
 

Automatic Detection of Audio Defects  

in Personal Music Collections 

 

 

Ignasi Adell Arteaga 

 

 

 

MASTER THESIS UPF  / 2016 

Master in Sound and Music Computing 

 
 
 
 
 
 

Master thesis supervisor: 

Perfecto Herrera Boyer 

Department of Information and Communication Technologies 
 

Universitat Pompeu Fabra, Barcelona 

 

 
 



 ii 

 
 



 iii 

To my parents and my grandparents, specially my grandfather Manolo, who passed 
away and could nott see me finishing this master and my graduation. I dedicate it to him 
with all my love. 
 



 



 v 

Acknowledgements 
 
 

I would like to thank you all my master colleagues for the help received during the last 
two years, and for the good environment we created during the course. 
 
I would specially thank you my thesis’ supervisor, Perfecto Herrera, for the guidance 
during this work and helping me to deal with the limitation of time. He really 
transmitted his knowledge in the classes and during the realization of the thesis. 
 
And the last but not least, I would like to thank you Xavier Serra and all the SMC/MTG 
members for allowing me to study this master and help me to extend my knowledge 
about audio, music and research. It has been a long 2-year journey where I have learn 
many aspects about the current technology already developed and being currently 
developed for Music Information Retrieval purposes. 



 



 vii 

Summary 
 
 
Personal digital music collections have been growing in the last decade due to audio 
formats like MP3, WAVE or FLAC. They usually come from diverse sources and some 
may not be always reliable. They may have clicks, gaps, bad equalization, clipping, 
noise or many other kinds of alterations. 
 
Vast amounts of important audio material, from historic recordings to relatively recent 
recordings on analogue or even primitive digital media, were re-released on the new 
digital media formats. Digital audio restoration has had an increasing application to 
sound recordings from the Internet, however, there is still a very large amount of music 
collectors with lots of music in legacy formats such as vinyl or cassette that with the 
advent of sharing culture through Internet are making available many digitized audio 
files that may not have passed through a proper audio restoration. 
 
The quality assessment of audio signal has made a lot of improvements since the digital 
signal processing (DSP) techniques appeared and started to be used for sound 
restoration purposes. Subjective assessment of audio quality has been used for a long 
time, but its time-consuming and external human and technical influences (such as 
listener’s expertise, sensitivity or the evaluation equipment) have lead to objective 
approaches, such as the PEAQ for wideband audio signals and PESQ for speech signals 
in ITU standard regulations. Some of these issues have been already addressed and they 
even have commercial implementations. However, there is still room for research for 
some others.  
 
In this work, current taxonomy of known audio defects is reviewed according to the 
state of the art methods, highlighting the characteristics of each type and the solutions 
(if any) for their detection and correction. Afterwards, the vinyl technology is analyzed 
due to its error-prone nature. That is why the defects related to digitizing vinyl media 
are chosen for research here: the lack of RIAA filtering and the altered playback speed.  
 
Later, the mechanisms for detection are exposed. Those mechanisms are based on the 
psychoacoustic model developed by Zwicker (that is, the use of bark-band 
decomposition of the spectrum) and state-of-the-art machine learning techniques. Their 
implementation is defined based on preliminary data obtained from a reduce dataset of 
200 instances split in 10 different genres. 
 
The resulting algorithms are evaluated under an extended defect-controlled dataset of 
2000 and 800 files respectively. Two different machine-learning techniques are used, a 
decision-tree (C4.5) and Support Vector Machines (SMO). 
 
The accuracy is discussed for both of them against the global dataset and per genres 
subsets (in the case of the the lack of RIAA filtering) using the 10-Fold cross-validation 
method. Finally their doability for the problem under test is analyzed and further 
improvements are suggested. 
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1. Introduction 
 
Personal digital music collections have been growing in the last decade due to audio 
formats like MP31, AAC [9], WAVE23 and FLAC4. Nowadays, Internet is the main 
source of music content for the majority of consumers. They can easily find their 
favourite music and download it from many different sources56. However, some of the 
obtained audio files might not be very reliable. They can have many different kinds of 
alterations: glitches, gaps, bad equalization, clipping, noise, incompleteness, time-
stretching, they might have been transcoded from lossy formats, or they might have bit 
level errors due to being transferred through Internet. In addition, Compact Disk media 
(CD) [1] may yield reading errors due to mechanical and surface problems while 
reading the data stored in them, which may lead to having faulty encoded files. Also, 
when compressing digital audio files the perceived quality of compressed audio depends 
on the dynamic range of the encoded track [22]. 
 
These alterations or errors present in audio files are known in the Music Information 
Retrieval field as audio defects. An audio defect is a consequence of the degradation of 
an audio source. It will be considered as any undesirable modification to the audio 
signal [33], which can appear due to many different causes: 
 
- Digitization: while transferring legacy media (vinyl noise, warped vinyl, CD reader 
errors, CD scratches, cassette degradation). 
- Transcoding among formats: failures in the encoding algorithms. 
- Mastering mistakes: Stereo-imaging alteration, low quality equipment. 
- Faulty recordings due to noisy environments, faulty recording equipment. 
- Compression errors for broadcasting/downloading: lossy/lossless compression issues. 
- Transmission errors while transferring files: data loss, improper transmission 
equipment. 
- Filtering issues: undesired audio effects, signal cancellations. 
 
The application of digital signal processing (DSP) to problems in audio has been an area 
of growing importance since the pioneering DSP work of the 1960s. In the 1980s, DSP 
micro-chips became sufficiently powerful to perform the complex processing operations 
required for sound restoration. This led to the first commercially available restoration 
systems, with companies such as CEDAR Audio Ltd7 or Sonic Solutions8 selling 
dedicated systems to recording studios, broadcasting companies, media archives and 
film studios. Vast amounts of important audio material, from historic recordings to 
relatively recent recordings on analogue or even digital media, were noise-reduced and 
re-released on the new digital media formats. Digital audio restoration has therefore an 
increasing application to sound recordings from the Internet, and high-quality defect 
reducers are a standard part of any computer or HIFI system. However, there is still a 
very large amount of music collectors with many much music in legacy formats such as 
vinyl or cassette that are making available many digitized audio files that may not have 
                                                 
1 http://www.iis.fraunhofer.de/en/ff/amm/prod/audiocodec/audiocodecs/mp3.html 
2 http://soundfile.sapp.org/doc/WaveFormat/ 
3 http://www.digitalpreservation.gov/formats/fdd/fdd000001.shtml 
4 https://xiph.org/flac/ 
5 http://whymusicmatters.com/find-music 
6 http://www.digitaltrends.com/music/best-free-and-legal-music-download-sites/ 
7 http://www.cedaraudio.com/products/products.shtml 
8 https://en.wikipedia.org/wiki/Sonic_Solutions 
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passed through a proper audio restoration process, leading to unreliable quality files 
circulating on the Web. 

