The CCSM Coupler
Version 5.0.1

Combined

User’s Guide,
Source Code Reference,
and Scientific Description

Brian G. Kauffman
William G. Large

August 2002

Community Climate System Model
National Center for Atmospheric Research, Boulder, CO
http://www.ccsm.ucar.edu/models

CVS tag $Name: cpl5_0_1 $ Build date: October 10, 2002

CONTENTS

Contents

1

Introduction

1.1 Purpose of this document
1.2 What isa "coupler” ? L L
1.3 Major considerations in Coupler functionality
1.4 History e

Running the Coupler
2.1 Master Run Script and Coupler Setup Script

Input Namelist Parameters
3.1 List of Parameters
3.2 Example Input Namelists

Output Data

41 Stdout Data
42 Restart Files L
4.3 History Files L o

Source Code Maintenance

5.1 Obtaining Source Code
5.2 Coupler Source Code,
5.3 Shared Source Code
5.4 Shared Build Environment

Pseudo-Code
6.1 Variable Naming Convention
6.2 Main Program o0

Data Exchanged with Component Models

7.1 Units Convention,

7.2 Time Invariant Data

7.3 Time Variant Data
7.3.1 Atmosphere Model L.
7.3.2 IceModel
733 LandModel
734 OceanModel

Flux Calculations

8.1 Atmosphere/OceanFluxes
8.1.1 General Expressions
8.1.2 Specific Expressions

8.2 Surface Albedo and Net Absorbed Solar Radiation
8.2.1 Land Surface Albedos
82.2 IceSurface Albedo
8.2.3 Ocean Surface Albedos.

CONTENTS

9 List of Physical Constants

10 Glossary

44

45

1 INTRODUCTION 3

1 Introduction

1.1 Purpose of this document

CCSM components typically are accompanied by three types of documents:

1) A User’s Guide -- information about how do compile and execute the code

2) A Code Reference -- information about source code and how to do source code
modifications

3) A Scientific Description -- information about the physical and numerical

equations, algorithms, and constants that the source code implements.

This document combines the content of all three documents for the CCSM
Coupler component. Similar documents exist for the CCSM’s atmosphere, land,
ocean, and sea-ice components. Also, there is a CCSM User’s Guide which
explain how to compile and execute the CCSM system as a whole.

1.2 What is a "coupler” ?

The CCSM coupled model is a framework that divides the complete climate system
into component models connected by a coupler. In this design the Coupler

is a hub that connects four component models -- atmosphere, land, ocean, and
sea-ice (see Figure 1). Each component model is connected to the Coupler, and
each exchanges data with the Coupler only. From a software engineering point of
view, the CCSM is not a particular climate model, but a framework for building
and testing various climate models for various applications. In this semnse,
more than any particular component model, the Coupler defines the high-level
design of CCSM software.

Figure 1: The CCSM Coupled Model Framework in its most basic form.

1

INTRODUCTION 4

The Coupler code has several key functions within the CCSM framework:

o

It allows the CCSM to be broken down into separate components, atmosphere,
sea-ice, land, and ocean, that are "plugged into" the Coupler. Each component
model is a separate code that is free to choose its own spatial resolution
and time step. Individual components can be created, modified, or replaced
without necessitating code changes in other components. CCSM components run
as separate executables communicating via message passing (MPI).

It controls the execution and time evolution of the complete CCSM by
synchronizing and controlling the flow of data between the various components.

It communicates interfacial fluxes between the various component models while
insuring the conservation of fluxed quantities. For certain flux fields, it
also computes interfacial fluxes based on state variables. In general, the
Coupler allows any given flux field to be computed once in one component,
this flux field is then routed through the Coupler so that other involved
components can use this flux field as boundary forcing data.

1.3 Major considerations in Coupler functionality

The design of the Coupler and the CCSM modeling framework were motivated by a
variety of scientific and software design issues. Following are some of the
major design and functionality considerations which addressed the deficiencies
of standard coupling strategies at the time of Coupler’s inception (circa 1991),
and which have continued to be important considerations.

(a) System decomposition and component model code independence.

The CCSM coupling strategy and the Coupler component (see Figure 1) allows an
intuitive decomposition of the large and complex climate system model.

To a large extent, the separate component models, atmosphere, sea-ice, land,
and ocean, can be designed, developed, and maintained independently, and later
"plugged into" the Coupler to create a complete climate system model.

At the highest design level, this creates a highly desirable design trait

of creating natural modules (or "objects") with maximum internal cohesion and
minimal external coupling.

(b) Control of the execution and time evolution of the system.

The Coupler (a natural choice), rather than one of the component models (any
of which would be an arbitrary and asymmetrical choice), is responsible for
controlling the execution and time evolution of the complete system.

1 INTRODUCTION 5

(c) The appropriate boundary condition for all component models are the fluxes
across the surface interfaces.

In terms of the climate simulation, the Coupler (originally called the "Flux
Coupler") couples component models by providing flux boundary conditions to
all component models. State variables flow through the Coupler only if
necessary for a flux calculation in the Coupler or a component model.

(d) Conservation of fluxed quantities.

The Coupler can conserve all fluxed quantities that pass through it.

Since all surface fluxes pass through the Coupler, this framework assures
that all surface fluxes in the system are conserved. The Coupler also can
and does monitor flux conservation by doing spatial and temporal averages of
all fluxed quantities.

(e) A flux field should should be computed only once, in one component, and then
the field should be given to other components, as necessary.

For example, generally the resolution of the ocean component is finer than
that of the atmospheric component. Heat is not conserved if the atmosphere
component computes long wave radiation using sea surface temperature (SST)
averaged onto the atmosphere’s grid, while the ocean component uses individual
grid point SSTs. This is because the flux calculation is proportional to
SST#x4 (is non-linear) and the two calculations will yield two different
results . Instead of trying to compute the same flux twice, on two different
grids in two different components, the flux should be computed once and then
be mapped, in a conservative manner, to other component grids.

(f) Fluxes can be computed in the most desirable place.

For example, when an atmospheric grid box covers both land and ocean, a problem
arises if wind stress is first computed on the atmospheric grid and then
interpolated to the ocean grid. If land roughness is significantly larger than
ocean roughness (as is typical), and the atmosphere uses an average underlying
roughness to compute the windstress, and then windstress is interpolated to
coastal land and ocean cells, windstress will be considerably lower (for land)
or higher (for ocean) than it should be. This approach can lead to unrealistic
coastal ocean circulations. In this case it is more desirable to compute the
surface stresses on the surface grids and subsequently merge and map them to
the atmospheric grid. Thus this calculation should take place in either the
Coupler, land, ice, or ocean models.

In the case of computing precipitation, because this calculation requires full
3D atmospheric fields, and because only 2D surface fields are exchanged

1 INTRODUCTION 6

through the Coupler, this calculation should take place in the atmosphere
component.

(g) Allowing the coupling of component models with different spatial grids.

In general it is desirable to allow the different component models to exist on
different spatial grids. It is also desirable that a component model need not
be aware of, or concerned with, the spatial grids that other component models
are using. The Coupler handles all mapping between disparate model grids,
allows component models to remain unaware and unconcerned with the spatial
grids of other CCSM components.

Due to scientific considerations, the current version of CCSM requires that
the atmosphere and land components be on the same spatial grid. Because it is
not a requirement to do so, the Coupler does not have the functionality to
allow the atmosphere and land to be on different grids. Similarly, the
current version of CCSM requires that ocean and sea-ice components be on the
same grid and the Coupler does not have the functionality to allow them to be
on different grids.

Except as noted above, no component needs to know what spatial grid other
components are using. The Coupler is responsible for all mapping between the
various spatial grids of the various components models. The component models
themselves have no knowledge of what other grids are involved in the coupled
system and they can remain unconcerned with any issues regarding mapping
between grids.

(h) Allowing the coupling of models with different time steps.

While there are some restrictions on what internal time step models are
allowed to use (for example, there must be an integer number of time steps per
day), the Coupler offers component models considerable freedom in choosing
their internal time step. Frequently all four CCSM components operate with
four different internal time steps.

1.4 History

The origins of the Coupler are in the Oceanography Section (0S) of the Climate
and Global Dynamics Division (CGD) of the National Center for Atmospheric
Research (NCAR). While coupling the Community Climate Model (CCM2, the
atmosphere model) with a regional Pacific Basin Model for ESNO/El-Nino studies
(Gent, Tribbia, Kauffman, & Lee, 1990), it became clear that it was extremely
awkward to couple the models by implementing the ocean model as a subroutine
within an atmosphere model. An idea emerged that a more desirable software

1 INTRODUCTION 7

architecture would be to have both the ocean and atmosphere models as
subroutines to a higher-level driver/coupler program. This "coupler" component
would reconcile the differing component model spatial grids (handle the mapping
of data fields), reconcile different time step intervals, and control when the
coupled system would start and stop. Thus the two component models could be
very independent and largely unaware of the software details of the other
components. The modularity of this arrangement also suggested a framework in
which, for example, it would be relatively easy to exchange one ocean component
for another.

Other 0S scientists joined in (McWilliams, Large, Bryan, 1991), and together
worked out a scientific design philosophy for the Coupler and the coupled
system, for example, that the appropriate boundary conditions for component
models were the fluxes across the surface interfaces, that fluxes should be
conserved, and that ad hoc flux corrections were undesirable. Frank Bryan
suggested the models be separate executables communicating by message passing
rather than subroutines in a single executable, this resulted in an MPMD
implementation that proved extremely successful.

Climate Modeling Section (CMS) scientists joined the effort (Boville, et.al.,
1992), working on the atmosphere component (CCM) so that it produced a quality
simulation when bottom boundary conditions were fluxes instead of fixed BC’s.
The CMS also had experience in managing community modeling efforts -- the CMS
managed the development of the CCM, a very successful community climate model.
With the Coupler and its associated framework, and with a critical mass of
engaged ocean and atmosphere model scientists, it now seemed plausible to start
an institutional coupled climate model project.

