
SCALABLE DSP IMPLEMENTATION OF DCT-BASED
MOTION ESTIMATION ALGORITHM

Miia Viitanen, Pasi Kolinummi, Timo Hämäläinen and Jukka Saarinen
Digital and Computer Systems Laboratory, Tampere University of Technology

P.O. Box 533, FIN-33101 Tampere, FINLAND
e-mail: miia.viitanen@tut.fi

ABSTRACT

A parallel implementation of a DCT-based motion estimation
algorithm (DXT-ME) for 2D images/signals is presented for a
parallel scalable DSP system called PARNEU. PARNEU was
used to test the performance of the parallelism. The DCT-based
motion estimation can be used for video coding instead of the
more frequently used full search block-matching approach
(BKM-ME). The DCT-based system has lower computational
complexity compared to the BKM-ME and it can result in a
higher system throughput. Data parallel implementation scales
very well and the performance measurements are promising
compared to the traditional methods.

1. INTRODUCTION

The DCT (discrete cosine transform) pseudophase techniques
were developed to improve the motion estimation from two-
dimensional (2D) signals or a sequence of images. Motion
estimation is one of the most important stages in modern video
encoders and its performance is therefore crucial to the whole
image encoder. In many cases, the motion estimation is the
slowest stage in video encoding [1]. For these reasons, a
parallel implementation with efficient and promising algorithm
was examined. The main issue was whether the implementation
will improve and speed up motion estimation stage.

The DCT pseudophase techniques employ sinusoidal
orthogonal principles to extract shift information from the
pseudophases hidden in the discrete cosine transform (DCT)
coefficients of images. Under the 2D translational motion
model, the techniques result in the DCT-based motion
estimation algorithm (DXT-ME), which estimates
displacements in the DCT domain [2][3].

The DXT-ME algorithm has certain advantages for example
over the most commonly used motion estimation scheme, the
full search block-matching approach BKM-ME [3]. The BKM-
ME searches for the best match between the current block and
the reference blocks found within a search area. Instead, in the
DXT-ME the search area is the same as the candidate block,
which is a major difference between the two algorithms [3].

In terms of computational complexity the DXT-ME outperforms
the BKM-ME. BKM-ME’s complexity is O(N2⋅ M2) for the
search range of M×M and for the block size of N×N. The
computational complexity of the DXT-ME is O(N2) and it
depends only on the block size. In addition, the DXT-ME
algorithm enables combining both the DCT and motion
estimation into a single component, thus reducing the video
encoder complexity.

In this paper, a parallel mapping of the DXT-ME on PARNEU
system is presented in detail. The next section introduces DXT-
ME algorithm. PARNEU’s architecture is described briefly in

Section Three. Section Four explains how parallelism is
accomplished with this algorithm. Algorithm’s performance,
complexity and computational requirements are considered in
Section Five. In Section Six a short summary is presented.

2. DXT-ME ALGORITHM

The DXT-ME algorithm consists of four main steps as
illustrated in Figure 1 [2]. First, the current frame xt is fed into
2D DCT-II coder and the previous frame xt-1 is transformed with
2D DCT-I. A 2D DCT-II coder computes four coefficients:
DCCT-II, DCST-II, DSCT-II and DSST-II. Coefficients are
computed so that one-dimensional (1D) discrete cosine/sine
transform of type II is performed two times to the input - first to
the columns and then to the rows. For example, DCST-II means
one-dimensional cosine transform on the columns and one-
dimensional sine transform on the rows.

The problem of adding a separate 2D DCT-I unit to compute the
previous frame can be circumvented with an additional
coefficient transformation unit (T) that has a simple structure.
This T-unit is formed by considering a point-to-point
relationship between 2D DCT-I and 2D DCT-II coefficients in
the frequency domain [2].

For instance in H.263 encoder [4][6], 2D-DCT of type II is
always computed but the DXT-ME needs an additional 2D-DST
coder. For data streams, the 2D-DCT transform may be
performed only once for each frame if the result of the previous
frame is stored in the memory. Transformation from the DCT-II
to the DCT-I is needed for each frame.

2D-DCT-II

T

Compute Pseudo Phases

2D-IDCT-II

Determine Displacement

g(k,l)f(k,l)

DSC(m,n)DCS(m,n)

 Estimated displacement (x,y)

1.