 
 

1.1. Audio quality  
 
 

Many applications in the music industry rely on high quality standards, mainly when 
offering products or services to a huge number of costumers. Internet stores or 
subscription platforms are just some examples of important stakeholders that deserve a 
defect-free corpus of music files to be used for their business purposes. 
 
Digitization techniques, in charge of developing digital preservation strategies, add 
more complexity to quality requirements. Normally, master files (initial acquisitions 
from the very first source, i.e. the recording studios) are of higher quality and therefore 
claim more storage space. Quality assurance (QA) is an essential tool for estimating the 
loss of information during the process of digitization, that must focus on maintaining 
the quality after migration or curation actions, and to verify that the migrated collection 
matches to those quality standards. 
 
In order to ensure a certain level of audio quality in a large music collection, an 
automated procedure to check its status is needed. Here is where Music Information 
Retrieval researchers play an important role to develop mechanisms and systems that 
will be able to detect any possible issue in the audio signal so that they can be corrected 
or at least detected and therefore increase the value of our music collections, either by 
correcting those files or marking them as defective. Currently, many of the commonly 
applied quality metrics do not provide an accurate interpretation of information loss and 
distortions; on the other hand, quality assessment of digitized collections is in many 
parts an unresolved matter. In addition, many of the quality assurance processes have 
been relying mostly on subjective testing (as explained in Chapter 2), consequently 
involving many other personal or external variables that may affect the final verdict on a 
given digitized item. As exposed by Schindler and Huber-Mörk in [20], perceptual 
quality metrics should play an essential part in quality assurance of either initial 
digitization, migration or curation9 workflows.  
 
Assessing the quality of audio objects or collections lacks of reference objects to 
calculate relative quality estimations. Non-Reference quality assessment (also known as 
blind- or non-intrusive quality assessment) tries to define objective estimates describing 
distortions of audible stimuli that correlate to the often-called subjective mean opinion 
scores (MOS)10. Applying the described user-evaluated attributes to blind-quality 
estimates would provide an invaluable objective measure for assessing the quality of 
digitized objects. 
 
 

                                                 
9  Digital curation is the selection, preservation, maintenance, collection and archiving of digital assets. Digital curation establishes, 
maintains and adds value to repositories of digital data for present and future use. Successful digital curation will mitigate digital 
obsolescence, keeping the information accessible to users indefinitely. 
10  http://www.ntt.co.jp/qos/qoe/eng/technology/sound/03_1.html 
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1.2. Motivation 
 
As can be seen in various reports from the recording industry like Nielsen11, IFPI12 and 
RIAA13, vinyl sales have raised quite a lot in the last decade. An evolution of it can be 
seen in Figure 1. 
 

 
Figure 1. IFPI’s worldwide vinyl sales evolution from 1997 to 2013. 

 
 
These results actually mean that this music format is still taken into account by the 
customers and much of the audio data being shared across Internet may have its source 
in this technology. Although vinyl quality improved in the last 3 decades with formats 
like 180-220gram records14, the promising high-definition vinyl15 and new pressing 
methods16, this medium has some already known issues17: noise (due to its reduced 
dynamic range, 60-80 dB versus 90-96 dB for CD recordings), tracking distortion or 
rotor fluctuations in the playback equipment are some examples. Thus, they can cause 
that digitized files are not good enough in terms of quality. One can find some 
audiophile and non-audiophile blogs18192021 where those problems are exposed and 
solutions are proposed among vinyl consumers. However, there are still some issues 
unaddressed that particularly relate to vinyl. In next section, that problematic is 
reviewed among many other audio defects one can find in their personal music 
collections. 
 
The aim of thesis is therefore to extend the quality assessment on specific audio issues 
focusing on defects still unaddressed. As it is exposed in the next chapter, these issues 
are two: the lack of RIAA filtering and the altered playback speed, both related to vinyl 
recordings. The RIAA filtering is a pre-processing needed to be done prior to recording 

                                                 
11 http://www.homescanprivacy.com/us/en/insights/news/2015/thanks-to-strong-sales-vinyl-albums-are-off-and-spinning.html 
12 http://www.ifpi.org/news/IFPI-publishes-global-vinyl-market-details 
13 http://www.riaa.com/vinyl-still-rocks/ 
14 http://blog.vinylgourmet.com/2015/10/180-gram-vinyl-what-are-the-benefits-heavyweight-vinyl-records-explained.html 
15 http://www.digitalmusicnews.com/2016/03/15/high-definition-vinyl-will-soon-become-a-reality/ 
16 http://dancingastronaut.com/2016/02/record-sales-vinyl-lead-new-pressing-technology/ 
17 http://www.recordingmag.com/resources/resourceDetail/113.html 
18 https://hydrogenaud.io/index.php/board,70.0.html 
19 http://www.diyaudio.com/forums/analogue-source/ 
20 https://www.facebook.com/vinylproblems/ 
21 http://yabb.jriver.com/interact/index.php?PHPSESSID=3lffm8qa33uuh4ivio1v9jctk2&topic=73005.0 
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the audio to the physical vinyl format, so that it matches the conditions of the medium. 
This pre-process is then reversed when playing back the vinyl record in order to recover 
the original sound. The other issue under test is the detection of an altered playback 
speed. The idea behind this is to detect if the vinyl record was played at the nominal 
speed or not while it was being digitized. As it is explained in the next chapter, 
turntables have a pitch control (speed control), so the rotation motor can run faster or 
slower. If this control is changed (not set to 0) when digitizing the vinyl, the resulting 
audio file will not  be the same as the original. Therefore, the purpose of the algorithm 
presented here in the following chapters is to detect this problem. 
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2. State of the art 
 
In this chapter some of the research already done in the field is reviewed, and current 
status of it is exposed. First, recent research on quality evaluation and later audio defect 
types are explained along with related work on each of them. 
 
 

2.1. Quality evaluation in digital music collections  
 
Although there’s no consistent definition for quality yet, for certain restricted 
circumstances, it has an understood meaning for audio [6]. Audio quality can be defined 
as a subjective metric that describes music audio content, as an assessment of the 
accuracy, enjoyability, intelligibility of audio22 or a perceptual reaction to the sound of a 
product that reflects the listener’s reaction to how acceptable the sound of that product 
is23. As music is performed, recorded, and then perceived by users in a sequential 
manner, audio quality can also be assessed from different perspectives along this 
process. Many aspects are involved to assess audio quality, including musical aspects, 
environmental and equipment-related aspects for the recording conditions, and 
pleasantness or appealing aspects for the end-user perception of the recording. 
 
Although it is obviously easy for humans to judge the quality of a digital artefact, it is a 
challenging task to describe objective measures that can be used to automate quality 
inspection of digital collections. Thus, quality evaluation can be considered from two 
different scopes: the subjective assessment and the objective assessment.  
 