A proposal was made to NSF for a new, NCAR-wide, Climate System Model (CSM)
Project (1993), with the long-term goal of building, maintaining, and
continually improving a comprehensive model of the climate system. The Coupler
proto-type code and design philosophy formed the basis for CSM’s software
framework. The CSM project was funded and formally began in 1994.

The name, "cplb" or "Coupler, version 5", alludes to five versions of the
Coupler, they are:

cpll (Kauffman, 1990): a rough proto-type code, never released.
Coupler is a driver program that handles all high-level control (eg. start/
stop/advance of component models) and all mapping between grids. The
complete system is a single-executable with two swappable component model
subroutines: ocean/ice and atmosphere/land. Written in Fortran 77.

cpl2 (NCAR/CGD, Oceanography Section, 1992): a proto-type code, never released.
New scientific design philosophy, does flux calculations, insures
conservation of fluxed quantities. Complete system uses component models

2 RUNNING THE COUPLER 8

that are separate executables. Uses PVM for message passing.

cpl3 (NCAR/CGD, 1996): released with CSM 1.0
Has three component models: atmosphere/land, ocean, and ice. First fully
functional version. Uses MCL for message passing. Uses netCDF.

cpl4 (NCAR/CGD, 1998): released with CSM 1.2
Has four component models: atmosphere, land, ocean, and ice. Uses MPI for
message passing.

cplb (NCAR/CGD, 2002): released with CSM 2.0
Written in Fortran 90, uses SCRIP to generate mapping data, handles shifted
pole grids.

2 Running the Coupler

The Coupler cannot run by itself, it can only execute in the context of running
the complete CCSM system -- a framework that requires atmosphere, ice, land, and
ocean components. The scripts that build and run the CCSM system are described
in detail in the CCSM 2.0.1 User’s Guide, a holistic guide to running the complete
system. This Guide includes a line-by-line explanation of the master run script
and the Coupler’s "setup script". A brief description of CCSM run scripts is
below. See the CCSM User’s Guide for complete information.

2.1 Master Run Script and Coupler Setup Script

Two levels of c-shell scripts are used to build and run the CCSM system, which
of course, includes the Coupler. A master "run script" coordinates the building
and running the complete system while the component model "setup scripts' are
responsible for configuring each individual CCSM component (including the
Coupler). The CCSM execution is controlled by the master script, referred to as
"the run script". The run script has the following tasks:

Set batch system options

Define common build and run environment variables
Select multi-processing and resolution specs

Run the setup script for each component

Run the CCSM Integration.

Archive/harvest/resubmit when this run is finished

H O Q&0 TP

The common build and run environment variable defined in the run script are

3 INPUT NAMELIST PARAMETERS 9

automatically propagated to each of the component model setup scripts. These
variables define such things as the machine architecture, the number of CPUs to
run on, common experiment and file naming conventions.

Once the master run script has defined the common environment, each of the
component models (cpl, atm, ice, 1lnd, and ocn) are configured using individual
component setup scripts (e.g. cpl.setup.csh) which:

a. Parse the environment variables sent from the master run script. These
are, in effect, input variables that might be required by a setup script
or otherwise might alter the behavior of the setup script.

b. Position or create any input data files, as necessary, including input
namelist data files and mapping data files.

c. Build the component executable.

Finally, when all of the component model setup scripts have successfully
completed, the run script executes all CCSM components simultaneously. The
CCSM component models run simultaneously as a Multi-Program/Multi-Data (MPMD)
message passing system, using MPI to exchange data.

3 Input Namelist Parameters

To some extent, the behavior of the Coupler can be specified or modified at run

time. This is done almost exclusively through the use of an F90 namelist. This
section contains a list and description of available namelist input parameters.

The Coupler reads an input namelist, called inparm, from stdin, at runtime.

3.1 List of Parameters

Coupler input variables follow a naming convention in which the first few
letters of the variable identify a basic functionality group:

* case_xxx selects options with respect to specifying a case name and
description

* rest_xxx selects options with respect to the creation or retrieval of
restart files and to specify related initial conditions.

* stop_xxx selects options with respect to when a simulation will stop

* hist_xxx selects options with respect to when and what type of
history data is created

* diag_xxx selects options with respect to run-time diagnostics of the
physical simulation,

3 INPUT NAMELIST PARAMETERS 10

* flx_xxx selects options with respect to flux calculation specifics

* orb_xxx selects options with respect to solar orbit calculations

* mss_xxx selects options with respect to data file archival (in the past
this meant using NCAR’s Mass Storage System, the "MSS")

* info_xxx selects options with respect to monitoring the progress or
computational performance of the model

The following list of input namelist parameters includes this information:

* Type: the variable’s data type.
Notes:
o some character strings have length = CLONG. "CLONG" is a single global
constant used throughout the Coupler to define a "long" character string.
The CLONG is hardcoded to be 256.
o "integer boolean" means an integer such that a value of zero is
interpreted as "false", and any non-zero value is interpreted as "true".

* Default: the default value of the variable. While reasonable default values
are selected when possible, users might want to alter these values
according to their application.

* Required: tells if and when the variable is required input. Very few
input parameters are required. In a few cases, changing one default value
will cause other input parameters to become required.

* Description: a brief description of the purpose and effect of the
parameter.

* Example: a reference to an example namelist which uses the variable
(examples follow this list).

case_name
Type: character (len=CLONG)
Default: "null"
Required: no, but highly recommended
Description: This is the case name text string which is used to create
output file names and is also included in output files to help identify the
model run. Generally this should be a short string (eg. 8 chars) and
contain only those characters that are valid in unix file names.
See Example: 1, 2, 3, 4

case_desc
Type: character(len=CLONG)
Default: "null"
Required: no, but highly recommended
Description: This is a short text string (typically less than 80 chars)
which is included in output files to help identify the model run.
See Example: 1, 2, 3, 4

rest_type

3 INPUT NAMELIST PARAMETERS 11

Type: character(len=32)

Default: "startup"

Required: no (but default is of limited usefulness)

Description: This selects the run type.

Valid choices are: "startup", "hybrid", "continue", or "branch".
Selecting "branch" makes rest_bfile a required input.

See Example: 1, 2, 3, 4

rest_pfile
Type: character(len=CLONG)
Default: "null"
Required: yes
Description: This is the complete path and name of the restart "pointer
file." This must include an existing, NFS mounted directory. All run
types will update this file (and create it, if necessary), but only a
continuation runs requires that this file exists prior to the start of
the run.
See Example: 1, 2, 3, 4

rest_bfile

Type: character(len=CLONG)

Default: "null"

Required: required if rest_type = "branch", ignored otherwise.

Description: This is the file name of the "branch file" (the IC data file).

Note that a prefix like "mss:" is used to indicate a file archival device,

Valid prefix options are:

* "cp:" or no-prefix indicates a normal unix file copy from an NFS mounted
file system.

* "mss:" indicates a file on NCAR’s MSS

* "null:" indicates no archival -- the file name, stripped of any directory
information, indicates a file in the current working directory.

See Example: 4

rest_date

Type: integer

Default: 00000101 (year O, month 1, day 1, encoded yyyymmdd)

Required: no (ignored for "continuation" runs, optional for others).

Description: This is the restart date.

* On startup and hybrid runs, rest_date is the initial date of the
simulation.

* On branch runs, if rest_date > 0, it will over-ride the date contained
in the rest_bfile IC restart file. Otherwise the date from the
rest_bfile data file is used.

* On continuation runs rest_date is not used (the date contained in the IC
file is used).

See Example: 1, 2

3 INPUT NAMELIST PARAMETERS 12

rest_freq
Type: character(len=32)
Default: "monthly"
Required: no
Description: This is the restart frequency which selects how often restart
data files are created. Options are:

* "yearly" => restart files on every January 1st

* "halfyear => restart files on every January 1lst and July 1st

* "quarterly" => restart files on every January, April, July, & October 1st
* "monthly" => restart files on the 1st of every month

* "ndays" => restart files every n days

If rest_freq = "ndays", then namelist parameters rest_n and rest_odate are

involved (see below).
See Example: 4

rest_n
Type: integer
Default: 10
Required: no (only used if rest_freq = "ndays")
Description: If rest_freq = '"ndays", restart files will be created

every n days. More specifically, whenever mod(d-p;n) = 0, where

d = the simulation day (1 Jan, year 1 <=> d = 365)

p = an offset such that mod(d-p;n) = O on the date specified by rest_odate
n = rest_n

See Example: 4

rest_odate
Type: integer
Default: 0
Required: no
Description: Selects restart file offset calendar date, used in
conjunction with rest_n when rest_freq = '"ndays." If rest_odate > 0, it
must be a valid calendar date (encoded: yyyymmdd). Restart data is then
created every n days relative to (and including) either
* the initial date of the run (if rest_odate < 1)
* the date rest_odate (if rest_odate > 0)

stop_option
Type: character(len=16)
Default: "newyear"
Required: no
Description: Selects when to stop the simulation.
* "newdecade" => stop on the January 1st at the start of the next decade
* "newyear" => stop on the next January 1st
* "halfyear => stop on the next January 1st or July 1st

3 INPUT NAMELIST PARAMETERS 13

* "newmonth" => stop on the 1st of the next month

* "nmmonths" => stop on day 1, n months from this month, where n=stop_n
* '"'ndays" => stop after advancing n days, where n=stop_n

* '"date" => stop when stop_date is reached. This makes stop_date a

required input.
See Example: 1, 2, 3, 4

stop_n
Type: integer
Default: 0
Required: only if stop_option = "ndays" or "nmonths"
Description: If stop_option = "ndays", stop after advancing stop_n days.
If stop_option = "nmonths", stop on day 1, n months from this month.

