle in the 3D point cloud created by the
stereo camera but can be pushed back and traversed, to a wall (Figure 1 shows
some indicative examples). After using standard ROS navigation to approach an
obstacle, the robot synchronizes a secondary proprioceptive localization module
with the main localization it uses to navigate, and then circumvents normal
obstacle avoidance to push against the obstacle. The velocity is the minimum
velocity that the robot can obtain, guaranteeing the safety of the platform even
when pushing against a wall.

We have carried out 20 experiments, at varying locations and approaching the
obstacle from different angles and have empirically found that for our platform
and for our specific sensors a localization error of 21cm or less signifies that the
path is traversible.! This simple rule achieves an accuracy of 9/10 in both the
traversible and the non-traversible tests (Table 1). The specific threshold is likely
to be different for different sensors and will need to be empirically identified for
each robotic platform and mix of sensors, but after testing it on different kinds
of obstacles we believe that it is a constant with respect to the environment.

We have looked at the outlying experiments and found that:

— The difference of 9cm on non-traversible path was caused by pushing against
the wall from a very small angle, causing the platform to fall back to the
paved road and continue moving.

— The difference of 89cm on a traversible path was caused by uneven slippage
between the wheels on the one side and the wheels on the other side of the
platform, as one side was on grass and the other on paved road. This does
not happen when all wheels are on grass and slip evenly, as it is corrected
by the IMU.

The former situation can be easily avoided by ensuring that the robot approaches
the obstacle correctly. The latter situation is more difficult to detect and avoid
from the localization and navugation system alone, and a future solution will
involve reasoning over a more general situational awareness, so that the robot
can determine if slippage is due to trying to push against an obstacle or due

! The software used and the data collected is publicly available at
https://github.com/roboskel /traversability _estimation

4 C. Sevastopoulos et al.

to slippery terrain. For the experiments presented below we have included both
false datapoints in the training set, to validate the robustness of the overall
method against these labelling errors.

As we now have provided the robot with the means to use past experience as
ground truth data, we will proceed in the next section to prove the concept that
a reasonable amount of such data is sufficient to fine-tune visual traversability
estimation for a new environment.

3 Adapting Traversability Estimation

In order to avoid requiring that the robot performs an unreasonable amount of
experiments before observing any significant improvement in its traversability
estimation capability, we assume as a starting point pre-trained deep learning
model and experiment with how to use it as a generic feature extractor for
classifiers trained on our environment-specific data.

We are going to use the VGG16 pre-trained model [11] as a feature extrac-
tor by exploiting its first five powerful convolutional blocks. In particular, its
standard architecture comprises of a total of 13 convolutional layers using 3x3
convolution filters along with max pooling layers for down-sampling. In our case
we will load the model with the Imagenet weights and freeze the convolutional
blocks. As a result we take advantage of the output from the convolutional lay-
ers that represent high-level features of the data. By the process of flattening,
this output is then converted to a one-dimensional vector that will be fed to
the classifier. A commonly seen approach in literature involves adding one fully-
connected (hidden) layer.

We have empirically found two hidden layers to give adequate accuracy while
keeping the computational cost low, with 64 units for the first layer and 32 for the
second layer. On both layers we use the ‘relu’ activation function [6]. Moreover,
following Baldi and Sadowski [3], a dropout layer with a rate of 0.5 is inserted
after each hidden layer. For the final output we add a softmax-activated layer
with 2 units for the binary prediction; traversable or non-traversable. The reason
we use the softmax activation function for the last layer is because of its ability
to output the probability distribution over each possible class label [9, 11]

As for the adaptation itself, we have experimented with both transfer learning
and fine tuning. In transfer learning, a base network is trained on an initial
base dataset for the purposes of an initial task. Then, the learned features are

Table 1: The maximum difference (in cm) between full localization and proprioceptive
localization, measured along the axis of the robot’s movement. Using a threshold of
21cm, we get two mis-classifications in 22 runs.

Threshold: 21
Traversible: 0 1 1 2 6 7 7 8141618 89
Non-traversible: 110 30 28 28 27 26 25 25 22 9

Traversability Estimation through Autonomous Experimentation 5

transfered to a target network that is trained on a custom dataset for a different
task. The technique we are going to implement is the combination of a global
average pooling layer [11] one Dropout that tosses out 50% of the neurons and
one dense layer that outputs the prediction of the two classes we are investigating.
The reason for using the global average tecnhique is that due to its structural
regularization nature, it offers an alternative approach in preventing overfitting
of the fully connected layers.

In fine tuning, the process we followed is to freeze the weights of the low level
convolutional layers and then add dense layers on top. We expect the model to
be able to map the knowledge represented in the low level convolutional layers
to the desired environment-specific output.

4 Experimental Results and Discussion

In order to validate our approach, we will use data collected following the method
presented in Section 2 in order to adapt the pre-trained VGG16 object recogni-
tion network to our task and our environment using the two methods presented
in Section 3. That is, we aim at adapting not only to improve for a new environ-
ment, but also at tranferring VGG16 knowledge to the new classification task
(traversible vs. non-traversible) for which the robot is able to autonomously col-
lect labelled data. We then evaluate the performance of these two two adapted
networks against a baseline that makes traversability decisions based on the
object recognition results from the original VGG16.