First attempts in audio quality assessment were performed through subjective 
approaches. That means creating a group of listeners and building a set of questions for 
them to answer. Some examples can be found in the works done by Herrero [25], Repp 
[53] and Zimmerman, Levitin and Guastavino [8], where researchers elaborate different 
kinds of questionnaires and surveys are performed on a significant amount of listeners. 
As an example, Zimmerman et al [8] perform a subjective evaluation experiment on 
different listeners in order to determine the perceptual effects of different MP3 
compressions. They investigate if listeners prefer CD quality to mp3 files at various 
bitrates (from 96kbps to 320kbps), and if this preference is affected by the musical 
genre. Their conclusion is that listeners significantly preferred CD quality to MP3 files 
up to 192kbps for all musical genres. In addition, it was observed a significant effect of 
expertise (sound engineers vs. musicians) and musical genres (electric vs. acoustic). The 
results indicate that MP3 compression introduces audible artefacts, and that listeners’ 
sensitivity to them varies depending on their musical expertise. Specifically, trained 
listeners can discriminate, report and significantly prefer CD quality over MP3 
compressed files for bitrates ranging from 96 to 192kbps. Obviously, the conclusions 
drawn by those works can be extrapolated to almost any subjective attempt on audio 
evaluation, where external aspects such as the listener’s musical training, listener’s 
expertise, or the used audio equipment have to be considered as variables in the 
experiment, although not belonging to the nature of the recordings under evaluation. 
 

                                                 
22 https://en.wikipedia.org/wiki/Sound_quality 
23 http://www.salford.ac.uk/computing-science-engineering/research/acoustics/psychoacoustics/sound-quality-making-products-
sound-better/sound-quality-testing/defining-sound-quality 
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There are also some standards on how to proceed in the subjective assessment of audio 
signals, mainly published regulations from the ITU24 (International 
Telecommunications Union), such as the ITU-R BS.1284-1 [10], the ITU-R BS.1534-1 
[11] or the ITU-R BS.1116 [12]. BS.1284 presents “General methods for the subjective 
assessment of sound quality“, where the experimental design of listening tests is 
exposed, plus the test methodology concerning test procedures and grading scales is 
defined. BS.1534 specifies the “Method for the subjective assessment of intermediate 
quality level of coding systems” and BS.1116 is used for the evaluation of high quality 
audio systems having small impairments. The ITU recommendations for the subjective 
assessment of audio quality are very efficient, but difficult to implement due to the 
aforementioned aspects such as the need of a large set of listeners or the proper setup for 
the surveys to be performed. 
 
The objective evaluation of the quality of digital audio collections requires identifying 
the amount of lost information. Due to semantic discrepancies [24] between low-level 
audio descriptors (for example Mean Squared Error, MSE) and perceived quality 
degradation (unnoticeable, annoying...), similarity measures estimating the perceived 
quality audio files are normally required. Further analysis of the content (often requiring 
concrete domain knowledge) might be necessary. In addition, a severity scale needs to 
be defined to classify corruptions occurred after recording, migration, transmission or 
reading. Existing quality metrics have to be evaluated on how they align to such 
severity definitions and if they are robust under certain levels.  
 
So far, most of the work reported on reference-less quality estimation relies on the use 
of prior knowledge of quality degrading processes. Such processes have to be identified 
and analyzed in order to define proper models that can be used to formulate adequate 
non-reference quality estimates for digital collections. However, music is lacking proper 
definitions of quality issues and degradation models, as well as attempts towards 
comprehensive objective perceptual quality metrics. Previous research on objective 
assessment of sound quality started in the early 1990s. ITU released some regulations 
which cover various assessment methods for both audio quality (Perceptual Evaluation 
of Audio Quality, PEAQ [21]) and speech quality (Perceptual Evaluation of Speech 
Quality, PESQ [25]). These approaches generally compare the quality of the sound 
signals processed/affected by a test system (a multimedia device, a codec, or a 
telecommunication network...) with a reference signal in order to evaluate or improve 
the performance of the system. 
 
Particularly for the audio domain, PEAQ model compares a signal that has been 
processed in some way with the corresponding original signal (see Figure 2). 
Concurrent frames of the original and processed signal are transformed into a time-
frequency representation by the psychoacoustic model of hearing developed by Zwicker 
and Fastl [18], using Discrete Fourier Transform and filter banks. Then a task-specific 
model of auditory cognition reduces these data to a number of model output variables 
(MOV25), and finally, those scalar values are mapped to the desired quality 
measurement. 
 

                                                 
24 http://www.itu.int/en/Pages/default.aspx 
25 https://en.wikipedia.org/wiki/Model_output_statistics 
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Figure 2. PEAQ's high-level description model 

 
Important information for yielding the quality measurement is derived from the 
differences between the frequency and pitch domain representations of the reference 
and test signals. In the frequency domain, the spectral bandwidths of both signals are 
measured and the harmonic structure in the error is determined. In the pitch domain, 
error measures are derived from the excitation envelope modulations, the excitation 
magnitudes, and the excitation derived from the error signal calculated in the frequency 
domain. 
 
In addition to the aforementioned approaches for audio quality measurement, one can 
find other relevant research with regards to the attempt of combining subjective and 
objective approaches for audio evaluation. Some of them are based on complementing 
the subjective assessment with improvements in the tests and their evaluation, and 
others are trying to implement solutions for automatic and objective quality assurance 
methods for audio signals. 
 
Wilson and Fazenda [6] evaluate the quality of recordings from two different 
perspectives: the objective part and the subjective part in order to create a quality-
prediction model. A set of objective measures are defined in order to characterize the 
audio signals, and they are compared among a set of different qualities. The set of 
objective measures are low-level and high-level features extracted from the audio such 
as Roll-off, Crest Factor, Low-frequency energy, tempo and emotion. On the other 
hand, a subjective test is run on a group of 24 listeners with different musical training 
and skills who are asked to answer about their experience after listening to the set of 
music samples. The dataset consists of 55 music samples from rock and pop genres with 
different audio qualities. The hypotheses under tests are mainly three: if there are 
noticeable differences in quality between samples, if listener training has an influence 
on perception of quality and if quality is related to one or more objective signal 
parameters. The results show that dynamics, distortions, tempo and spectral features are 
correlated with the perceived audio quality. However, it is shown that additional 
subjective testing is required to increase confidence in their findings. Aspects as 
increasing the group of listeners or the dataset and extending the set of features would 
enhance and make more reliable the results obtained. 
 
Kim, Sung, Lee and Park [7] propose an objective method for sound quality evaluation. 
Due to the inner inaccurate and time/place dependency properties of the subjective 
listening test, they discuss the implementation of a new objective system using the 
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subjective evaluation items as a database for it. The database is built based on 
evaluation items as Tonal Balance, Clarity, Spatial and Ambience. These items are 
obtained through a correlogram of physically measured audio features such as Spectral 
Deviation, Peakness, and level differences/ripple/time decay of bass, mid and treble 
frequencies. Afterwards they verify its performance by analyzing the correlation 
between the subjective factors and the objective ones. The results show that the 
proposed system is able to offer results equally accurate as the results obtained from 
subjective listening tests (with a correlation of around 0.93). Therefore, the objective 
evaluation system seems to have the ability to discriminate quality in a way that could 
be  similar to listener’s criteria. 
 