See Example: 4

stop_date
Type: integer
Default: 00010101 (year 1, month 1, day 1)
Required: no (required if stop_option = "date", ignored otherwise)
Description: If stop_option = "date", stop on this date.
See Example: 2

hist_freq
Type: character(len=16)
Default: "never"
Required: no
Description: selects how often instantaneous history data is created:

* "yearly" => data is created on the 1st of each January

* "quarterly" => data is created on the 1st of January,April,July,October

* "monthly" => data is created on the 1st of each month

* "biweekly" => data is created on the 1st and 15th of each month

* "weekly" => data is created on the 1st, 8th, 15th, and 22nd of each
month

* "daily" => data is created every day

* ''ndays" => history data is created every n days relative to a history
offset date specified by hist_odate.

* '"nstep" => history data is created every n time steps relative to and

including the first time step of each day.
Note: history data is never created on a simulation stopping date, but
history data can be created on a simulation starting date.
See Example: 3

hist_n
Type: integer
Default: 1

Required: no (only used if hist_freq = "ndays" or '"nstep")

3 INPUT NAMELIST PARAMETERS 14

Description: If hist_freq = "ndays" > 0, history files will be created
every n days. More specifically, whenever mod(d-p;n) = 0, where

d = the simulation day (1 Jan, year 1 <=> d = 365)

n = hist_n

p = an offset such that mod(d-p;n) = 0 on the date specified by hist_odate
If hist_freq = "nstep" and hist_n > 0, history files will be created every
n time steps including the first time step of each day.

See Example: 3

hist_odate
Type: integer
Default: 1

Required: no (only used if hist_freq = "ndays")

Description: Selects history file offset calendar date, used in
conjunction with hist_n when hist_freq = "ndays". If hist_odate > 1, it
must be a valid calendar date (encoded: yyyymmdd). See hist_freq for usage.
History data is created every n days relative to (and including) either

* the initial date of the run, if hist_odate < 1

* the 1st of the every month , if hist_odate =1

* the date hist_odate , if hist_odate > 1

See Example: 3

hist_bundle
Type: character(len=16)
Default: "null" (no bundling)
Required: no
Description: If hist_bundle is "daily", "monthly", "quarterly", or
"yearly", then instantaneous history data files will accumulate multiple
time samples until the next day, month, quarter, or year (respectively) is
encountered, then the data file will be closed and archived, and a new
history file will be created, and subsequent data will accumulate into this
new file. A history file’s name indicates the date of the first time sample
in that file.

hist_tavg
Type: integer
Default: 1 (true)
Required: no
Description: If hist_tavg is true (non-zero), the Coupler will create
monthly average history data files and component models will be requested
to do the same. Time averaged data is not bundled (i.e. there is always
one set of monthly average fields per file).

diag_freq
Type: character(len=16)
Default: "never"

3 INPUT NAMELIST PARAMETERS

Required: no
Description: selects how

* "never" =>
* "yearly" =>
* "quarterly" =>
* "monthly" =>
* "biweekly" =>
* "weekly" =>
* ''ndays" =>
* "nstep" =>

data
data
data
data
data
data

month

is
is
is
is
is
is

15

often instantaneous diagnostic data is created:

never created
created on the
created on the
created on the
created on the
created on the

1st day of each year

1st day of each quarter

1st of each month

1st and 15th of each month

1st, 8th, 15th, and 22nd of each

data is created every n days relative to an offset date
specified by diag_odate. See diag_n.

data is created every n time steps, including the first
time step of each day. See diag_n.

Note: if diagnostics are being printed out on a given day, they are always

printed out when seconds

hours) .

day.

See

diag_n

Example: 3

Type: integer
Default: 10
Required: no (only used if diag_freq = "ndays" or '"nstep")

Seconds

= 0, 21600, 43200, and 64800 (ie. every six

= 0 will always occur, but depending on what model
communication intervals are used, it may be that seconds never equals
21600, 43200, or 64800, and hence there may be as few as one printout per

Description: If diag_freq = '"ndays", diagnostic data will be created
every n days. More specifically, whenever mod(d-p;n) = 0, where
the simulation day (1 Jan, year 1 <=> d = 365)

d =
n =
P =

diag_n

an offset such that mod(d-p;n) = O on the date specified by diag_odate.
If diag_freq = "nstep", diagnostic data will be created every n time steps
including the first time step of each day.

diag_odate
Type: integer
Default: 1

Required: no (only used if diag_freq = "ndays")

Description: Selects diagnostic data offset calendar date, used in
conjunction with diag_n when diag_freq = '"ndays". If diag_odate > 1, it

is a valid calendar date (encoded: yyyymmdd). See diag_freq for usage.
Diagnostic data is created every n days relative to (and including) either
* the initial date of the run (if hist_odate < 1)

* the 1st of the month (if hist_odate =
* the date hist_odate (if hist_odate > 1)

flx_albav

D)

3 INPUT NAMELIST PARAMETERS 16

Type: integer boolean

Default: 0 (false)

Required: no

Description: The Coupler computes ocean albedos and sometimes modifies

ice albedos.

* if flx_albav = true (non-zero), the ocean albedos are computed such that
they have no zenith angle dependence and ice albedos, which are computed
by the ice model, are unaltered.

* if flx_albav = false (zero), the ocean albedos are computed with a zenith
angle dependence and ice albedos are set to unity on the dark side of the
earth.

Typically flx_albav ("daily average albedos") is only turned on when the

atm component is a climatological data atm model that is sending daily

average data to the coupler, and thus "daily average albedos" are an
appropriate complement to the daily average solar fluxes sent by the

atm component.

flx_epbal

Type: character(len=16)

Default: "off"

Required: no

Description: Non-default values can be used to conserve globally integrated

salinity in ocn & ice components that are coupled to a climatological data

atm model. The conservation takes place by multiplying precipitation, P,

and runoff, R, by a single scalar (spatially constant) factor f to balance

evaporation, E: <E> + f<P> + f<R> = 0, where <x> denotes a globally
averaged value. There are three valid values for flx_epbal:

* "off" => no factor is applied to P + R

* "inst" => the Coupler computes a factor f so that <E> + f<P> + f<R> = 0
at each time step ("instantaneously").

* "ocn" => the ocn component provides the Coupler with a factor f and the
Coupler applies this factor to P and R. Typically this factor
is chosen, by the ocn component, so that <E> + f<P> + f<R> =
but perhaps not instantaneously, maybe as an annual average.
This can be used to allow some fluctuation in the global
average of salinity on shorter time scales while enforcing a
constant global average of salinity on longer time scales.
The ocn component is responsible for providing an appropriate
factor to the Coupler.

b

orb_year
Type: integer
Default: <none>
Required: yes
Description: This is the calendar year which is used to determine the
solar orbit and resulting solar angles. This is necessary, for example,
to compute ocn surface albedo, which may be zenith angle dependent.

3 INPUT NAMELIST PARAMETERS 17

Valid values are in the range [-1000000, +1000000].
A typical value might be 1990.
See Example: 1, 2, 3, 4

mss_dir
Type: character(len=CLONG)
Default: "null"
Required: yes
Description: This is a file archival directory name including the
specification of an archival device. Restart and history files go into
this directory. For continuation runs, the initial condition restart file
must also be in this directory. A "prefix" is all the characters up to

and including the first occurrence of ":". The prefix of the file

indicates a storage device. Valid prefix options are:

* "cp:" or no-prefix indicates a normal unix file copy to an NFS mounted
file system.

* "mss:" indicates archival onto NCAR’s MSS

* "null:" indicates no archival of any sort.

Some of the following mss_xxxXx options are only meaningful when the
archival device is NCAR’s MSS. With code modification, more archival
devices could be implemented (eg. "hpss:").

See Example: 1, 2, 3, 4

mss_opts
Type: character (len=64)
Default: "nowait, nomail"
Required: no
Description: Options used when data files are sent to NCAR’s MSS.
This default request uses asynchronous data file transfer.
See the msrcp man pages at NCAR for more details.
See Example: 2

mss_pass
Type: character(len=16)
Default: " " (no password)

Required: no

Description: Mswrite write password string for files sent to the MSS.
Read passwords are not an option with the Coupler.

See the mswrite man pages at NCAR for more details.

See Example: 2

mss_rtpd
Type: integer
Default: 365
Required: no
Description: Retention period, in days, for data files sent to the MSS.

3 INPUT NAMELIST PARAMETERS 18

See the mswrite man pages at NCAR for more details.
See Example: 2

mss_rmlf
Type: integer boolean
Default: 0 (false)
Required: no
Description: "remove local file" after archival. True means local files
will be removed after they are archived. Note that the most recently
created file is never removed, but older files are.
WARNING: successful archival is not verified prior to removal.
WARNING: using a "null:" prefix for mss_dir and mss_rmlf = TRUE will
result in files being deleted but not archived.
See Example: 2

info_dbug
Type: integer
Default: 1

Required: no

Description: Debugging information level: 0, 1, 2, or 3.

* 0 => do not write any extra debugging information to stdout

* 1 => write a small amount of extra debugging information to stdout
* 2 => write a medium amount of extra debugging information to stdout
* 3 => write a large amount of extra debugging information to stdout
See Example: 3

info_time
Type: integer
Default: 0 (false)
Required: no (normally not recommended)
Description: If true (non-zero), write message passing timing info to
stdout.

nx_a,ny_a
nx_i,ny_i
nx_1l,ny_1
nx_o,ny_o
Type: integer
Default: <none>
Required: yes
Description: the "i" and "j" 2d-resolution of the atmosphere, ice, land,
and ocean components, respectively. This is with respect to the data
fields that are sent and received from the Coupler.
See Example: 1, 2, 3, 4

3 INPUT NAMELIST PARAMETERS 19

3.2 Example Input Namelists

Example 1: a "startup" run

$inparm

case_name = "test.01"

case_desc = '"testing a startup run "
rest_type = '"startup"

rest_pfile = "$HOME:/cpl.test.Ol.rpointer"
rest_date = 19800101

stop_option = "date"

stop_date = 19800701

orb_year = 1990

mss_dir = "null:/whatever"

nx_a = 128, ny_a = 64, nx_i = 192, ny_i = 94
nx_1 = 128, ny_1 = 64, nx_o = 192, ny_o = 94

/

Here the inputs specify a "startup" run starting on 1980 Jan 1st and stopping
on 1980 Jul 1st. No initial condition data is needed. A restart pointer file,
rest_pfile, will be created in the user’s home directory. The restart pointer
file will contain the name of the most recently created restart file.