2.

3.

4.

xt xt-1

Figure 1. Block diagram of DXT-ME structure [2].

At the second stage, as shown in Figure 1, the estimated
pseudophases f(k,l) and g(k,l) are computed. They can be
derived from a set of equations, which relate DCT coefficients

of xt−1(m,n) with those of xt(m,n). In the computation of f(k,l)
and g(k,l) if the absolute computed value is greater than one,
then the value is discarded and set to zero. This deletion of ill-
conditioned values is found to improve the overall performance
of the DXT-ME algorithm. Next, these two pseudophase
functions pass through 2D IDCT-II (2D inverse discrete cosine
transform) coders generating two functions called DCS(m,n)
and DSC(m,n). Inverse transforms are again accomplished so
that one-dimensional inverse discrete cosine/sine transforms are
performed to the columns and to the rows. The displacement
vector is found from these functions by locating the peaks of
DCS and DSC [2]. The peak signs determine the direction of
the movement.

3. PARNEU ARCHITECTURE

PARNEU [5] is a linearly scalable DSP system that is
connected to a host computer. It consists of modular processing
cards each carrying four DSPs that are connected to a master
controller and further to a host computer, as shown in figure 2.
The host computer is a PC with WindowsNT operating system.
It is used for program initialisation and monitoring. The master
PU card controls the operations inside PARNEU system. It has
good connections to host computer and an additional dynamic
random access memory (DRAM).

The PARNEU hardware is implemented with ADSP-21062
digital signal processors working as processing units (PUs) and
Xilinx field programmable gate arrays (FPGA) that perform the
communication operations. Each PU has its own internal 256
kilobytes SRAM memory. The processing units and
communication circuits work on 40 MHz system clock.

The communication structure is very flexible. A global bus
connects all cards to the master for efficient broadcast
operation. Adjacent DSPs are connected by a serial ring bus.
Thus, data can be circulated between PUs in a systolic way. The
third way to move data is a reconfigurable partial tree structure
that is formed from the FPGAs located in each card. The tree
network can perform global reduction operations like
summation and comparison operations as well as pre- or post-
processing operations if external devices, like cameras, are
connected.

BU

BU

BU

Ext.

Ext.

Global bus

Ring bus

Tree bus

Local bus

Host
computerExt.

BU

Tree unit

Processing unit

Bus unit

External connector

One processing card

Figure 2. Block diagram of PARNEU.

4. PARALLEL IMPLEMENTATION

Parallelization can be done either by dividing each image into
small blocks or by dividing the algorithm phases to different
processors. The phases of the DXT-ME algorithm need a lot of

information from the previous phase and thus a pipelined
implementation could be used. The pipelining does not decrease
latency time, but increases the system throughput.
Implementation also requires a large memory area to buffer
input data and to store intermediate results.

Further, including the pipelined DXT-ME algorithm for
example to H.263 video encoder [4][6] would be difficult
because of the different block size and global feedback loops in
video encoder structure. Therefore, in the eyes of performance
and easy realization, data parallel implementation is preferred. It
does not require active communication between the master and
slave PUs, it needs no connection establishment between slave
PUs and it deals with small pieces of the image. However, this
contradicts with the requirement of the DXT-ME algorithm,
which prefers large data block size for better performance in
video quality. To save memory, a block size of 16×16 pixels
was still chosen. Moreover, the implementation is easier to
include in a data parallel video encoder structures to replace the
BKM-ME algorithm. However, the block size is not a difficult
task to change if needed.

Algorithm computation occurs between two consecutive frames.
Image data is stored to the host computer’s memory – only the
required blocks in computation are sent further. In the
beginning, the host computer initializes the PARNEU system
and arranges images to suitable size blocks (11×16×16). Block
size was chosen this way, because one image is easily divided to
these nine same sized blocks and furthermore, every processor
can thus always perform the same code. The host computer then
sends the first parts of the images to the master PU as shown in
Figure 3. The master receives data and further distributes it to
the slave PUs via the global bus. The data could also be
transmitted directly from camera to the slave PUs via the
reconfigurable partial tree network, which can be configured to
accept different data formats and divide the data to the PUs in a
predefined manner.