Zhonghua Li et al. [23] propose the first automatic, non-reference audio quality 
assessment framework to improve live music video online search. They first construct 
two annotated datasets of live music recordings, from four genres of music (rock, pop, 
electronic, and country) that tend to have more live recordings of concerts. The first 
dataset contains 500 human-annotated pieces, and the second contains 2400 synthetic 
pieces generated by adding noise effects to clean recordings. The noise effects are: 
amplitude compression and amplification, band-pass filtering, white noise addition and 
crowd noise addition. Different audio features sets such as low-level acoustic features, 
MFCCs, and psychoacoustic features are extracted from all recordings. Then, the 
assessment task is formulated as a ranking problem and they try to solve it using a 
learning-based scheme called Learning-to-rank (LTR) approach against the feature sets. 
They later validate the effectiveness of the framework by performing both objective and 
subjective evaluations. As a result, it has been observed that most video search engines 
do not take audio quality into consideration when retrieving and ranking results. 

 
 
2.2. Audio defects and their detection 
 
One can find many different problems that may appear in an audio file. Their 
characteristics and related detection works are reviewed in the following paragraphs. 
 
 

a) Clicks and pops 
 
Clicks or pops are sudden, short peaks in the audio file that can result from a variety of 
causes, including mechanical defects in analogue recordings (caused by a small scratch 
in the record). They yield unwanted transient signals that generate noises appearing in 
the audio along with the original signal. Clicks are perceived as a variety of defects 
ranging from isolated ‘tick’ noises to the characteristic ‘crackle’ associated with 78rpm 
disc recordings. Godsill and Rayner [28] from CEDAR Audio Ltd present different 
mechanisms for finding them based on modelling the distinguishing features of audio 
signals and abrupt discontinuities in the waveform (i.e. clicks). They also propose some 
mechanisms to remove the detected click and interpolating the missing samples in 
audio, which are applied to the commercial software of the company [3]. In addition, 
Laney [5] proposes another method based on Wavelet fingerprinting: a tool to recognize 
errors in the signal by comparing a correct audio image matrix against the matrix of the 
defect. By taking the continuous wavelet transform of various recordings, a two-
dimensional binary display is created from the audio data. The detection algorithm 
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involves a numerical evaluation of the similarity between the known flaw and a given 
fingerprint. 

 
 
b) Hum 
 
Hum is a sound associated with alternating current at the frequency of the mains 
electricity. The fundamental frequency of this sound is usually 50Hz or 60Hz, 
depending on the local power-line frequency. The sound often has heavy harmonic 
content above 50–60 Hz. Because of the presence of mains current in mains-powered 
audio equipment as well as ubiquitous AC electromagnetic fields from nearby 
appliances and wiring, 50/60 Hz electrical noise can get into audio systems, yielding an 
undesired low-frequency noise that can be heard in an audio signal. This also creates 
strong 2nd and 3rd harmonics at 100/120Hz and 150/180Hz. The basic detection and 
correction method is as the one explained in [49], a high-quality band-stop filter to 
remove the specific frequency components. 
 
 

c) Phase issues 
 
Phase issues can result from a distorted or inaccurate stereo image, caused by poor 
microphone placement or other similar issues. When converting a stereo file to mono, 
the presence of phase issues can cause the left and right channels to cancel each other 
out partially or completely. A perfect audio component will maintain the phase 
coherence of a signal over the full range of frequencies. If some waveforms are “out of 
phase”, or delayed with respect to one another, there will be some cancellation in the 
resulting audio, causing the comb filter effect26, where the spectral components of the 
signal get altered due to the constructive and destructive interferences. This often 
produces what is described as a “hollow” sound. How much cancellation, and which 
frequencies it occurs at depends on the waveforms involved, and how far out of phase 
they are (two identical waveforms, 180 degrees out of phase, will cancel completely). 
The human ear is largely insensitive to phase distortion, though it is very sensitive to 
relative phase relationships within heard sounds. An out-of-phase source has normally 
missing parts in low and low-mid frequencies. It may also lack a proper spot in the 
stereo field, and seem to constantly move around without reason. In the most drastic 
cases, the stereo field will appear to become immensely wide, almost enveloping the 
listener from behind the ears, but have a huge gap in the centre. Lipshitz, Pocock and 
Vanderkooy [47] perform a series of experiments to survey the audible consequences of 
phase nonlinearities in the audio chain. Those experiments are conducted using a 
flexible system of all-pass networks constructed for this purpose, focusing on the 
audible effects of mid-range phase distortions. Another good explanation of the 
consequences of this issue can be found in Mike Senior’s article in Sound On Sound 
magazine27. 
 
 

                                                 
26 https://en.wikipedia.org/wiki/Comb_filter 
27 http://www.soundonsound.com/techniques/phase-demystified 
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d) DC offset 
 
DC offset is a shift in the audio, causing the positive and negative parts of the signal not 
to average to zero and it can limit the dynamic range of an audio file. The cause is 
normally a fixed voltage offset somewhere in the audio chain before the analog signal is 
digitized. The voltage may be directly caused by a faulty or low-quality soundcard, or 
may come from some other device that is attached to the card. It can also occur with 
some microphones, during the A/D conversion by feedback loops within delay units. 
Low-frequency distortion may not be audible in the initial recording, but if the 
waveform is re-sampled to a compressed or lossy digital format like MP3 those 
distortions may become audible. DC offset can cause audible clicks where audio 
sections are cut and pasted together, and can cause a click on playback at the start and 
end of the track, even without editing. DC offset will become worse if the recording is 
amplified. An example of detection can be seen in [29], where Krochmal, Hamel and 
Whitecar develop a system based on a method that detects a DC offset in an audio 
signal provided by an audio processing unit to an audio power amplifier, wherein the 
audio amplifier provides a clip detect signal back to the audio processing unit. The 
method begins by sampling the clip detect signal to determine if the clip detect is active. 
A power level of the audio amplifier is noticed if the clip detect is active, and the power 
level is compared to a threshold. DC offset can be reduced by a one-pole one-zero high-
pass filter. Having the entire waveform, the mean amplitude can be subtracted from 
each sample and remove the offset. 
 
 

e) Clipping 
 
If a signal is passed through an electronic device which cannot accommodate its 
maximum voltage or current requirements, the waveform of the signal can become 
clipped, containing a large amount of harmonic distortion. The result of it sounds very 
rough and harsh. In [30], Adler et al. present a novel sparse representation based 
approach for the restoration of clipped audio signals. The clipped signal is decomposed 
into overlapping frames and the de-clipping problem is formulated as an inverse 
problem, per audio frame. The clipping is solved by a constrained matching pursuit 
algorithm that exploits the sign pattern of the clipped samples and their maximal 
absolute value. 
 