Restart and history files will not be archived in any way -- they will remain
in the current working directory.

History data files and restart files will be created at the default frequencies.
Solar orbit calculations will be based on the year 1990.

The "null:" prefix on mss_dir specifies that there will be no archival of
history and restart files -- the files will simply remain in the current
working directory. Presumably the output files will be archived later in some
post-processing phase.

Example 2: a "hybrid" run

$inparm

case_name = "test.01"

case_desc = "testing a hybrid run"
rest_type = "hybrid"

rest_pfile = "$HOME/cpl.test.Ol.rpointer"
rest_date = 19800101

stop_option = "date"

stop_date = 19800701

orb_year = 1990

mss_dir = "mss:/DOE/csm/test.01/cpl/ "
mss_rtpd = 730

mss_pass = "rosebud"

3 INPUT NAMELIST PARAMETERS 20

mss_opts = "nowait"

mss_rmlf =1

nx_a = 128, ny_a = 64, nx_i = 192, ny_i = 94
nx_1 = 128, ny_1 = 64, nx_o 192, ny_o 94
/

As far as the Coupler is concerned, a "hybrid" run is the same as an

"initial" run. The distinction is for the benefit of other component models.
The stop options will cause the simulation to stop on a particular date, 1981
Aug 1st. The "mss:" prefix on mss_dir selects NCAR’s MSS as the archival device
for output files. The mass store file retention period (2 years) and write
password ("rosebud") have been selected here. Files will be deleted after being
archived to the MSS (except that the most recently created file is always left
in the current working directory).

The resolution of the atm and 1nd grids is 128x64.

The resolution of the ice and ocn grids is 192x94.

Example 3: a "continuation" run

$inparm

case_name = "test.01"

case_desc = "testing a continuation run "
rest_type = "continue"

rest_pfile = "$HOME/cpl.test.Ol.rpointer"
stop_option = '"newyear"

hist_freq = '"ndays"

hist_n = 10

hist_odate =1

diag_freq = "monthly"

orb_year = 1990

mss_dir = "cp:”/test.01/cpl/ "

info_dbug =0

nx_a = 128, ny_a = 64, nx_i = 192, ny_i = 94
nx_1 = 128, ny_1 = 64, nx_o = 192, ny_o = 94

/

Here the inputs specify a continuation run. Assuming this run continues from
where example 1 finished, this run will start on 1980 Jul 1st and stop on 1981
Jan 1st. Exactly where this run continues from is specified by the restart
file, and the restart file which will be used is specified by the restart
pointer file. Restart files will be created according to the default setting
of rest_freq. History data will be created every 10 days relative to the

1st day of each month, i.e. on the 1st, 11th, 21st, and 31st of every month.
Setting diag_freq = "monthly" signals the coupler to calculate some global
diagnostic information on the 1st of each month and write it to stdout. New
restart and history files will be archived by copying them into a subdirectory

4 OUTPUT DATA 21

of the user’s home directory (~/test.01/cpl/). Setting info_dbug = 0 will
minimize the amount of debugging information written to stdout.

Example 4: a "branch" run

$inparm

case_name = "test.02"

case_desc = "testing a branch run "
rest_type = "branch"

rest_pfile = "$HOME/cpl.test.02.rpointer"
rest_bfile = "mss:/DOE/csm/test.01/cpl/test.01.cpl5.r.1981-01-01-00000 "
rest_freq = "ndays"

rest_n = 10

stop_option = '"ndays"

stop_n = 31

orb_year = 1990

mss_dir = ""/test.01/cpl/ "

nx_a = 128, ny_a = 64, nx_i = 192, ny_i = 94
nx_1 128, ny_1 = 64, nx_o 192, ny_o 94
/

Here the input parameter rest_type specifies a branch run. The branch file
(/DOE/.../r1981-01-01) must be specified. Its prefix, "mss:", indicates that
it is found on NCAR’s MSS. This initial condition file was created by a
previous simulation. The date from the branch file will be used (apparently
1981 Jan 1). The simulation will stop after advancing 31 days (1981 Feb 1).
Restart files will be created every 10 days relative to the start of the run.
The absence of a archival device prefix on mss_dir results in the same
behavior as a "cp:" prefix, i.e. history and restart files will be archived
by being copied to the NFS mounted directory specified by mss_dir.

4 Output Data

The coupler outputs three types of data: standard out (stdout) diagnostic
data, restart files, and diagnostic history files.

4.1 Stdout Data

Stdout output consists mostly of brief messages that indicate how the simulation
is progressing and whether any error conditions have been detected. Stdout also

4 OUTPUT DATA 22

contains a record of the values of all Coupler input parameters. If global
diagnostics have been activated (see the diag_freq namelist parameter), stdout
will also contain some diagnostic information, specifically global averages and
time averages of various flux fields flowing through the Coupler.

Exactly where the Coupler’s stdout (and stderr, standard error) shows up is
determined outside of the Coupler source code and executable. Certain
environment variables found in the CCSM2.0.1 run scripts are used to determine
where the Coupler will execute (its current working directory, or "cwd") and
also to redirect stdin and stdout -- these env variables determine where stdout
text will end up. Normally the run script arranges for stdout text to show up
in a "log" file in the Coupler’s execution directory (current working directory)
while the simulation is in progress, and then later, after the simulation ends,
the run script moves this log file to an archival location.

See the CCSM2.0.1 User’s Guide for details.

4.2 Restart Files

Restart files are in a machine dependent binary format, written using simple,
standard fortran write statements. Restart files provide the Coupler with all
the IC data necessary to do an "exact restart" of a previous simulation.

"Exact restart" means stopping and restarting a simulation while preserving,
bit-for-bit, the results that would have been created if the simulation had not
been stopped and restarted.

"Continuation" or "branch" runs can do exact restarts, and thus require a
restart file. For "startup" or "hybrid" runs, the Coupler does not need or use
a restart file, hence these types of runs cannot do exact restarts.

See the CCSM2.0.1 User’s Guide for more information about these runtypes.

Normally there is no need to examine the contents of a restart file. All fields

found in the restart file can be saved into history files, which are machine
independent netCDF files.

4.3 History Files

History File Format

NetCDF (network Common Data Form) was chosen as the history data format because
many common visualization tools already exist that handle this data format.
NetCDF is an interface for array-oriented data access and a library that

4 OUTPUT DATA 23

provides an implementation of the interface. The netCDF library also defines a
machine independent format for representing scientific data. Together the
interface, library, and format support the creation, access, and sharing of
scientific data. The netCDF software was developed at the Unidata Program
Center in Boulder, Colorado. See http://www.unidata.ucar.edu/packages/netcdf.

History File Content

Because netCDF files are self-describing, the most complete and accurate
description of the contents of a Coupler history file (or any netCDF file)
will always come from the netCDF data file itself. The netCDF tool "ncdump"
will generate the CDL text representation of a netCDF file on standard
output, optionally excluding some or all of the variable data in the output.

The Coupler’s netCDF files conform to the CF 1.0 format.
The CF conventions generalize and extend the COARDS conventions.
See http://www.cgd.ucar.edu/cms/eaton/cf-metadata.

Three types of data are found in Coupler netCDF history data files:
global attributes, domain data, and two dimensional state and flux data.

(1) Global attributes

This is text information, including the case name corresponding to the history
data, and the date the data was created.

(2) Model domain data

This includes the spatial coordinates of the grid cells as well as the cell
areas and a domain mask for each surface model. Each model has two sets of
latitude and longitude coordinates, one corresponding to grid cell "centers",

xc and yc, and one corresponding to grid cell "vertices", xv and yv. Each cell
is defined by four vertices which describe a quadrilateral. Grid cell "centers"
lie within this polygon, typically near its center.

Data is indexed by i, j, and k: xc(i,j), yc(i,j) and xv(i,j,k), yc(i,j,k),
because the underlying data structures are 2D arrays indexed by (i,j),

and because all cells have four vertices, indexed by k (k=1,2,3,4).

Note that latitude and longitude are a function of both i and j, which is
general enough to describe, for example, shifted pole grids.

A state variable S(i,j) is understood to be a point value located at the
center of cell (i,j). A flux field F(i,j) can be thought of as a point value
located at the cell center, but more accurately it is an area average value
that applies uniformly over the entire grid cell.

4 OUTPUT DATA 24

Five sets of coordinate arrays are found in the history data:

* xc_a(i,j), yc_a(i,j), xv_a(i,j,k), and yv_a(i,j,k) are the center and vertex
coordinates for the atmosphere model grid.

* xc_i(i,j), yc_i(i,j), xv_i(i,j,k), and yv_i(i,j,k) are the center and vertex
coordinates for the sea-ice model grid.

* xc_1(1,j), yc_1(i,j), xv_1(i,j,k), and yv_1(i,j,k) are the center and vertex
coordinates for the land model grid.

* xc_r(i,j), yc_r(i,j), xv_r(i,j,k), and yv_r(i,j,k) are the center and vertex
coordinates for the land model’s runoff grid.

* xc_o(i,j), yc_o(i,j), xv_o(i,j,k), and yv_o(i,j,k) are the center and vertex
coordinates for the ocean model grid.

Each surface model (land, land runoff, sea-ice, and ocean) also has a
corresponding domain mask. The domain mask is an integer array such that if
mask(i,j) /= 0, then the indices (i,j) correspond to a grid cell that is in the
active model domain, i.e., S(i,j) is a valid model state and F(i,j) is a valid
flux value. Conversely, if mask(i,j) = O, then S(i,j) and F(i,j) are undefined.