Sends 11x16x16
 blocks to slaves

A.
Divides 176x16

blocks into
16x16 blocks

Computes
DXT-ME for
16x16 block

B.

Stores results
 and continues
 if blocks left

C.

Sends results
to the master

Receives results
 and sends them

to PC

Receives results
 and starts a
new cycle

Divides an image
 into 176x16

 blocks and sends
to PARNEU

Shuts the
connection to

PARNEU

Slave PUMasterHost

Figure 3. Block diagram of DXT-ME algorithm’s
implementation on PARNEU.

Only on the first round, it is necessary to send the previous and
the current frame (frame 1 and 2). All the other rounds it is
sufficient to send only the current frame (on the second round

frame 3) because needed matrices from the previous frame are
still in the memory. The memory allocated to previous frame
can thus be freed after the first round. The memory reserved to
the current image is always reused. Thus, the new image data
always overwrites the old one.

In the current implementation, the master sends 11 reference
blocks of size 16×16 pixels to each slave PU via the global bus.
Each PU processes the 11 reference blocks serially. The number
of transmitted blocks is selected to be more than one because
each communication operation has an initial latency time that
would decrease the performance. Larger data blocks would
decrease the communication time, but the size of blocks is
limited because of the memory capacity.

The slave PUs perform the parallel computation of the DXT-
ME algorithm using 16×16 reference blocks. The computation
of the motion vectors of a reference block does not need any
data from the other blocks and thus the parallel computation can
be done without any communication to other slave PUs. Having
computed one block, the results are stored in PUs memory and
the second block, which is already in PUs internal memory, is
taken for computation. When all blocks are computed, each PU
sends the local results in one package to the master, which
transmits them to PC. This process is repeated until the whole
data has been analyzed as it is depicted in Figure 3.

Each slave PU computes the same program but with different
data. The core of the DXT-ME algorithm, as illustrated in
Figure 1, is implemented using the fast DCT-II –transformation
algorithm [7] in the first step. Two-dimensional transformation
is carried out so that the one-dimensional DCT-II is done first to
the columns of the blocks and then to the rows [2]. DST-II –
transformation, which is also needed in the first step, is done via
DCT-II transformation [8]. The matrices counted for the current
frame xt in this step are saved in memory for the next round.
This way they need not to be counted again but the type
conversion of DCT-II to DCT-I, which is done through the
coefficient transformation unit (T), can be done directly to these
intermediate results. Pseudophases are computed and inverse
transforms are again done with the same fast computational
algorithm like DCT-II – just doing it from the end to the start.
Displacements are finally found from two functions by locating
their peaks, which come out from the inverse transforms.

5. PERFORMANCE

A workload in each PU is identical when the number of data
blocks can be divided equally by the number of processing
units. In any case, the load balance is very good. The
application scalability limit is reached when each PU has only
one 16×16 data block. Even for small QCIF picture (176×144)
the theoretical limit will be 99 processors. In reality, this would
no longer be reasonable, because the real-time performance is
reached with smaller configuration and the efficiency will
decrease because of increased communication demands.

At present, PARNEU system has one card with four processors.
The scalability requirement has been met in both application
software and PARNEU hardware implementation and thus new
processing cards can be easily added to the system. The
presented DXT-ME realization works directly with eight PUs.
When the number of processors is higher than eight the sizes of
11×16×16 data blocks that are sent to PUs have to be decreased.
On the other hand, the picture size could be higher in a larger
system. This will redress the balance between communication
and computation.

The number of clock cycles of the core DXT-ME algorithm for
a single 16x16 block is shown in Table 1. The step notation is
the same as in Figure 1. In PARNEU 16x16 data blocks are

computed in parallel in each DSP (phase B in Figure 3).
However, Table 1 shows the sequential times for Analog
Devices ADSP-21062 and Compaq Alpha processor. Both
programs are written in C-language, and therefore the step times
can be compared. However, the DSP-program can be further
optimized by using assembly language. ADSP processor seems
to be more effective in each operation but especially the
computation of step 2 is much faster. With same clock
frequency, the Alpha with Unix gcc-compiler is not as fast as
SHARC.

Table 1. Number of clock cycles of the DXT-ME
algorithm phases for a 16×16 (N×N) block in ADSP-
20162 and Compaq Alpha processor (500Mhz).