 

f) Silence 
 
Silence detects the parts of the audio file at which the audio signal falls to zero, since 
the signal is perceived as discontinuous. Muhlbauer [4] designs an algorithm using only 
low-level signal processing methods without any training as in traditional machine 
learning approaches. The silence detection algorithm finds silent parts in the audio, 
trying to distinguish between intentional pauses and real defects. The envelope of the 
signal is estimated and the filtered audio data is thresholded to obtain a vector of silent 
parts in the signal.  
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g) Gaps 
 
A gap is a missing part of the audio signal that creates a jump in it, yielding a 
discontinuity in the waveform. The cause of it may be a scratch, a cut in the recording 
or digitization error where samples cannot be read and get discarded, resulting in an 
incomplete file. Kauppinen and Kauppinen [51] develop an algorithm for the correction 
of gaps of up to several thousand samples in an audio signal. The reconstruction is 
based on a novel method for time-domain discrete signal extrapolation. The missing or 
disturbed portion of the audio signal is replaced by a weighted average of signals 
extrapolated from the areas preceding and following the disturbed part. Impulsive-type 
errors usually distort the underlying signal irreversibly, and the damaged signal portion 
does not contain any information of the original signal. In the proposed method the 
damaged signal samples are not used in computing the replacing samples. The 
reconstruction method is applied in practice to correct scratches from signals digitized 
from badly damaged vinyl recordings. 
 
 

h) Aliasing 
 
Aliasing [30] appears when a very low sample rate is used. It actually occurs when the 
frequency being sampled is higher than one-half the sample rate (called the Nyquist 
Frequency by the sampling theorem) and no low-pass filtering at that frequency has 
been performed. If too low sampling rate is used, the signal can impersonate another 
signal at lower frequency. Aliasing is well-understood but often overlooked in the 
coding process. Even the use of some anti-aliasing filters may not prevent aliasing, 
since a poor design may permit some high frequency components. And since many 
signals are sampled at very close to Nyquist, design of suitable anti-aliasing filters is 
difficult. Aliasing introduces additional problems when used in conjunction with 
compression. It results in the quantization noise introduced into a specific subband 
creating additional noise at different frequency locations. Thus, frequency components 
that have negligible effect on audio quality become non-negligible when they are 
aliased down into frequencies that are more audible. Although there are many ways that 
aliasing problems can be avoided, it is not guaranteed that all popular audio coders will 
have implemented these methods. Even if the sample rate of the audio file would offer 
it, the signal in that file might not utilize the full bandwidth. This could happen when 
vintage recordings are digitized or the file format uses insufficient bandwidth. 
Muhlbauer [4] addresses this problem by implementing an algorithm that analyzes the 
audio and compares it to a configurable, normalized bandwidth. The overall bandwidth 
is estimated to be the frequency where the cumulative spectral power reaches 80% of 
the overall spectral power. 
 
 

i) Lossy compression 
 
Irreversible compression (also known as lossy compression) uses inexact 
approximations and partial data discarding to represent the content. Most lossy 
compression reduces perceptual redundancy by first identifying perceptually 
“irrelevant” sounds, that is, sounds that are very hard to hear. However, some artefacts 
are created when low bitrates are used:  loss of bandwidth (MP3s and AACs show the 
effects of a brick-wall filter on the upper frequencies, removing high-frequency content 
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above about 16kHz), pre-echoes or birdies (explained in the next section). An extensive 
explanation is also written in Ian Corbett’s article in Sound On Sound Magazine28. Liu 
et al. [32] model the frequently induced audible artefacts and analyze the problematic 
encoder modules. The severity of the artefacts is investigated through both the 
subjective and objective measures. In addition, Zhou, Jinglei, et al. [34] develop a 
method for telling whether the WAV audio has been compressed with the audio 
encoders (MP3, AAC or OGG) by using the statistical features of phase difference. The 
proposed method can effectively detect whether the given WAV audio is original or not, 
and furthermore, it can identify the type of the codec. 
 
 

j) Birdies 
 
A birdie [30] is a false or phantom signal that appears in the signal due to the 
aforementioned lossy compression. For low bit rates, slight variations of the masked 
threshold from frame to frame leads to very different bit assignments. As a result, 
groups of spectral coefficients may appear and disappear, resulting in the appearance of 
spurious audio objects. They usually sound like unmodulated carriers (signals with 
"dead air"). Occasionally they are modulated by clicks, humming sounds, or audible 
tones. Conventional approaches to overcome the birdie artefact involve use of Low Pass 
Filters to reduce the amount of signal to quantize. However, they do not eliminate the 
birdie artefact if the effect is seen in the in-band components. Prakash, Vinod, et al. [36] 
propose a new algorithm that modifies the bit allocation strategy such that the critical 
bands are preserved, while still maintaining the perceptual distortion criteria. 
 
 

k) Pre-echoes 
 
Pre-echoes [30] occur when a signal with a sharp attack begins near the end of a 
transform block immediately following a region of low energy. When a transient occurs, 
the perceptual model of the codec will allocate only a few bits to each of the quantizers 
because a transient signal will spread out over many subbands. It results in unmasked 
distortion throughout the low-energy region preceding in time the signal attack. One 
hears only the echo preceding the transient, not the one following because this latter is 
masked by the transient, that is, a sound is heard before it actually occurs. It is most 
noticeable in impulsive sounds. Iwai and Lim [37] examine the factors which contribute 
to a pre-echo, and discuss the method of pre-echo detection and reduction implemented 
on the MIT Audio Coder (MIT-AC) real-time system. The MIT-AC uses an adaptive 
window selection algorithm to switch between long and short transform windows. Long 
windows offer higher coding gains and greater frequency selectivity, while short 
windows reduce the length of a pre-echo. Due to temporal masking effects, pre-echoes 
which are sufficiently reduced in duration become inaudible to the human ear. Thus, by 
switching between long and short windows, the MIT-AC is able to maintain high 
coding gain while reducing the pre-echo effect. 
 
 

                                                 
28 http://www.soundonsound.com/techniques/what-data-compression-does-your-music 
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l) Noise bursts 
 
Noise bursts are short-time noisy sounds overlapped with original audio signal. The 
reason for those defects might be as diverse as MP3 frame errors or other transmission 
or coding errors. These defects show high energy and almost random distribution across 
the full bandwidth. Muhlbauer [4] creates a method that, in a frame-wise manner, the 
audio data is scanned for regions with high energy and almost equally spread spectrum, 
which are considered to be noise. To detect the spread spectrum the mean value of the 
spectrum for a frame X of N audio samples is calculated. Another work, by Benjamin 
and Gannon [31], examine the distortions in the audio at the point of conversion back to 
the analogue domain, where the effect of digital-to-analogue converters (DACs) 
introduces errors in the process. 
 
