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ABSTRACT

Modern communication systems are often interference
limited. By modeling the co-channel interference as
spatially colored, temporally white Gaussian noise, it
is straightforward to incorporate interference rejection
in the metric of a sequence estimator. In general, esti-
mates of both the channels and the spatial color of the
co-channel interference and the noise are needed. In this
work, a structured model for the spatial noise covariance
matrix is proposed and maximum likelihood estimates of
the parameters are derived. The choice of model order
is also addressed. Simulation results show large gains
due to the use of these structured estimates compared
with the conventional, unstructured, approach.

1 INTRODUCTION

Mobile communication systems have found widespread
use during the last decade. With the rapid growth ex-
pected in the future, demands for high capacity and reli-
able services continue to increase. Among the challenges
in designing a system meeting these demands, particu-
larly when the number of users is large, is interference
from other users. One way of reducing this problem is
to utilize the spatial dimension by means of an antenna
array at the receiver.

This work considers detecting the transmitted data
in the presence of inter symbol interference (ISI) and
co-channel interference (CCI) using a maximum likeli-
hood sequence estimator (MLSE). Similar to, e.g. [1–3],
the MLSE is modified by modeling the interference to-
gether with the noise as a spatially colored, temporally
white complex Gaussian process. In this way, the ISI is
handled while also rejecting the CCI.

Recently, there has been an interest in using a low-
rank model for the single-input multi-output (SIMO)
channel between a transmitter and a receiving antenna
array [4]. However, in the present work, a low-rank
model is instead used for the CCI contribution to the
spatial covariance matrix. This imposes a structure on
the covariance matrix that reduces the number of pa-
rameters to be estimated, which leads to reduced es-
timation errors and hopefully improved sequence esti-

mation. The problem with an unstructured covariance
matrix becomes clear if we count the number of param-
eters and equations. Assuming an unstructured covari-
ance matrix and m antennas, the number of parameters
is proportional to m2. For a given training sequence
length, the number of equations that determine the es-
timates grows linearly with m. Therefore, the quality of
an estimate of the unstructured covariance matrix is in
this case expected to be low if the number of antennas
is large.

In this work, we derive the joint maximum likelihood
(ML) estimates of the SIMO channel and the structured
noise covariance matrix. The estimate of the channel
turns out to be given by the solution of a least squares
problem whereas an estimate of the low-rank CCI con-
tribution and noise variance is obtained by an eigenvalue
decomposition (EVD) of the residual sample covariance
matrix. By utilizing the minimum description length
(MDL) criteria [5], the model order is determined as
well. The performance is investigated when the esti-
mated parameters are used for MLSE in the presence of
CCI. Simulation results illustrate significant gains for an
EDGE scenario with eight receiving antenna elements.

2 DATA MODEL

The model used to describe the symbol sampled base-
band equivalent signal received by an array with m ele-
ments is

x(n) = Hs(n) + e(n) ,

where x(n) is an m × 1 vector representing the array
output and

H = [h0 h1 . . .hL]

is an m× (L + 1) matrix modeling the channel between
the transmitter and the receiving array. Oversampling
with respect to the symbol period may be modeled by
simply increasing the number of channels to mq, where q

is the oversampling factor. The symbol sequence trans-
mitted from the user of interest, s(n), is used to con-
struct s(n) as

s(n) = [s(n) s(n − 1) . . . s(n− L)]
T

.
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The term e(n) represents noise and interference. As
in [1–3], this term is modeled as a zero-mean tempo-
rally white complex Gaussian process with second order
statistics given by

E [e(n)e∗(k)] = Qδn−k ,

where Q is the spatial covariance matrix and δn denotes
the Kronecker delta. This is clearly suboptimal as the
CCI has the same properties as the signal of interest,
finite alphabet and, in the time-dispersive case, some
temporal correlation. The Gaussian modeling assump-
tion leads to a structure that takes only the second or-
der moments of the CCI into account. As compared to
a joint detection approach, this applies to a larger class
of interfering signals.