Three masks are found in the history data:

mask_a(i,j) is the atmosphere model domain mask.
mask_1(i,j) is the land model domain mask.
mask_r(i,j) is the land model’s runoff domain mask.
mask_i(i,j) is the ice model domain mask.
mask_o(i,j) is the ocean model domain mask.

* X X X X

While there is an atmosphere domain mask, it is assumed that it is non-zero
everywhere, ie. all atmosphere data points are assumed to be valid points
within the atmosphere domain.

(3) Two dimensional state and flux data

This includes model state variables, component flux fields, and merged input
flux fields. The naming convention for two dimensional variables follows the
convention introduced in the pseudo-code section of this document. Some
examples of state variable names are:

* Sa_a_t is an atmosphere state variable, is on the atmosphere grid, and the
variable is temperature.

* Sa_a_u is an atmosphere state variable, is on the atmosphere grid, and the
variable is zonal velocity.

* Sa_o_u is an atmosphere state variable, is on the ocean grid, and the
variable is zonal velocity.

* So_o_t is an ocean state variable, is on the ocean grid, and the

variable is temperature.

5 SOURCE CODE MAINTENANCE 25

Some examples of flux field variable names are:

* Faoa_a_prec is an atmosphere/ocean flux field computed by the atmosphere,
is on the atmosphere grid, and the field is precipitation.
* Faoa_o_prec is an atmosphere/ocean flux field computed by the atmosphere,
is on the ocean grid, and the field is precipitation.
* Faoc_o_taux is an atmosphere/ocean flux field computed by the Coupler,
is on the ocean grid, and the field is zonal wind stress.
* Faoc_a_taux is an atmosphere/ocean flux field computed by the Coupler,
is on the atmosphere grid, and the field is zonal wind stress.

Each variable in the netCDF history file has long_name and units attributes
which further describe the variable. Also see the Data Exchanged section
of this document.

5 Source Code Maintenance

5.1 Obtaining Source Code

Coupler source code (cpl) is available as part of the CCSM 2.0.1 distribution
at

http://www.ccsm.ucar.edu/models/ . This distribution includes the source code
for all CCSM component models. Documentation for other CCSM component
models, as well as input data for running the models, is also available at this
site.

5.2 Coupler Source Code

The Coupler source code is written almost entirely using standard Fortran 90.

The Coupler source code was developed using the CVS revision control system, but
only one "tagged" version of the Coupler is available within any source code
distribution. This information can be used to identify the code contained in a
particular distribution.

A user may wish to modify their copy of the Coupler source code. If one

wishes to modify the Coupler source code, it is strongly recommended that

one first study the "pseudo-code" section of this document in conjunction with
studying the source code file "main.F90." This should provide a good top-down
overview of how the Coupler works, a necessary prerequisite for successful code
modification.

6 PSEUDO-CODE 26

5.3 Shared Source Code

The Coupler source code itself (found in .../models/cpl/cpl5/) is incomplete
and cannot be compiled (due to missing subroutines) unless it is compiled along
with "CCSM shared code" (found in .../models/csm_share/). This shared code is
an un-compiled library of support routines.

The Coupler source code itself has no machine dependencies, although the CCSM
shared code does have some machine dependencies. 0One function of the shared
code is to collect and isolate machine Dependant code, and to provide CCSM
component models with machine-independent wrappers to such code.

Another function of the shared code is to provide a mechanism for the various
component models to be consistent with one another, for example, to use an
identical value for pi or for the latent heat of fusion. Similarly, the shared
code contains a library routine for calculating a solar angle, so that all
component models can be consistent in their solar angle calculations.

5.4 Shared Build Environment

The CCSM distribution includes a shared build enviromment which includes a
makefile (a GNU makefile), a variety of machine-dependent makefile macro files
and a dependency generator. This common build environment is used to build all
CCSM components including the Coupler. The build environment is found in
.../models/bld subdirectory of the CCSM source code distribution.

The makefile, which requires the use of gnu-make, is machine independent, but it
"includes" (a standard make functionality) a machine-dependent macros definition
file. Several macros files are included in the distribution, but because such
macro definitions are typically very machine and site specific, it is expected
that end users will need to create a new macros definition file for their site.

Also part of the build environment is a dependency generator. This is written
in standard c, and thus is compiled with the standard Unix cc command. The
dependency generator is particularly useful when hacking code, either by
modifying some files or adding new omes.

6 Pseudo-Code

To understand the details of the Coupler’s functionality, it is useful to have a
basic understanding of the computer code that is the Coupler. To that end,

6 PSEUDO-CODE 27

pseudo-code is shown below. If one wishes to modify the Coupler source code, it
is strongly recommended that one first study this section in conjunction with
studying the source code file, main.F90. This should provide a good overview of
how the Coupler works; a necessary pre-requisite for successful code
modification. The actual source code is 99.9% pure Fortran 90.

6.1 Variable Naming Convention

A variable naming convention has been adopted to help organize and identify
the literally hundreds of state and flux fields managed by the Coupler.
Understanding this naming convention is a prerequisite for understanding the
pseudo-code below.

State Variables

Model state variables are denoted Sx, where x denotes the corresponding
component model:

* Sa = atm state variables, e.g. atm wind velocity
* 31 = ice state variables, e.g. ice temperature

* S1 = 1nd state variables, e.g. 1lnd albedo

* So = ocn state variables, e.g. ocn SST

%

Ss = all surface states merged together, e.g. global surface temperature
Next, a suffix _x indicates what model grid the states reside on:

* Sa_a: atm states on atm grid
* Sa_o: atm states on ocn grid

Flux Fields

Input flux means fluxes given by the Coupler to a model. Output flux means
fluxes computed within a model and given to the Coupler. All input fluxes
for one model were either computed by the Coupler or were the output flux of
another model. In general, a given flux field between any two component
models may have been computed in one of three places: within either of the
two models or within the Coupler.

One function of the Coupler is to gather, merge, sum, and/or time-average
the various component flux fields from various sources and form a set of
complete input fluxes for each component model. This gathering and merging

6 PSEUDO-CODE 28

process will generally involve mapping flux fields between various model
grids and combining like fields from several grids onto one grid. A
summation might be required, e.g., net heat flux = solar + latent + sensible
+ longwave. Also, for some flux fields the Coupler might be required to form
time-averaged quantities. Thus component fluxes are mapped, merged, summed,
and/or time-averaged by the Coupler in order to form complete input fluxes
for the models.

Flux fields are denoted Fxyz, where xy denotes the two model between which a
quantity is being fluxed, and z denotes the model which computed the flux
(i.e. it is an output flux of model z).

Component fluxes that are gathered, merged, summed, and/or time--averaged to
form the complete input fluxes are:

* Faia = atm/ice flux, computed by atm, e.g. precipitation

* Faii = atm/ice flux, computed by ice, e.g. sensible heat flux

* Fala = atm/1nd flux, computed by atm, e.g. precipitation

* Fall = atm/1lnd flux, computed by 1lnd, e.g. sensible heat flux

* Faoc = atm/ocn flux, computed by cpl, e.g. momentum flux

* Faoa = atm/ocn flux, computed by atm, e.g. precipitation

* Fioo = ice/ocn flux, computed by ocn, e.g. ice formed within the ocn

* Fioi = ice/ocn flux, computed by ice, e.g. penetrating shortwave radiation
* Flol = 1nd/ocn flux, computed by 1lnd, e.g. river runoff

Complete input fluxes (an "a" prefix denotes a daily average):

Faxx = all atm input fluxes: a map/merge/sum of: Faoc, Faii, Fall

Flxx = all 1nd input fluxes: a map/merge/sum of: Fala

Foxx = all ocn input fluxes: a map/merge/sum of: Faoc, Faoa, Fioi, Flol
aFoxx = a time average of: Foxx

Fixx = all ice input fluxes: a map/merge/sum of: Faia, Fioo

* X X X %

Finally, just like the state variables above, a suffix _x indicates what
model grid the fluxes reside on:

* Faoa_a: atm/ocn fluxes, computed by the atm, on the atm grid
* Faoa_o: atm/ocn fluxes, computed by the atm, on the ocn grid

Domain Maps

Mapping between domains is implemented by matrix multiplies. Generally there
are different maps for state fields vs. flux fields, as state fields maps are
generally smoother (eg. bilinear) whereas flux field maps must be conservative
(eg. area averaging, aka Riemann sum integrals). In the case of mapping between

6 PSEUDO-CODE 29

identical domains, the map would be the identity map. The necessary mapping
matrices are:

map_Fa2i: map for fluxes, atm -> ice
map_Sa2i: map for states, atm -> ice
map_Fa2l: map for fluxes, atm -> 1nd
map_Sa2l: map for states, atm -> 1nd
map_Fa2o0: map for fluxes, atm -> ocn
map_Sa2o0: map for states, atm -> ocn
map_Fi2a: map for fluxes, ice -> atm

* X ¥ X X X X *

map_Si2a: map for states, ice -> atm
etc.

6.2 Main Program

Notice that the Coupler code is configured for a particular time coordination
scheme. Model time coordination involves two communication intervals, with the
longer interval being an integer multiple of the shorter interval. The
atmosphere, ice, and land models communicate once per short interval while the
ocean model communicates once per long interval. Also, one day (24 hours) is
an integer multiple of the longer communication interval. Typically the longer
interval is exactly one day, while the shorter interval is several hours or
less. While this configuration is hard-coded within the Coupler, its modular
design facilitates code modifications to implement alternate configurations. A
variety of time coordination schemes can be, and have been, implemented by
rearranging subroutine calls at the highest level (within the main program),
requiring a minimal amount of code modifications or new code.