 

m) Dynamic range compression 
 
A compressed dynamic range (or a low SNR) means a reduction of the energy 
difference between softer and louder parts of the signal (reduction of the ratio of 
maximum to minimum loudness in a given audio signal). Several parameters may be 
involved, including attack, release, delay and slope. Audio compression reduces loud 
sounds above a certain threshold while leaving quiet sounds unaffected. Fielder [50] 
examines the criterion yielded by the peak sound levels of music performances 
combined with the audibility of noise in sound reproduction circumstances for noise-
free reproduction of music. The limitations due to microphones, analogue-to-digital 
conversion (ADC), digital audio storage, low-bitrate coders, DAC conversion, and 
loudspeakers are reviewed, so that the necessary dynamic range is determined for the 
most demanding circumstances. 
 
 

n) Added noise 
 
Added noise to the original signal can result in a very low Signal-to-Noise ratio (SNR). 
It is referred as random noise and it is normally caused by an undesired background 
noise while recording or by digitization errors while converting among formats (due to 
inconsistencies in a low-quality audio converter). There are also some other particular 
cases of noise, such hum or hiss, that are explained later in this chapter as they follow 
specific patterns of behaviour and affectation to the signal. Laney’s approach [5] tries to 
identify this defect by using its aforementioned Wavelet fingerprinting technique. 
 
 

o) Altered stereo image 
 
The stereo image of an audio signal is the perceived spatial locations of the sound 
source(s), both laterally and in depth. An image is good if the location of the performers 
can be clearly perceived, and bad if the location of the performers is difficult to locate. 
When there is a defect in it, (mainly for signals with uncorrelated transient information 
in each channel, like an applauding audience) the signal may seem to disappear from 
different locations at different times. In Sound On Sound article29 by Hugh Robjohns 

                                                 
29 http://www.soundonsound.com/techniques/processing-stereo-audio-files 
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the different procedures for creating a correct stereo image plus the creation of diverse 
effects are reviewed. A patent by Paul F. Bruney [35] presents an audio stereo image 
recovery system using a set of speakers in conjunction with a conventional stereo 
system and an auditory interface unit, which provides improved high fidelity playback. 
The system includes for example, two front high fidelity speakers in the normal 
stereophonic position, and a second pair of high fidelity speakers placed on an axis 
defined by the ears of the listener. The amplifier feeds the front speakers directly. The 
interface unit attenuates the left and right channel signals according to the inter-channel 
signal level differential, and distributes them in proper proportion to the second pair of 
speakers to create full stereophonic realism with enhanced depth perception and 
positioning of the original sound sources. Carlos Avedano describes in [56] a frequency 
domain framework for source identification, separation and manipulation in stereo 
music recordings. Based on a simplified model of the stereo mix, a similarity measure 
between the Short-Time Fourier Transforms (STFT) of the input signals is used to 
identify time-frequency regions occupied by each source based on the panning 
coefficient assigned to it during the mix. Individual sources are identified and 
manipulated by clustering the time-frequency components with a given panning 
coefficient. After modification, an inverse STFT is used to synthesize a time-domain 
processed signal. He first describes a cross-channel metric, known as the panning index, 
that identifies the different sources based on their panning coefficients in the mix. Given 
the behavior of the panning index error, an adaptive mapping or window function to 
separate and/or manipulate the individual sources in the mix is proposed. This method is 
then applied to several problems such as source enhancement and re-panning.  
 
 

p) Lack of RIAA filtering 
 
Most of the amplitude of a recorded signal comes from its low frequencies. Because of 
these high amplitudes, if the signal was directly transcribed to fit the constraints of the 
vinyl format, it would reduce the signal-to-noise ratio unacceptably at many 
frequencies. To avoid this, the transcribed audio is previously equalized so that low 
frequencies are attenuated and high frequencies are boosted. On playback, this process 
is reversed, so that low frequencies are boosted and high frequencies are attenuated. 
This is known as the RIAA filtering. When the recording RIAA filter is missing in the 
reproduction and conversion processes (no pre-emphasis) two main things are 
noticeable: the bass frequencies, with their long wavelengths, are so big and loud that 
they cause the groove to make really large squiggles. The second thing is that records 
are noisy. When the playback RIAA filter is missing (pre-amplifier), the low 
frequencies are attenuated and high frequencies are boosted, yielding and audio signal 
with mostly scratchy noise and clicks. By the time this thesis has been written, no 
methods were found to detect the lack of it, so that is why it was addressed in this work. 
A more detailed explanation of the defect and the detection mechanism can be found in 
the next chapter. 
 
 

q) Crosstalk 
 
Crosstalk is the introduction of noise (from another signal channel) caused by ground 
currents, stray inductance or capacitance between components or lines. It reduces, 
sometimes noticeably, the separation between channels (e.g., in a stereo or a 
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multichannel audio system). The perceptual effect is the signal bleeding or leaking from 
one channel to another. Renals et al. [38] focus their detection experiments in four 
types: local speech, crosstalk plus local speech, crosstalk alone and silence. They 
describe two experiments related to the automatic classification of audio into these 
classes. The first experiment attempts to optimize a set of well-known acoustic features 
for its use with a Gaussian Mixture Model (GMM) classifier. The second experiment 
used these features to train an ergodic30 Hidden Markov Model (HMM) classifier. Tests 
performed on a large corpus of recorded meetings show classification accuracies of up 
to 96%. 
 
 

r) Speed-up and time-stretch 
 
When the audio has suffered speed-up or time-stretch alterations [39], the signal is re-
sampled at a specified sampling rate but returned using the original sampling rate, 
which results in a speed-up (or slow-down). This yields a sound file of a given length 
sped up or slowed down so it will play in a shorter or longer period of time. Making the 
file longer increases its duration and reduces its tempo and pitch, whereas making the 
file shorter reduces duration and increases tempo and pitch. This effect can be easily 
created with the pitch control of a turntable, where the rotation motor can be set to run 
faster or slower. If this control is changed (not set to 0, typically within a range from -
8% to +8%), the tonal components and the tempo of the record are decreased or 
increased. In latest turntable models (and also in professional CD players), the pitch can 
be maintaned so that only the tempo is altered (therefore creating the time-stretch 
effect). In addition, this problem can be caused just by a miscalibration in the turntable 
nominal rotation speed or also in magnetic tapes incorrectly calibrated when digitizing 
the recording. By the time this thesis has been written, no methods were found to detect 
this modification, so that is why it was addressed in this work. An explanation of the 
defect and the detection mechanism can be found in the next chapter. 
 