4.1 Data Acquisition

Our dataset comprises the RGB frames from the experiments described in Sec-
tion 2. We have randomly split the runs between training, validation, and testing,
but forcing the two mis-classified runs to be placed in the training set. This was
done in order to (a) estimate the robustness of the approach to the errors made
by our autonomous labelling method; and (b) to ensure that testing set us per-
fectly labelled in order to get accurate evaluation results. The resulting dataset
consists of 1300 training images, 150 validation images, and 150 testing images.

It should be noted that the split was done at the level of individual runs.
In this manner, although all data is from the NCSR ‘Demokritos’ campus, the
testing data is from different locations within this general environment than the
training and validation data.

4.2 Baseline

As a baseline, we will assume inferring traversability from the objects recog-
nized by the unmodified, pre-trained VGG16 network. We started by manually
mapping all VGG classes that appear in our dataset to ‘traversible’ (e.g., vege-
tation) or ‘non-traversible’ (e.g., stonewall, vehicle). We then assume the three
most-probably classes, as probabilities after the third prediction become negli-
gible (~ 10~%). We then apply the following rules:

6 C. Sevastopoulos et al.

Training and validation accuracy Training and validation loss
0.7

o Training loss
— Vvalidation accuracy

0.6

05

0.4

03

« Training accuracy
—— Validation accuracy

0.2

Fig. 2: Accuracy and loss for Model 1

— If all predictions are positive (traversible), the scene is assumed to be posi-
tive.

— If the most probable prediction is positive with probability pp.s, and the
most likely negative class has a probability py.q, then the scene is assumed
to be positive if ppos — Preg > 0.01 and negative otherwise.

— If the most probable prediction is negative with probability p,ey, and the
other two predictions are both positive and are both considerably likely, the
scene is assumed to be positive. Specifically, if the two positive recognitions
have probabilities pf,, and pzos, then if must be that pney — pj,s < 0.2 and
Pneg —pg(,s < 0.5.

— Otherwise, the scene is assumed to be negative (non-traversable).

We have designed these rules so that they push the balance towards positive
predictions. We have also experimented with more straightforward inferences,
such as simply assuming the traversability label of the single most probable
object, but we have observed that such rules tend to over-generalize in favour
of negative predictions. We have emprically found these rules and thresholds to
give the best possible results for our dataset, setting the baseline par as high as
possible when using the pre-trained VGG16 network.

Qualitatively speaking, observing VGG16 predictions we found some com-
pletely erroneous recognitions, as well as some instances where correctly recog-
nized non-traversible objects should not have been the dominant characterization
of the scene but a minor one. But in general, most predictions were correct and
meaningful for our task.

4.3 Training

We utilized the Keras deep-learning framework. First, we resized all images to
224x224, which is the original ImageNet format. We also apply data augmenta-
tion to increase dataset size by rotating, shifting and zooming on the initially
training dataset.

Traversability Estimation through Autonomous Experimentation 7

Training and validation accuracy Training and validation loss

—— Training loss
0.8 —— Validation loss

0.6

0.2

0.6 —— Training acc
—— Vvalidation acc 0.0

Fig. 3: Accuracy and loss for Model 2

We then built two models with two different front layer architectures. For
Model 1 we used the RMSProp optimizer [12] and a learning rate of 10~2; for
Model 2 we used the Adam optimizer [8] and a learning rate of 10~%. These
learning rates were estimated by starting at a value of 1072 and decreasing
exponentially. Also, since our classification goal is binary, we are using the bi-
nary_crossentropy loss function.

Training Model 1 for 30 epochs, we get the accuracy and loss transfer shown
in Figure 2. We can see that the model performs well on both the the training and
validation sets. More papecifically, the Loss plots for both training and validation
constantly decrease and stabilize around the same point. As a consequence, we
can deduce that the model is learning and generalizing in an adequate manner.

Training Model?? 2 for 30 epochs, we get the the accuracy and loss given
in Figure 3. Overall, the model’s performance is satisfactory. However, we can
observe certain signs of fluctuation, revealing that potentially there has not been
adequate generalization.

4.4 Results

In order to infer a binary traversability decision, comparable to the decision made
by our raw-VGG baseline system, we assume as traversible the scenes where
the ‘traversible’ probability is at least 0.075 higher than the ‘non-traversible’
probability. Table 2 gives the accuracy of the baseline and our two models per
traversability category.

It can be noticed that, as already discussed above, VGG errs on the side of
safety and its retrieval is low on traversable examples. Our custom models also
show higher confidence (Figure 4), which is to be expected as they have been
tuned to our (simpler, binary) task.