PROGRAM main

call initial ! read input namelist

call msg_atm_init ! exchange spatial & temporal grid info with atm model
call msg_ice_init ! exchange spatial & temporal grid info with ice model
call msg_lnd_init ! exchange spatial & temporal grid info with 1nd model
call msg_ocn_init ! exchange spatial & temporal grid info with ocn model

!'--- read restart file ---
call restart (’read’ , Sa_a , Faia_a , Fala_a , Faoca_a ,

& S1_1, Fall_1l , Falo_1l ,
& Si_i , Faii_i , Fioi_i ,
& So_o , Fioo_o ,aFoxx_o)

m = ncpl_a/ncpl_o ! determine number of atm messages per ocn message

6 PSEUDO-CODE 30

DO WHILE (current_date < stop_date)
DO n=0,ncpl_a-1

!--- send tavg inputs to ocn, start new tavg summation ---
if (mod(n,m) == 0) then

call msg_ocn_send (aFoxx_o)

call tavg-zero (aFoxx_o) ! start new time average
end if

!'-—- map atm states/fluxes to 1lnd, send msg to lnd ---
call map (map_Sa2l, Sa_a , Sa_l)
call map (map_Fa2l, Fala_a ,Fala_l)

!1nds call msg_lnd_send (Fala_l , Sa_l)

!--- map atm states/fluxes to ice grid ---
call map (map_Sa2i, Sa_a , Sa_i)
call map (map_Fa2i, Faia_ a , Faia_ i)

!--- send msg to ice ---
lices call msg_ice_send (Sa_i , So_i, Faia_i, Fioo_i)

!-—- prepare instantaneous ocn inputs ---

call map (map_Sa20, Sa_a , Sa_o)

call map (map_Fa2o, Faoa_a , Faoa_o)

call map (map_Fl2o0, Flol_ 1 , Flol_ o)

call flux_solar (Faoa_o, So_o, Faoc_o) ! compute net short-wave

!'-—- "send" msg to ocn (add instantaneous data to t-avg) ---
locns call mrg ocn (Faoa_o, Faoc_o, Fioi_o, Flol_o, Foxx_o)
call tavg-sum (Foxx_o, aFoxx_o)

!--- compute ocean albedos and Faoc fluxes ---
locnr call flux_albedo (So_o) ! update ocn state ~ "receive"
call flux_ao (Sa_o, So_o, Faoc_o)

!-—- map ocn states/fluxes to atm ---
call map(map_Fo2a, Faoc_o, Faoc_a)
call map(map_So2a, So_o, So_a)

Yicer !-—- receive ice outputs ---
call msg_ice_recv (Si_i ,Faii_i, Fioi_i)

!--- map ice states/fluxes to atm & ocn grid ---
call map (map_Fi2a, Faii_i, Faii_a)

6 PSEUDO-CODE 31

call map (map_Si2a, Si_i, Si_a)
call map (map_Fi2o, Fioi_i, Fioi_o)
call map (map_Si20, Si_i, Si_o)

!1ndr !--- recv new 1lnd data ---
call msg_lnd_recv (S1_1, Fall_l, Flol_1l)

!-—- map 1Ind states & fluxes to atm ---
call map (map_Fl2a, Fall_ 1, Fall_a)
call map (map_Sl12a, S1_.1, Sl_a)

!--- merge atm states & fluxes ---
call mrg_atm (Faii_a, Fall_a, Faoc_a, Faxx_a)
call mrg_atm (Si_a, Sl_a, So_a, Ss_a)

latms !-—- send data to atm ---
call msg_atm_send (Faxx_a, Ss_a)

!-—- add data to history file ---
call history ()

if (mod(n+1,m) == 0) then
!--- receive ocn outputs ---
call msg_ocn_recv (So_o , Fioo_o)

!-—- map ocn to ice ---
call map (map_So2i, So_o, So_i)
call map (map_Fo2i, Fioo_o, Fioo_i)

!'-—- form tavg of ocn inputs summation---
call tavg-avg(aFoxx_o,m)
end if

'atmr !--- recv msg from atm ---
call msg_atm_recv (Sa_a, Faia_a, Fala_a, Faoa_a)

!'-—- cpl, atm, ice, 1nd have advanced part of one day ---

sec = sec + 86400/ncpl_a

call control() ! reset stop, rest, hist control flags
END DO

!-— cpl & component models have advanced one day ---
if (sec >= 86400) then
eday = eday + 1 ! increment number of elapsed days
sec =0
end if

7 DATA EXCHANGED WITH COMPONENT MODELS 32

call tcheck() ! verify time coordination
call control() ! reset stop, rest, hist control flags

!'--- make a cpl restart file ---
call restart (’write’, Sa_a , Faia_a , Fala_a , Faoa_a ,

&
&
&

S1.1 , Fall_l , Falo_l ,
Si_i , Faii_i , Fioi_i ,
So_o , Fioo_o ,aFoxx_o)

END DO WHILE

999 CONTINUE

call
call
call
call
call

send final msg to models & disconnect from msg-passing ---
msg_atm_final ()

msg_ice_final ()

msg_ocn_final ()

msg_lnd_final ()

msg_cpl_disconnect ()

STOP/END OF PROGRAM

7 Data Exchanged with Component Models

Each component model exchanges data with the Coupler only. Component models have
no direct connection with each other -- all data is routed through the Coupler.
Most data is in the form of 2D fields. This data is accompanied by certain
timing and control information (arrays of scalar real or integer values), such
as the current simulation data and time.

7.1 Units Convention

A1l data exchanged conforms to this units convention:

o Sign convention:
positive value <=> downward flux
o Unit convention:

temperature ~ Kelvin
salt = g/kg
velocity ~ m/s

pressure ~ N/m~2 = Pa

7 DATA EXCHANGED WITH COMPONENT MODELS 33

7.2

This

humidity ~ kg/kg

air density "~ kg/m"3

momentum flux ~ N/m~2

heat flux ~ W/m~2

water flux = (kg/s)/m~2

salt flux ~ (kg/s)/m~2

coordinates ~ degrees north or east

area ~ radians~2

domain mask 7 0 <=> an inactive grid cell

Time Invariant Data

section provides a list of the time invariant data exchanged between the

Coupler and each component model. Generally this data is the "domain" data:
coordinate arrays, domain mask, cell areas, etc. It is assumed that the
domain of all models is represented by a 2D array (although not necessarily a
latitude/longitude grid).

Data

* ¥ X X X X %

Data

sent to Coupler

domain data

grid cell’s center coordinates, zonal (degrees north)

grid cell’s center coordinates, meridional (degrees east)

grid cell’s four vertex coordinates, zonal (degrees north)
grid cell’s four vertex coordinates, meridional (degrees east)
grid cell area (radians squared)

grid cell domain mask (0 <=> not in active domain)

ni,nj: the dimensions of the underlying 2D array data structure

time coordination data
ncpl: number of times per day the component will communicate (exchange
data) with the Coupler.

other information

IC flag: indicates whether the Coupler should use model IC’s contained
on the Coupler’s restart file or IC’s in the initial message sent from
the component model.

sent to Component Models

time coordination data
date, seconds: the exact time the Coupler will start the simulation from.

7 DATA EXCHANGED WITH COMPONENT MODELS 34

7.3 Time Variant Data

This section provides a list of the time-evolving data sent exchanged between
the Coupler and each component model. Generally this is state, flux, and
diagnostic quantities.

Each component model provides the Coupler with a set of output fields.

Output fields from a model include output states (which can be used by another
component to compute fluxes) and output fluxes (fluxes that were computed within
the model and which need to be exchanged with another component model.

The Coupler provides each component model with input fields. Input fields
sent to a model include input states (the state variables of other models,
which are needed to do a flux calculation) and input fluxes (a forcing fields
computed by some other component).

Flux fields sent to or from the Coupler are understood to apply over the
communication interval beginning when the data was received and ending when the
next message is received. The component models must insure that fluxes sent to
the Coupler are computed with this in mind -- failure to do so may result in the
non-conservation of fluxes. For example, if the atmosphere component
communicates with the Coupler once per hour, but takes three internal time steps
per hour, then the precipitation (water flux) sent to the Coupler should be the
average precipitation over an hour (the average precipitation over three
internal time steps). Similarly, if the ocean component has a communication
interval of one day, but takes 50 internal time steps per day, then the
precipitation flux field it receives from the Coupler should be applied as

ocean boundary condition forcing for all 50 time steps during the next
communication interval.

7.3.1 Atmosphere Model

Data sent to Coupler

states
layer height (m)
zonal velocity (m/s)

meridional velocity (m/s)
temperature (Kelvin)

potential temperature (Kelvin)
pressure (Pa)

equivalent sea level pressure (Pa)
specific humidity (kg/kg)

* X X X X X X %

7 DATA EXCHANGED WITH COMPONENT MODELS 35

* density humidity (kg/m~3)
fluxes

* precipitation: liquid, convective ((kg/s)/m~2)
* precipitation: liquid, large-scale ((kg/s)/m~2)
* precipitation: frozen, convective ((kg/s)/m"2)
* precipitation: frozen, large-scale ((kg/s)/m"2)
* longwave radiation, downward (W/m~2)
* shortwave radiation: downward, visible , direct (W/m~2)
* shortwave radiation: downward, near-infrared, direct (W/m"~2)
* shortwave radiation: downward, visible , diffuse (W/m~2)
* shortwave radiation: downward, near-infrared, diffuse (W/m~2)

Data

* X X X X X X X *

* X X X X *

*

7.3.2

Data

diagnostic quantities
net shortwave radiation (W/m~2)

received from Coupler

states

albedo: visible , direct
albedo: near-infrared, direct
albedo: visible , diffuse
albedo: near-infrared, diffuse
surface temperature (Kelvin)
snow height (m)

ice fraction

ocean fraction

land fraction (implied by ice and ocean fractions)

fluxes

zonal surface stress (N/m~2)
meridional surface stress (N/m~2)
latent heat (W/m~2)

sensible heat (W/m~2)

longwave radiation, upward (W/m~2)
evaporation ((kg/s)/m~2)

diagnostic quantities
2 meter reference air temperature (Kelvin)