2.1 A Structured Covariance Model

In this work, the spatial covariance matrix Q is assumed
to consist of a low-rank signal part in addition to spa-
tially white noise. Such a model is commonly assumed
in the field of subspace based direction of arrival esti-
mation.

Suppose that d co-channel interferers are present and
that the time-dispersion introduced by the multi-path
propagation is small in comparison with the inverse
bandwidth of the signals, i.e. the channels are frequency
non-selective. A reasonable model of the covariance ma-
trix is then

Q = Ψ + σ2Im , (1)

where Ψ is a Hermitian positive semidefinite matrix
with rank d ∈ {0, · · · , m − 1}. Note that this model
is appropriate even in the case of frequency selective
channels. However, the rank d is then typically larger
than the number of interfering users.

3 ESTIMATORS

This section describes how the transmitted signal is de-
tected and how to estimate the necessary parameters in
our structured model. Detection of the rank of Ψ is also
considered.

3.1 Sequence Detection

Let us for a moment assume that all parameters are
known. Sequence estimation is considered, although
other detection schemes are also applicable. With the
Gaussian assumption for the noise and CCI, the maxi-
mum likelihood sequence estimate is given by

{ŝ(n)} = arg min
{s(n)}

∑

n

‖x(n) −Hs(n)‖2
Q−1 ,

where ‖z‖2
W = z∗Wz. Note that the metric increment,

i.e. each term in the sum, is a function of s(n), and that
the search over allowed sequences may be implemented
with the Viterbi Algorithm with a memory of L symbols.

3.2 A Structured Estimator

It is obvious from the previous section that the sequence
detection algorithm needs to know both the channel and
the covariance matrix. For optimal detection, these pa-
rameters and the transmitted data sequence should be
estimated jointly. However, this is often considered too
complex in practice. The transmitted signal is assumed
to be divided into bursts, where each burst consist of a
training sequence and a data sequence. The approach
taken in this work is then to first estimate the unknown
parameters during the training period of the signal and
then use these estimates in the sequence detector. A
quasi-stationary scenario is assumed where the signal is
stationary during a burst but may alter its character-
istics from one burst to another. This means that the
signal of interest and the interference must be roughly
burst synchronized. An example of such a system might
be a GSM system with synchronized base stations and
not too large cells so that the synchronism is reasonably
accurate.

The maximum likelihood estimates of the parame-
ters H and Q that are needed in the sequence detector
are now derived, assuming a known training sequence.
The transmitted signal s(n) is known during the train-
ing period n = n0, · · · , n0 + N which means s(n) may
be formed for n = n0 + L, · · · , n0 + N . Based on the
complex Gaussian assumption, the scaled negative log-
likelihood function is then given by [6]

l (H,Q) = log det(Q) + tr
(

Q−1C (H)
)

,

where parameter independent terms have been ne-
glected, tr(·) denotes the trace operator and where

C (H) = R̂xx − R̂xsH
∗ −HR̂∗

xs + HR̂ssH
∗

R̂xx =
1

N − L + 1

n0+N
∑

k=n0+L

x(k)x∗(k) ,

with R̂xs and R̂ss formed as R̂ss. It is now straightfor-
ward to verify that the ML estimate of the channel is
given by

Ĥ = R̂xxR̂
−1
ss ,

which is also the least-squares estimate. The concen-
trated likelihood function then becomes

l (Q) = log det(Q) + tr(Q−1R̂ee) , (2)

where R̂ee = R̂xx − R̂xsR̂
−1
ss R̂∗

xs is seen to correspond
to the residual covariance. We now wish to minimize
l
(

Ψ + σ2Im

)

with respect to Ψ and σ2, while taking
the constraints described in Section 2.1 into account.
Since Ψ is low-rank, the approach taken in this work is
to rewrite the covariance matrix in terms of its EVD,

Q = Ψ + σ2Im = EsΛsE
∗
s + σ2EnE

∗
n , (3)
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and then formulate an equivalent optimization problem
with respect to the new parameters Es, Λs, En and σ2.
In the expression above, Λs is a diagonal matrix con-
taining, in descending order, the d largest eigenvalues
of Q and Es is composed of the corresponding eigen-
vectors. The remaining m − d eigenvalues are all equal
to σ2 with the columns of En representing the associ-
ated eigenvectors. The eigenvectors are here normalized
to unit norm. In order to simplify the derivation, the
eigenvalues described by Λs are assumed to be distinct.
This is not a restrictive assumption in practice.