 

s) Wow 
 
Wow is similar to speed-up mechanism, but the re-sampling frequency is time-
dependent: it oscillates around the original sampling rate at a specified frequency and 
amplitude. It mainly happens in audio files converted from magnetic tape recordings, 
where the playback rotor may not run at a constant speed. The frequency oscillated 
overtime, as can happen when there’s non-constant speed in record players or tape 
machines. These are pitch variation defects which may be caused by eccentricities in the 
playback system or motor speed fluctuations. The effect is a very disturbing modulation 
of all frequency components. Godsill and Rayner [28] present a novel technique for 
restoration of musical material degraded by wow and other related pitch variation 
defects. An initial frequency tracking stage extracts frequency tracks for all significant 
tonal components of the music. This is followed by an estimation procedure which 
identifies pitch variations which are common to all components, under the assumption 
of smooth pitch variation with time. Restoration is then performed by non-uniform re-
sampling of the distorted signal. Czyzewski and Maziewski [40] [41] have also worked 

                                                 
30 Relating to or denoting systems or processes with the property that, given sufficient time, they include or impinge on all points in 
a given space and can be represented statistically by a reasonably large selection of points. 
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on mechanisms to reduce the wow effect. In [40] they provide a short overview of the 
concepts that establish methods based on the tone tracking, on the spectral analysis of 
audio components, and on non-uniform resampling. In [41] they examine the capacity 
of non-uniform sampling rate conversion techniques, involving different interpolation 
methods. Those techniques are: linear interpolation, four polynomial-based interpolation 
methods and the windowed-sinc based method [14]. The performance of an artificially 
distorted audio signal, restored using non-uniform resampling, is evaluated on the basis 
of standard audio defect measurement criteria and compared for all of the 
aforementioned interpolation methods. The chosen defect descriptors are: total 
harmonic distortion, total harmonic distortion plus noise and signal to noise ratio. 
 
 

t) Rumble 
 
Rumble is a low frequency (normally below 50Hz) noise contributed by the turntable of 
an analogue playback system. It is caused by imperfect bearings, uneven motor 
windings, vibrations in driving bands or room vibrations that are transmitted by the 
turntable mounting to the phono cartridge. Bauer [44] analyzes the nature of turntable 
rumble, with the object of evolving a method for rating the performance quality of 
turntables with respect to this defect. Spectral distribution of rumble for a typical 
turntable is shown, identifying the effect of resonances of the tone-arm, and the 
audibility characteristics of rumble are reviewed, relating it to the equal loudness 
contour characteristics of the ear and the typical noise in a room. Dolby [42] presents a 
noise reduction system which is suitable for high-quality audio recording or 
transmission channels. A special signal component, derived from four band-splitting 
filters and low-level compressors, is combined with the incoming signal during 
recording or sending. During reproduction, the additional component is removed in a 
complementary way and noises acquired in the channel are attenuated in the process. In 
addition, Donald Knight has patented a hardware rumble eliminator [43] for electric 
phonographs or in wave-signal receivers.  
 
 

u) Hiss 
 
Hiss is random additive background noise form of degradation common to all analogue 
measurement, storage and recording systems. It is present on analogue magnetic tape 
recordings caused by the size of the magnetic particles used to make the tape. In the 
case of audio signals, the noise, which is generally perceived as ‘hiss’ by the listener, 
will be composed of electrical circuit noise, irregularities in the storage medium and 
ambient noise from the recording environment. Godsill and Rayner [28] expose 
different methods for hiss reduction, mostly based upon a frequency domain attenuation 
principle but also using a model-based setting (that is, using machine-learning 
approaches). Deng, Bao and Liang [45] propose a method based on Modified Discrete 
Cosine Transform (MDCT): the human auditory model and the parametric soft-
thresholding are introduced to the proposed method. A modified median absolute 
deviation is first adopted to avoid overestimate of noise levels. Next, the Modified 
Discrete Fourier Transform (MDFT) is constructed using the pre-enhanced MDCT 
coefficients so the masking threshold and parameters are calculated in MDFT domain. 
Finally, a parametric soft-thresholding method is employed to attenuate the noise 
significantly and keep more high-frequency information. Czyzewski [46] implements 
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learning algorithms for the elimination of strong hiss found in old records and of 
impulse noise affecting transmitted audio signals. 
 
 

2.3. Commercial implementations 
 
Some of the aforementioned defects are already treated by commercial software 
applications.  
 
CEDAR’s commercial audio restoration applications have different corrective solutions 
for defects such as clicks and pops31 or hiss32. Other audio and video editors like 
Audacity33 or Final Cut34 already have some plug-ins for audio restoration that can 
remove issues such as background noise, clicks, pops, hum, hiss, silences, clipping and 
some other kinds of stationary noise. There are also noise reducers developed by Waves 
and Izotope35 that can be used while processing the audio in the digital audio 
workstation (DAW). Waves provides a package of plug-ins called Restoration36, 
containing applications for the removal of clicks, hum, DC offset and hiss among other 
types of noise. It has also stereo imaging processors such as S1 or PS2237. Izotope 
provides an audio editor suite called RX with a set of plugins for audio recovery, where 
defects such as clicks, pops, breathing, clipping or different equalizations can be 
corrected. It also has time-stretch and pitch-shifting functionalities. Other options are 
also other suites such as Bias Soundsoap38 or the Sony Oxford Restoration Tools called 
Sonnox Restore39. 
 
Universal Audio and FXSound have some tools for the stereo image recovery, called K-
Stereo Ambience Recovery40 and DFX Audio Enhancer41 respectively. They both have 
regeneration mechanisms for the the ambience and stereo depth. 
 
Celemony is another company in the audio restoration field that released Melodyne42, a 
tool capable to apply corrections on the melody and tempo of the song. It detects the 
tempo, musical scale and the tuning and lets us to correct melody and tempo deviations 
(such as Wow or time-stretch) using a graphical interface, through its different 
algorithms: Melodic and Polyphonic, Percussive and Universal. Another important 
system from this company is Capstan43, a Wow and Flutter corrector. The Capstan 
algorithm is able to recognize small amounts of wow and flutter and speed variations 
within the musical material (tape, wax, vinyl...). It also allows detailed editing so that 
the corrective curve can be drawn manually. The detection of notes and their deviations 
is based on the patented DNA Direct Note Access technology included also in 
Melodyne.  

                                                 
31 http://www.cedaraudio.com/products/duo/declickle.shtml 
32 http://www.cedaraudio.com/products/cedarforpyramix64/cfp64autodehiss.shtml 
33 http://www.audacityteam.org/ 
34 https://documentation.apple.com/en/finalcutpro/usermanual/index.html#chapter=59%26section=6%26tasks=true 
35 https://www.izotope.com/en/products/repair-and-edit/rx.html 
36 http://www.waves.com/bundles/restoration 
37 http://www.waves.com/plugins/stereo-imaging 
38 http://www.soundness-llc.com/products/soundsoap5/ 
39 https://www.sonnox.com/bundles/sonnox-restore 
40 http://www.uaudio.com/store/mastering/k-stereo-ambience-recovery.html 
41 https://www.fxsound.com/dfx/features.php 
42 http://www.celemony.com/en/melodyne/what-can-melodyne-do 
43 http://www.celemony.com/en/capstan 
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Below there’s a summary table (Table 1) with some of the aforementioned commercial 
implementations: 
 

 Audacity CEDAR 
Final 
Cut 

Celemony 
(Melodyne, 
Capstan) 

Universal 
Audio 

FX 
Sound 

Sony 
Oxford 

Restoration 
Tools 

Bias 
Soundsoap 

Waves Izotope 

Clicks, pops X X X    X X X X 

Hum X  X    X X X X 

DC offset X      X X X  

Clipping X      X X  X 

Silence X          

Pre-echoes  X         

Dynamic 
range 

compression 
X X X      X X 

Added noise X      X X X X 

Altered 
stereo 
image 

    X X   X  

Speed-up 
and time-

stretch 
X   X       

Wow    X       

Rumble X          

Hiss X X     X X X X 

 
Table 1. Commercial software implementations for audio restoration. 