Ice Model

sent to Coupler

7 DATA EXCHANGED WITH COMPONENT MODELS

* X X X X %

* K K X X X X X X X X X

states

ice fraction

surface temperature (Kelvin)
albedo: visible , direct
albedo: near-infrared, direct
albedo: visible , diffuse
albedo: near-infrared, diffuse

fluxes

atm/ice: zonal surface stress (N/m~2)
atm/ice: meridional surface stress (N/m~2)
atm/ice: latent heat (W/m~2)
atm/ice: sensible heat (W/m~2)
atm/ice: longwave radiation, upward (W/m~2)
atm/ice: evaporation ((kg/s)/m~2)

ice/ocn: penetrating shortwave radiation (W/m~2)
ice/ocn: ocean heat used for melting (W/m~2)
ice/ocn: melt water ((kg/s)/m~2)

ice/ocn: salt flux ((kg/s)/m~2)

ice/ocn: zomnal surface stress (N/m~2)
ice/ocn: meridional surface stress (N/m~2)

diagnostic quantities
* net shortwave radiation (W/m~2)
* 2 meter reference air temperature (Kelvin)

Data received from Coupler
states
* ocn: temperature (Kelvin)
* ocn: salinity (g/kg)
* ocn: zonal velocity (m/s)
* ocn: meridional velocity (m/s)
* atm: layer height (m)
* atm: zonal velocity (m/s)
* atm: meridional velocity (m/s)
* atm: potential temperature (Kelvin)
* atm: temperature (Kelvin)
* atm: specific humidity (kg/kg)
* atm: density (kg/m~3)
fluxes
* ocn: dh/dx: zonal surface slope (m/m)
* ocn: dh/dy: meridional surface slope (m/m)
* ocn: Q>0: heat of fusion (W/m~2), or

7 DATA EXCHANGED WITH COMPONENT MODELS 37

* X X X X X %

atm:
atm:
atm:
atm:
atm:
atm:
atm:

Q<0: melting potential (W/m~2)

shortwave radiation: downward, visible , direct (W/m~2)
shortwave radiation: downward, near-infrared, direct (W/m~2)
shortwave radiation: downward, visible , diffuse (W/m~2)

shortwave radiation: downward, near-infrared, diffuse (W/m~2)
longwave radiation, downward (W/m~2)

precipitation: liquid ((kg/s)/m~2)

precipitation: frozen ((kg/s)/m~2)

7.3.3 Land Model

Data

* %X X X X X

* X X X ¥ X %

Data

* X X X X X %

sent to Coupler

states

surface temperature (Kelvin)
albedo: visible , direct
albedo: near-infrared, direct
albedo: visible , diffuse
albedo: near-infrared, diffuse
snow depth (m)

fluxes

zonal surface stress (N/m~2)
meridional surface stress (N/m"2)
latent heat (W/m~2)
sensible heat (W/m~2)
longwave radiation, upward (W/m~2)
evaporation ((kg/s)/m~2)
coastal runoff ((kg/s)/m~2)

diagnostic quantities
2 meter reference air temperature (Kelvin)

received from Coupler

states

atm
atm
atm
atm
atm
atm
atm

layer height (m)

zonal velocity (m/s)
meridional velocity (m/s)
potential temperature (Kelvin)
specific humidity (kg/kg)
pressure (Pa)

temperature (Kelvin)

7 DATA EXCHANGED WITH COMPONENT MODELS 38

fluxes

precipitation: liquid, convective ((kg/s)/m~2)
precipitation: liquid, large-scale ((kg/s)/m~2)
precipitation: frozen, convective ((kg/s)/m~2)
precipitation: frozen, large-scale ((kg/s)/m~2)

longwave radiation, downward (W/m~2)

shortwave radiation: downward, visible , direct (W/m~2)
shortwave radiation: downward, near-infrared, direct (W/m"~2)
shortwave radiation: downward, visible , diffuse (W/m~2)
shortwave radiation: downward, near-infrared, diffuse (W/m"~2)

* X XK X X X X X %

7.3.4 Ocean Model

Data sent to Coupler

states

surface temperature (Kelvin)
salinity (g/kg)

zonal velocity (m/s)
meridional velocity (m/s)

* % X X

fluxes
* dh/dx: zonal surface slope (m/m)
* dh/dy: meridional surface slope (m/m)
* Q>0: heat of fusion (W/m~2), or
Q<0: melting potential (W/m~2)

Data received From Coupler
states

* equivalent sea level pressure (Pa)
* ice fraction

fluxes
* zonal surface stress (N/m~2)
* meridional surface stress (N/m~2)
* shortwave radiation, net (W/m~2)
* latent heat (W/m~2) (note: derived from evaporation)
* sensible heat (W/m~2)
* longwave radiation, upward (W/m~2)
* longwave radiation, downward (W/m~2)
*x ocean heat used for melting (W/m~2)
* salt flux ((kg/s)/m~2)
* precipitation: rain + snow ((kg/s)/m"~2)

8 FLUX CALCULATIONS 39

* evaporation ((kg/s) /m~2)
* melt water ((kg/s)/m~2)
* coastal runoff ((kg/s)/m~2)

8 Flux Calculations

The Coupler is required to compute certain fluxes and other quantities related
to fluxes, such computing the ocean’s surface albedo. These calculations are
described below.

8.1 Atmosphere/Ocean Fluxes
8.1.1 General Expressions

The fluxes across the interface are calculated from bulk formulae and general
expressions are

(8.1)
7 o= pa u? AU |AU|?
E = PA u* Q*
H = pas Cpa u* 6*
Lt = —6T* ~ —¢eoc T + of L,
where the turbulent velocity scales are given by
(8.2)
w* = CDY? |AT|
Q" = CE |AU| (Ag) v
9* = CH |AU| (A8) v !,

where p 4 is atmospheric surface density, Cp4 is the specific heat, o = 5.67 x
1078W/m?/K* is the Stefan-Boltzmann constant, € is the emissivity of the
interface, and o is the surface albedo for incident longwave radiation, L |. In
(8.2) the differences AU, Aq and Af are defined at each interface in accord with
the convention of fluxes being positive down. The reflected downward incident
longwave radiation is simply accounted for by assuming an emissivity, e = 1,
and the water surface albedo for incident longwave radiation, a” = 0.0.

The transfer coefficients in (8.2), shifted to a height, Z, and considering the
appropriate stability parameter, (, are :

(8.3)

8 FLUX CALCULATIONS 40

- 7 R}
CD = &k%|in (—0) — U
- 7 1-1 7 -1
— 2 i R R
CE = & -ln (ZO) zbm_ [ln (Ze) zbs]
- 7 1-1 7 —1
_ 2
CH = & _ln (ﬁ) —¢m_ [ln (ﬁ) - 1/13] ,
where k = 0.4 is von Karman’s constant and the integrated flux profiles, ¢,

for momentum and s for scalars, are functions of the stability parameter, (.
These functions as used in the coupler are:

Ym(C) = () = —5¢ ¢>0
Ym(Q) = 2n[0.5(1+ X)] +In[0.5(1+ X?)] —2tan ' X + 057 ¢ < 0
¥s(¢) = 2In[0.5(1+ X?)] (<0

X = (1-160)Y*

Above the atmospheric interfaces i = 1, 2 and 3 the stability parameter

_ kg Za(b” Q"
¢ = u*2 (9v+(Zv_1+QA)) ’

where virtual potential temperature is computed as 6, = 04(1 + Z,q4), qa
and 84 are the lowest level atmospheric humidity, and potential temperature,
respectively, and Z, = (o(water)/o(air)) — 1 = 0.606.

In addition to surface fluxes, the atmospheric model requires effective surface
albedos for both direct a(dir), and diffuse, a(di f), radiation at each wavelength.
They are used in a single call to the computationally demanding atmospheric
radiation routines. This call gives downward atmospheric albedo for diffuse
radiation, a,(dif). If direct and diffuse albedos, o™ (dir) and o™ (dif) for m =
1, M different surfaces below an atmospheric grid cell are known, the multiple
scattering coefficients, R™ = (1 — aq(dif) a™(dif))™" are computed, and with
f™ the fractional coverage of each surface type, then the albedos are given by

a(dif) = (1-F)/(1 - Fuoadif))
a(dir) = Fi(1—oq(dif)a(dif))

M
F = Z ™ R™ o™ (dir)
m=1

M
Fy= " f"R™ (1-a™(dif))

m=1

8 FLUX CALCULATIONS 41

Use of these albedos ensures that the solar radiation exiting the bottom of
the atmosphere is identical to the sum of M radiation calculations, each using an
a™(dif) and o™ (dir). At present, however, the albedo calculations are greatly
simplified by assuming a,(dif) = 0, such that R™ = 1. This albedo then does
not need to be passed from the atmosphere to the coupler, and the coupler
simply computes the effective albedos to be passed to the atmosphere as

M
a(dif) = > fma™(dif)

M
a(dir) = z ™ a™(dir)

In general the partition of radiation among the M surfaces is a function of
R™, a™(dif), and o™ (dir), and hence of wavelength. Hence, correct partition-
ing would need to be performed for each wavelength band within the radiation
transfer code of the atmospheric model. This procedure is greatly simplified by
partitioning the net solar radiation within the Coupler.

8.1.2 Specific Expressions

At the atmosphere-ocean interface the near-surface air is also assumed to be
saturated,

q=0.98 p* Cs exp(Ce/T),
where the sea surface temperature is T = SST, C5 = 640380.0 kg/m?® and
Cs = —5107.4 K, and the factor 0.98 accounts for the salinity of the ocean. The
differences (8.2) become

AU = Us-U
Ag = qa—q
A = 64—T,

where the surface current, U , is presently assumed to be negligible.
The roughness length for momentum, Z° in meters, is a function of the
atmospheric wind at 10 meters height, Uio:

c ~1/2
K (—1+02+C3U10> ‘| ,

Z° =10 exp— i
10

where C; = 0.0027 m/s, Co = 0.000142, and C3 = 0.0000764 m~'s. The
corresponding drag coefficient at 10m height and neutral stability is

Ccly = CLU" + Cy + C3Up -

8 FLUX CALCULATIONS 42

The roughness length for heat, Z", is a function of stability, and for evaporation,
Z¢, is a different constant:

Zh = 22x107°m (¢>0
= 49%x10°m (<0
Z¢ = 9.5x105m.