4.5 Error analysis

We observe that both the performances of Model 1 and Model 2 outperform VGG
when we are investigating a traversable scene. One common failure, however, is

8 C. Sevastopoulos et al.

Average confidence score per testing dataset

- VGG
12 Model 1
Model 2

Average confidence score

Testing dataset

Fig. 4: Average Conficence scores per testing dataset

(a) Traversable vegetation (b) Non-traversable (c) Stone wall

Fig. 6: Some characteristic instances

caused by the presence of an non-traversable objects, such as the building on
the left of Figure 6a. Although this is a traversable scene, our methods does not
focus on the part of the scene directly in front of the robot, but characterizes
the scene as a whole.

What is more, there are examples that although the first output of VGG cor-
responds to a class that has been defined as ‘traversable’; secondary recognitions
lead to mis-classifications. For instance, the scene in Figure 6b is classified as
‘lakeside’ and ‘park bench’, with a small probability difference between the two.

Finally, an example where the baseline is outperformed is given in Figure 6c.
This scene is recognized as ‘patio’ and ‘stone wall’, the latter at an exceptionally
low probability leading the baseline to classify this as a traversable scene. Model 1

System Accuracy
Traversible Non-traversible
examples examples
VGG 33.3 97.3
Model 1 99.1 100
Model 2 98.2 100

Table 2: Accuracy of the baseline and our two models on traversible and non-traversible
training data.

Traversability Estimation through Autonomous Experimentation 9

and Model 2 considered the presence of the stone wall and correctly classified
the scene as non-traversable.

5 Conclusion and Future Work

We presented a method that tackles the problem of adapting generic vision
problems to a new task and environment by only using whatever labelled data
the robot is able to collect autonomously and without any human supervision.
The core of the learning method is to build CNNs that can take advantage of
transfer learning and fine tuning to keep the convolutional architecture of the
VGG intact.

Overall despite the small number of training data, we evaluated our models on
the testing dataset and we witnessed a significant improvement over the VGG’s
weak performance, especially on traversable scenes. Regarding non-traversable
scenes where the predictive capabilites of VGG are indisputable, we were able to
take advantage of its convolutional features and transfer its obstacle recognition
ability to our models. Hence, we showed that the robot can make predictions
about its environment by using a reasonable amount of data, and in fact data
that is labelled without any manual annotation.

A common problem that our approach cannot completely address is the lack
of a sense of specific traversible paths through a generally non-traversible scene,
making the overall methodology unnecessarily cautious. In future work we plan
to extend the method so that it estimates the traversability of specific paths
rather than of the scene as a whole. One approach we will experiment with will
be cropping the test images so that traversability is estimated on a narrower field
around the selected path; and, accordingly, collecting training data from similarly
cropped images around the path tested during autonomous experimentation.

References

[1] Adhikari, S.P., Yang, C., Slot, K., Kim, H.: Accurate natural trail detection
using a combination of a deep neural network and dynamic programming.
Sensors 18(1) (Jan 2018), https://doi.org,/10.3390/s18010178

[2] Angelova, A., Matthies, L., Helmick, D., Perona, P.: Fast terrain classifi-
cation using variable-length representation for autonomous navigation. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2007). pp. 1-8. IEEE (2007)

[3] Baldi, P., Sadowski, P.J.: Understanding dropout. In: Proceedings of the
2013 Conference on Neural Information Processing Systems (NIPS 2013)
(2013)

[4] Bellone, M.: Watch your step! terrain traversability for robot control. In:
Gorrostieta Hurtado, E. (ed.) Robot Control, chap. 6. InTech (Oct 2016)

[5] Bellutta, P., Manduchi, R., Matthies, L., Owens, K., Rankin, A.: Terrain
perception for demo iii. In: Intelligent Vehicles Symposium, 2000. IV 2000.
Proceedings of the IEEE. pp. 326-331. IEEE (2000)

10

[6]

[7]

C. Sevastopoulos et al.

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks.
In: Proceedings of the fourteenth international conference on artificial in-
telligence and statistics. pp. 315-323 (2011)

Howard, A., Seraji, H., Tunstel, E.: A rule-based fuzzy traversability index
for mobile robot navigation. In: Robotics and Automation, 2001. Proceed-
ings 2001 ICRA. IEEE International Conference on. vol. 3, pp. 3067-3071.
IEEE (2001)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:
Proceedings of ICLR 2015 (2015), arXiv:1412.6980

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Advances in neural information
processing systems. pp. 1097-1105 (2012)

Rasmussen, C., Lu, Y., Kocamaz, M.: Appearance contrast for fast, robust
trail-following. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2009), St. Louis, MO, USA, 10-15
October 2009 (2009)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. In: Proceedings of the 2015 International Confer-
ence on Learning Representations (2015), arXiv:1409.1556

Tieleman, T., Hinton, G.: RMSProp: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural Networks for Machine
Learning 4(2) (2012)

Wermelinger, M., Fankhauser, P., Diethelm, R., Kriisi, P., Siegwart, R.,
Hutter, M.: Navigation planning for legged robots in challenging terrain. In:
Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2016), Daejeon, South Korea, October 2016
(Oct 2016)