Step Clock Cycles
in SHARC

Clock cycles
in Compaq

Alpha

Complexity

1. 172300 190300 O(N)

T-unit 140100 146300 O(N2)

2. 83700 120200 O(N2)

3. 75100 99300 O(N)

4. 11000 11000 O(N2)

Computational complexities i.e. the absolute upper limits are
also presented in Table 1. It can be summarized that the overall
complexity of DXT-ME is only O(N2) [3]. Based on the actual
implementation in C-language, the number of instructions
required for the algorithm execution for a 16×16 is about
838500, of which 442000 are arithmetic and logical
instructions. The count of the operations required in the
pseudophase computation (a part of step 2) has been computed
for a 16×16 block. Total number of needed operations is 18944
[3]. Clock cycles consumed solely by the pseudophase
computation is 28800 for the Alpha processor and 26500 for the
ADSP processor. Thus, the greater part of the operations
required and clock cycles used is not needed in the essence of
this algorithm.

In most implementations of video encoders the DCT-II
transformation is located inside the loop of temporal prediction.
Separate units for an IDCT-II transformation and a spatial-
domain motion estimator (SD-ME), which is some motion
estimation algorithm (for example BKM-ME), are also used [3].
In DXT-ME these transformations are done inside the
algorithm, which leads to simpler encoder structure. Though for
fair comparison to other motion estimation schemes, the DCT
and the IDCT transforms (steps 1 and 3), which take much of
the time, can be partially neglected. Although finding more
efficient algorithms for 2D-DCT may decrease these times.

Coefficient transformation (T-unit) seems to take most of the
time although it is considered as a simplifying unit to speed up
computation. Actually, a separate DCT-I unit is more profitable
if the intermediate results from the previous round are not in use
for example because of the limited memory capacity.

If DCT transforms (DCT-II and DCT-I) are done separately and
effectively in a pipelined manner elsewhere in the video
encoder, they can be ignored in performance analysis of the
DXT-ME algorithm. IDCT (step 3) on the other hand is needed
in the algorithm between two important stages and therefore it is
hard not to consider it. Another problem with the DCT/IDCT
steps is that a discrete sine transform unit is also necessary.
Because normally this unit is not needed, it makes the
performance analysis even more difficult. This feature was here
chosen not to be significant. Thus, the rest of the algorithm

(steps 2, 3, 4) is essentially needed to find motion vectors and
its performance is therefore used to find the performance limits.

If the DCT transforms are computed effectively elsewhere in the
encoder, the performance for DCT-based motion estimation
algorithm in one ADSP-21062 processor (40 MHz) is about 2,4
QCIF frames per second. Thus, by ignoring communication
delays PARNEU system with one processing card could reach
about 9 frames per second. Using one of the fastest general-
purpose processor, namely 500MHz Alpha, about 21,9 frames
per second can be computed without DCT operations. However,
the computational burden of the algorithm is quite high and
some modifications to reduce the computation are needed.

Table 2 shows the measured number of clock cycles for
communication and execution inside the PARNEU system for
one 11×16×16 macroblock. The used clock frequency is 40
MHz. The communication time is less than 0.5 percentage of
the total time used, which verifies the used mapping strategy.
The speedup values are almost ideal for reasonable size
PARNEU configurations. The equations illustrate the changes
in the communication times when either the number of PUs (P)
or the data block size (I) are changed. They can be generalized
and used to predict changes in communication times.

In QCIF pictures as illustrated in Figure 3, at the phase A
176×16 words (a part of the image) is sent in the first round two
times (the current and the previous frame) to each slave PU. All
the other rounds only the current frame is sent because the
matrices for the T-unit transformation of the previous frame are
still in the memory. Time is shown for only one 176×16 data
block in Table 2. In phase C, result vectors are sent from each
slave PU to the master. The results, which are counted at phase
B, are the displacement vectors (I=2×11) for those
11×(16×16)=176×16 macroblocks.

Table 2. Number of clock cycles of the parallel
implementation of the DXT-ME on 176×16 data block.