Since (is itself a function of the turbulent scales (8.2), and hence the fluxes,
an iterative procedure is generally required to solve (8.1). First, { is set in-
crementally greater than zero when the air-sea temperature difference suggests
stable stratification, otherwise it is set to zero. In either case, ¥,, = ¥s = 0, and
the initial transfer coefficients are then found from the roughness lengths at this
¢ and Uyg = Ua. As with sea-ice, these coefficients are used to approximate
the initial flux scales (8.2) and the first iteration begins with an updated ¢ and
calculations of v,,, and ¥s. The wind speed, Uy, is then shifted to its equivalent
neutral value at 10m height :

_ VO, Za =
Uio=Ua (1 + Tl"(l—o —¥m(Q)))
This wind speed is used to update the transfer coefficients and hence the flux
scales. The second and final iteration begins with another update of (. The
final flux scales then give the fluxes calculated by (8.1).

8.2 Surface Albedo and Net Absorbed Solar Radiation

For the ice, land, and ocean components there are four surface albedos that are
used by the atmosphere component to compute four corresponding components
of downward shortwave. Subsequently, the four albedos, together with the four
downward shortwave fields, are used to compute net absorbed shortwave flux
from the atmosphere to the surface components:

4
SWoet = > SWit,, (1—a™)
m=1

where m = 1, ...,4 corresponds to near-infrared/diffuse, visible/diffuse, near-
infrared/direct, and visible/direct shortwave components.

The ice and land components each compute their own surface albedos, and
subsequently, give the downward shortwave fields, compute their own net ab-
sorbed shortwave radiation. For the ocean component, it is the Coupler that
computes the ocean surface albedo and subsequently computes net absorbed
shortwave radiation. The Coupler then sends the net absorbed shortwave field
to the ocean component.

8 FLUX CALCULATIONS 43

8.2.1 Land Surface Albedos

The land surface albedos are computed by the land component and passed on to
the atmosphere component. These albedos are not altered by the Coupler in any
way. Note that the atmosphere component may be an active model computing
downward shortwave once per hour, or it may be a data model feeding the
Coupler a daily average downward shortwave. It is the user’s responsibility to
ensure that the albedos the land model sends are appropriate considering what
type of downward shortwave fields atmosphere component is providing.

8.2.2 Ice Surface Albedo

The ice surface albedos are computed by the ice component and passed through
the Coupler and on to the atmosphere component. These albedos are "60 degree
reference albedos" that have no diurnal cycle. Based on an input namelist
variable, "flx albav" (see the namelist section of the Coupler User’s Guide),
the Coupler will either pass these albedos on to the atmosphere component
unaltered (in which case they are considered "daily average" albedos), or impose
a diurnal cycle on the albedos (in which case they are considered "instantaneous"
albedos). When the Coupler does add a diurnal cycle to the ice albedo, this
consists of merely setting the albedos to 1.0 on the dark side of the earth.

8.2.3 Ocean Surface Albedos

Unlike the ice and land components, the Coupler computes the ocean compo-
nent’s surface albedo. There are two ways the Coupler can compute the ocean
albedo: with a diurnal cycle ("instantaneous") or without a diurnal cycle ("daily
average"). An input namelist variable (the "flx albav" namelist variable) se-
lects which option the Coupler implements.

If the albedos are computed as daily average albedos, then all four ocean
albedos are set to 0.06 everywhere, regardless of time of day or time of year.

If the albedos are computed as instantaneous albedos, then all four ocean
will be set to 1.0 on the dark side of the earth, and where the solar angle is
greater than zero, the albedos are set to a value which has both an annual and a
diurnal cycle. Ocean albedo distinguishes between direct and diffuse radiation.
The direct albedo is solar zenith angle dependent, while the diffuse is not. There
is no spectral dependence of the albedo, nor dependence on surface wind speed.
The expressions for both direct and diffuse albedo are taken from Briegleb et
al. (1986), based on fits to observations of ocean albedo, good to within +0.3%.
The albedo expressions are valid for open ocean, and do not include the effects
of suspended hydrosols in near-surface waters.

For complete details see Briegleb, B.P., P.Minnis, V.Ramanathan, and E.Harrison,
1986. Comparison of regional clear-sky albedos inferred from satellite observa-
tions and model comparisons. Journal of Climate and Applied Meteorology,
Vol. 25, pp.214-226.

9 LIST OF PHYSICAL CONSTANTS 44

9 List of Physical Constants

The CCSM code has a mechanism for facilitating the consistent use of constants
among the various CCSM components -- this is the "shared constants" module of
the CCSM "shared code" 1library. The Coupler always uses shared constants
whenever possible and only defines a constant locally if no such constant is
available from the shared constants module.

The Coupler source code itself (found in .../models/cpl/cpl5/) is incomplete
and cannot be compiled (due to missing subroutines) unless it is compiled along
with "CCSM shared code" (found in .../models/csm_share/). This shared code
includes the shared constants module.

Constants in the Coupler whose actual values come from the "shared constants'...

pi = SHR_CONST_PI ! pi

rearth = SHR_CONST_REARTH ! radius of earth " m

g = SHR_CONST_G ! acceleration of gravity
cpdair = SHR_CONST_CPDAIR ! specific heat of dry air
Ccpwv = SHR_CONST_CPWV ! specific heat of water vapor
cpvir = cpwv/cpdair - 1.0 ! cpwv/cpdair - 1.0

zZvir = SHR_CONST_ZVIR ! rh2o/rair - 1.0

latvap = SHR_CONST_LATVAP ! latent heat of evaporation
latice = SHR_CONST_LATICE ! latent heat of fusion

stebol = SHR_CONST_STEBOL ! Stefan-Boltzmann constant
karman = SHR_CONST_KARMAN ! Von Karman constant

So = SHR_CONST_OCN_REF_SAL ! ocn reference salinity

Si = SHR_CONST_ICE_REF_SAL ! ice reference salinity
HFLXtoWFLX = -(So-Si)/(Sox*latice) ! converts heat to water for diagnostics

The actual values for the shared constants above...

SHR_CONST_PI

3.14159265358979323846 ! pi

SHR_CONST_REARTH = 6.37122e6 ! radius of earth " m

SHR_CONST_G = 9.80616 ! acceleration of gravity ~ m/s~2
SHR_CONST_CPDAIR = 1.00464e3 ! specific heat of dry air ~ J/kg/K
SHR_CONST_CPWV = 1.810e3 ! specific heat of water vap ~ J/kg/K
SHR_CONST_ZVIR = (SHR_CONST_RWV/SHR_CONST_RDAIR)-1.0 ! RWV/RDAIR - 1.0
SHR_CONST_LATVAP = 2.501e6 ! latent heat of evaporation ~ J/kg
SHR_CONST_LATICE = 3.337eb ! latent heat of fusion ~ J/kg

!
SHR_CONST_STEBOL = 5.67e-8 ! Stefan-Boltzmann constant ~ W/m~2/K~4
SHR_CONST_KARMAN = 0.4 ! Von Karman constant
!
!

SHR_CONST_OCN_REF_SAL = 34. ! ocn ref salinity (psu)
SHR_CONST_ICE_REF_SAL 4. ! ice ref salinity (psu)

[@IE

10 GLOSSARY 45

SHR_CONST_RWV =

SHR_CONST_RGAS/SHR_CONST_MWWV ! Water vapor gas constant ~ J/K/kg
SHR_CONST_RDAIR =

SHR_CONST_RGAS/SHR_CONST_MWDAIR ! Dry air gas constant ~ J/K/kg
SHR_CONST_RGAS =

SHR_CONST_AVOGAD*SHR_CONST_BOLTZ ! Universal gas constant ~ J/K/mole
SHR_CONST_MWWV = 18.016 ! molecular weight water vapor
SHR_CONST_MWDAIR = 28.966 ! molecular weight dry air ~ kg/kmole
SHR_CONST_BOLTZ = 1.38065e-23 ! Boltzmann’s constant ~ J/K/molecule
SHR_CONST_AVOGAD = 6.02214e26 ! Avogadro’s number ~ molecules/kmole

Constants in the Coupler whose values do not come from the "shared constants"...

albdif = 0.06 ! 60 deg reference albedo, diffuse for ocn albedo calc
albdir = 0.07 ! 60 deg reference albedo, direct for ocn albedo calc
umin = 1.0 ! minimum wind speed (m/s) for atm/ocn flux calc
zref = 10.0 ! reference height (m) for atm/ocn flux calc
ztref = 2.0 ! reference height for air T (m) for atm/ocn flux calc
spval = 1.0e30 ! flags special value (missing value)

10 Glossary

combine
Add together two or more fields that are on the same domain; e.g., latent
heat flux plus sensible heat flux on a T42 grid with the same land mask

communication interval
The time interval at which a component model exchanges data with the
coupler.

concurrent execution
When two or more coupled system components are executing at the same time.

domain
A grid together with a domain mask.

domain mask
A mask that indicates which grid cells are active or inactive.

grid
Coordinate arrays without a mask, cell area, decomposition information;
e.g., a T42 grid.

10 GLOSSARY 46

map
Same as "regrid"; move a data field from one domain to another.

mask
True/false flags associated with a specific grid; e.g., a land mask.

merge
Take two or more fields of the same type (e.g., land, ocean, and ice
surface temperatures), which are all on the same domain (e.g., all on a
T42 grid, global domain), and the same number of corresponding cell
fractions (fraction of land, ocean, and ice, which together sum to unity),
and create one field, e.g., (merged surface temperature) =
(ice frac)*(ice T) + (ocn frac)*(ocn T) + (1lnd frac)*(lnd T)

regrid
Same as "map"; move a data field from one domain to another.

sequential execution
When two or more coupled system components do not execute at the same

time.

timestep
A model’s internal integration increment in time. Note: the Coupler does
not know a model’s internal timestep, it only knows a model’s communication

interval.