Clearly, the parameterization given by the EVD is
not unique. For example, the eigenvectors belonging to
the signal part, described by the columns of Es, are only
unique up to an arbitrary phase factor. It is also obvious
that Q is unaffected if En is multiplied from the right
by a unitary matrix. However, as is shown below, the
use of a non-unique parameterization does not introduce
any serious difficulties.

In our case, an important property of the parameter-
ization is that the set of possible covariance matrices
Q is the same under both parameterizations. This fact
may be expressed as

{Ψ + σ2Im} = {EsΛsE
∗
s + σ2EnE

∗
n} ,

where the constraints on the parameters have been omit-
ted for notational convenience. This implies that it is
possible to minimize l (Q) by first optimizing with re-
spect to the parameters of the EVD and then mapping
the result back to the original parameters. The resulting
optimization problem can therefore be formulated as

{Ês, Ên, Λ̂s, σ̂
2} = arg min

Es,En,Λs,σ
2:

EsE
∗

s
+EnE

∗

n
=Im

Λs�σ2, σ2≥0

l
(

EsΛsE
∗
s + σ2EnE

∗
n

)

where Λs � σ2 means that the diagonal elements of Λs

are larger than σ2. It is easily verified that the above
optimization problem is the same as when computing
the ML estimate of the EVD of Q, using a sample co-
variance matrix equal to R̂ee. As a consequence of this,
a derivation similar to as in [7, p. 131], but general-
ized to complex valued matrices, provides the solution
to our problem. It turns out that l

(

EsΛsE
∗
s + σ2EnE

∗
n

)

is minimized if

Ês = Ẽs, Ên = Ẽn

Λ̂s = Λ̃s, σ̂2 =
1

m− d
tr Λ̃n ,

where Ẽs, Ẽn, Λ̃s and Λ̃n represent the EVD of the
residual covariance matrix. Formulating this in math-
ematical terms, R̂ee = ẼsΛ̃sẼ

∗
s + ẼnΛ̃nẼ

∗
n , where

the individual matrices are defined similarly to as in
(3). An explicit expression for the ML estimate of
the low-rank signal part of Q is finally obtained as
Ψ̂ = Ês(Λ̂s − σ̂2Id)Ê

∗
s . The derivation in this section

thus shows that the joint ML estimates of the channel
and the structured covariance matrix are given by

Q̂ = Ês(Λ̂s − σ̂2Id)Ê
∗
s + σ̂2Im = ÊsΛ̂sÊ

∗
s + σ̂2ÊnÊ

∗
n

Ĥ = R̂xxR̂
−1
ss . (4)

Note that it is well known that if an unstructured pa-
rameterization of Q is used, the concentrated likelihood
function given in (2) is minimized with respect to Q

when Q̂ = R̂ee [6]. Using this estimate in the sequence
detector would then correspond to the interference re-
jection schemes found in e.g. [1–3].

3.3 Rank Detection

We have assumed so far that the rank d, of the matrix
Ψ, is known. In practice, this rank also needs to be
estimated. The model in (1) suggests that the rank d

could be determined from the multiplicity of the smallest
eigenvalue of Q. However, in the finite sample case,
the eigenvalues will all be different with probability one.
The rank is therefore difficult to determine using this
method.

There are several other detection schemes applicable
to this problem. We arbitrarily consider the MDL cri-
terion [5] for detecting the rank. This scheme is based
on information theoretic principles. It is clear from the
previous section that the family of possible ranks imply
a corresponding family of models for the observed data.
Assuming the model is used for encoding the received
signal, the MDL criterion selects the model which results
in the minimum code length, in an asymptotic sense.