Phase Step Equations Measured Clock
Cycles

In SHARC
A P × (184+3×(P/4)+I×3) 34540

B 11×DXT-ME 5304200

C P×(172+3×(P/4)+I×3) 964

PARNEU’s communication structure is good enough for
parallel implementation, but slave processors internal memory
restricts the possible block sizes as well as the capability to store
intermediate results of the previous frames. Especially, the
result of the previous frame 2D DCT-II coefficients should be
stored to prevent the computation of the same values again. In
PARNEU the biggest problem with this structure is the limited
memory capacity of PUs.

The storage of intermediate results would require
3×11×4×16×16=33792 words of empty memory space in each
PU when the computation is done using 32 bits floating-point
numbers. However, currently each PU has only 64 kilowords of
internal SRAM memory. About half of the memory is used for
program codes and stack. The rest is reserved for image data
and intermediate results from which the basic computation data
needs about 7 kilowords.

In PARNEU the intermediate results have to be stored in the
DRAM memory of the master card and thus the PUs need to
send the intermediate results to the master after computation of
one 16×16 block. The master should return the data when
computing the next image. However, it was observed that saved

time in computation of the T-unit was squandered elsewhere on
communication between the master and PUs. Time in step 1 in
Table 1 increased to 338000 clock cycles, while others were not
affected. Thus for PARNEU architecture the implementation is
not the most effective, although it can save time in different
kinds of architectures where memory size is not a restrictive
factor.

The performance of DXT-ME algorithm can be compared to the
performance of BKM-ME. The BKM-ME scheme with the sum
of the mean square error criterion has been implemented on
PARNEU using search range of 8 pixels and 16×16 reference
blocks. The C-language realization takes about 315200 clock
cycles, while 16 pixels search range requires about 791400
clock cycles. It should be noted that optimized assembly level
realization in BKM-ME is many times faster. Reached
displacement vectors with DXT-ME are not as accurate as with
BKM-ME. Algorithm properties have been analyzed in [2][3].
There was remarked that results could be improved with a
simple pre-processing to the video stream [3].

6. CONCLUSIONS

In this research, the possibilities for parallel and scalable
implementations and computational requirements for DCT-
based motion estimation were the major interests. In general, the
DXT-ME seems to be suitable for parallel implementation,
because the core of the algorithm can be computed locally in
PUs. Problems in implementing this algorithm to PARNEU
were mainly encountered due to the limited memory capacity of
PUs, which restricts the possible block sizes as well as the
capability to store intermediate results of the previous frame.

Currently the realization of the DXT-ME performs only a few
frames per second, but assembly level optimization and the
development of computationally easier algorithms for the
internal steps of DXT-ME would lead to radical performance
increase. Thus, the DXT-ME can be a true rival on the area of
image processing.

7. REFERENCES
[1] A. Launiainen, A. Jore, E. Ryytty, T. Hämäläinen and J.

Saarinen, “Evaluation of TMS320C62 Performance in Low
Bit-rate Video Encoding”, IEEE Multimedia Technology
and Applications Conference (MTAC98), Anaheim, USA,
September 1998, pp. 364-368.

[2] U.-V. Koc, “Low Complexity and High Throughput Fully
DCT-Based Motion Compensated Video Coders”, Ph.D.
Thesis, The University of Maryland, USA, September
1996.

[3] U.-V. Koc and K.J. Ray Liu, “DCT-Based Motion
Estimation”, IEEE Transactions on Image Processing, Vol.
7, No. 7, July 1998, pp. 948-965.

[4] ITU-T Recommendation H.263, “Video coding for low bit
rate communication”, March 1996.

[5] P. Kolinummi, P. Hämäläinen, T. Hämäläinen and J.
Saarinen, "PARNEU: General-Purpose Partial Tree
Computer", Microprocessors and Microsystems, Vol. 24,
No. 1, March 2000, pp. 23-42.

[6] V. Bhaskaran and K. Konstantinides, Image and Video
Compression Standards – Algorithms and Architectures,
Kluwer Academic Publishers, USA, 1995.

[7] W.-H. Chen, C. Smith and S. Fralick, “A Fast Algorithm
for the Discrete Cosine Transform”, IEEE Transactions on
Communications, Vol. Com-25, No.9, September 1977,
pp. 1004-1009.

[8] K. Rao and P. Yip, “Discrete Cosine Transform”,
Academic Press Inc, USA, 1990.