Let X = {x(n0 +L), · · · ,x(n0 +N)} represent the set
of observations and let

Θk =
{

H,Ψ, σ2
}

represent the unknown parameters with k degrees of
freedom. As an alternative, the equivalent parameter-
ization based on the EVD may be used in place of Ψ.
The asymptotic form of the criterion function is now
given by

MDL(k) = − log p(X|Θ̂k) +
1

2
k log(N − L + 1) ,

where p(X|Θ̂k) is the probability density function of
the observed data conditioned on the ML estimate Θ̂k

of the parameters. The first term is thus the minimum
negative log-likelihood function and the second term pe-
nalizes over modeling.

From the definition of Θk it is clear that the chan-
nel and the noise variance are described by a total
of 2m(L + 1) + 1 unconstrained real valued parame-
ters. Determining the number of degrees of freedom
due to Ψ is complicated by the rank constraint im-
posed on the matrix. A more detailed analysis shows
that Ψ contributes with 2md − d2 degrees of freedom1.

1This may be seen by counting parameters in a factorization of

the form Ψ = FF
∗, where F is an m× d lower triangular matrix

with non-negative real valued diagonal elements.
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The total number of degrees of freedom is therefore
k = 2m(L + 1) + 2md − d2 + 1 and the rank d is thus
determined as

d̂ = arg min
d∈{0,··· ,m−1}

MDL
(

2m(L + 1) + 2md− d2 + 1
)

.

4 NUMERICAL SIMULATIONS

In order to illustrate the gains of using a structured co-
variance model, this section presents the results of simu-
lations assuming a system similar to EDGE, which is one
of the standardized modes in the evolution of the GSM
system. The simulations have been conducted for an
uplink scenario with synchronized base stations having
eight antennas. The raw symbol rate is approximately
270 ksymb/s and 8-PSK modulation with a linearized
GMSK pulse is used. Each burst consists of a train-
ing sequence containing 26 symbols and a total of 116
data symbols. The channel is assumed constant during
a burst and independently fading from one burst to an-
other, corresponding to ideal frequency hopping. The
fading is modeled as independent from antenna to an-
tenna and each impulse response is generated according
to the 12-tap power delay profile of the GSM typical
urban (TU) channel [8].

At the receiver, the baseband equivalent output from
each antenna is filtered using a fourth order Butter-
worth filter with a 3 dB bandwidth of 200 kHz and then
sampled at the symbol rate prior to the sequence esti-
mation. Simulations are performed for two cases, cor-
responding to an MLSE based on the structured and
unstructured covariance matrix, respectively. As previ-
ously mentioned, the structured approach uses the MDL
criterion to determine the appropriate rank for each in-
dividual burst and then forms the parameter estimates
as in (4). The unstructured receiver uses R̂ee as the
estimate of the covariance matrix. The length of the fil-
tered channel was assumed to correspond to 5 symbols,
i.e. L = 4. This includes the effects of transmitter and
receiver filters. A scenario with one interferer was stud-
ied and the signal-to-noise ratio (SNR), measured at the
input of the receiver filters, was set to 15 dB while the
carrier-to-interference ratio (C/I) was varied. Channel
realizations for the interferer were independently drawn
from the same fading model as the user of interest. The
resulting uncoded bit error rate (BER) is shown in Fig-
ure 1. At a BER of 1% the gain over the unstructured
receiver is seen to be about 10 dB. This example thus
demonstrates that there are significant gains to be made
by taking the structure of the covariance matrix into ac-
count.

5 SUMMARY

Structured estimation of parameters used in an MLSE
was considered. Interference was modeled as a low-rank
contribution to the spatial covariance matrix of the ob-
served signal. Maximum likelihood estimates of both
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Figure 1: Typical urban scenario, one interferer, eight
antennas, SNR=15 dB.

the channel and the structured covariance matrix were
derived. An MDL criterion for estimating the rank of
the low-rank contribution was formulated. A receiver
using the structured estimate was then simulated and
compared with a receiver utilizing an unstructured co-
variance matrix. Significant gains were shown for an
EDGE scenario using eight receiver antennas.

6 ACKNOWLEDGEMENT

The authors wish to thank Dr. Peter Muszynski at
Nokia for inspiring them to study the problem consid-
ered in this work.

REFERENCES
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