 

 
2.4. Research goal 
 
As can be seen from the aforementioned works at the time this thesis has been written, 
there is still room for research on the automatic detection of audio defects. Some of the 
reviewed audio issues do not have a proper mechanism for their analysis and therefore 
for their elimination. Many of them are directly related to human auditory perception. 
They don't just refer to errors in the audio signal; they have intrinsic characteristics of 
the psychoacoustic behaviour of the human hearing. Issues such as faulty stereo image, 
narrow dynamics or time-stretching are examples of them. Listening tests are very 
reliable but also very expensive, time-consuming and sometimes impractical. Because 
of that, as exposed in section 2.1, recommendations for objective measurement of sound 
quality have been ultimately proposed. Although the objective methods standardized by 
ITU (PEAQ for wideband audio signals and PESQ for speech signals) try to imitate the 
way human listeners perceive sounds using psychoacoustic and cognitive models, they 
appear not to be suitable for some audio defects, such as gaps, silence, noise bursts, 
phase issues or the defects addressed in this thesis. That is why current audio restoration 
and quality analysis systems deserve enhancements in the detection mechanisms in 
order to be able to find other audio signal issues (such as time-stretch, bad stereo image, 
undesired filtering).  
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Therefore, the research goal in this thesis is to investigate two different audio issues not 
widely addressed apparently in the field and propose mechanisms to find them. First, 
the characteristics for each defect are analyzed (signal-wise and in the perceptual 
domain), and then a detection method is proposed for each one. These methods are 
based on audio signal processing techniques and state-of-the-art machine-learning 
techniques, which are explained in the following section. And second, a piece of 
software is built using current digital signal processing and data mining tools. The 
details of the design are explained in chapters 4 and 5.  
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3. Problems focused in this thesis: defective RIAA filtering 
and playback speed changes 

 
 
In order to understand the defects under study, this section reviews the basic concepts 
behind the recording and playback technologies of the vinyl music format. First, the 
process of creating a vinyl record is exposed, and later the necessary equipment to play 
back such format is reviewed. As will be seen, these both aspects present some 
drawbacks that need mechanisms of detection. One refers to the pre-process needed in 
the audio prior to be stored in the medium (the so-called RIAA equalization), and the 
other refers to the problems when digitizing the audio from the vinyl record to digital 
formats (altered playback speed).  
 
Since there were no such detection mechanisms at the time this thesis was written, 
algorithms for this purpose are presented in the next chapters. 
 
 

3.1. The vinyl technology 
 
a) Creation and characteristics of a vinyl recording 

 
A vinyl gramophone or phonograph record consists of a disc of polyvinyl chloride 
plastic, engraved on both sides with a single concentric spiral groove in which a 
sapphire or diamond needle is intended to run, normally from the outside edge towards 
the centre (see Figure 4). 
 

 
 

Figure 4. Vinyl grooves under 1000x magnification microscope. 
 
 
Vinyl record standards follow the guidelines of the RIAA (the Record Industry 
Association of America). One can find different sizes: normally 12inch, 10inch and 
7inch are available. The inch dimensions are not actual record diameters, but a trade 
name. The record diameters are commonly 30 cm, 25 cm and 17.5 cm in most countries. 
12 inch records are often associated with a play speed of 33 1/3 rotations per minute. 7 
inch records, on the other hand, are often referred to as 45s because they are most 
commonly played at a speed of 45 rotations per minute. 
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Figure 5. Vinyl production process. 
 
 
The sound quality and durability of vinyl records is highly dependent on the quality of 
the vinyl used. Most vinyl records are pressed on recycled vinyl. Formats like 180-gram 
or 220-gram tend to resist the deformation caused by normal play better than regular 
vinyl. 
 
 

b) The playback equipment 
 
In order to play a vinyl record, a turntable is needed in the audio chain, as seen in Figure 
6. A complete turntable is comprised of three main different parts: a device for 
physically turning records, a tone-arm to hold the cartridge, and a cartridge to produce 
the signal. The cartridge houses the needle, which is the tiny part that actually comes 
into contact with the record and traces the groove.  
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Figure 6. Turntable parts. 

 
 
A turntable is essentially a mechanical device and its output is a tiny signal of the order 
of a few mV. The signal is generated by the motion of the stylus as it traces the groove. 
The mechanism has tiny coils of wire within the cartridge moving relative to a magnetic 
field as the stylus moves from side to side whilst tracing the record's groove. This 
voltage needs to be amplified to raise its level to something comparable with CD 
players etc, so that a typical domestic system amplifier can handle it. 
 
 

 
Figure 7. Vinyl playback chain 

 
 
As can be seen in Figure 7, a turntable with tone-arm and cartridge is required, plus a 
preamp which is then fed into an amplifier which drives a pair of loudspeakers. Before 
CD players were invented, and up until the mid 1990s, it was normal for amplifiers to 
have a preamplifier built-in to them, with one input on the amplifier labelled phono. The 
built-in preamplifier was often compatible with moving magnet cartridges only. The 
reason behind having a preamplifier in the chain is due to particular characteristics of 
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the vinyl technology that require a pre-process in the vinyl recording, called RIAA 
equalization. This process is explained in the next section. 
 
Nowadays a lot of loudspeakers which do not appear to require an amplifier have 
become available. In actual fact, they don not require an external amplifier because the 
amplifier is built into one of the speakers. Built-in preamplifiers are not usually included 
with these amplifiers/speakers and an external preamplifier will be required for playing 
back vinyl. 
 

 
3.2. Lack of RIAA filtering – The RIAA curve 
 
Most of the amplitude of a recorded signal comes from its low frequencies. Due to their 
high amplitudes, if they were directly transcribed to fit the constraints of the vinyl 
format, they would reduce the signal-to-noise ration unacceptably at many frequencies.  
Bass frequencies would take up too much space on the record (which would reduce 
available playing time) and treble frequencies would take up so little space that surface 
noise would attenuate them. Therefore, the transcribed audio is equalized so that low 
frequencies are attenuated and high frequencies are boosted. On playback, this process 
is reversed, so that low frequencies are boosted and high frequencies are attenuated. 
This bass cutting and treble boosting is known as pre-equalisation or pre-emphasis, and 
on playback the opposite must be done to restore the correct balance, i.e. the bass must 
be boosted and treble cut. 
 
 

 
Figure 8. RIAA filtering curves for playback and recording 

 
 
RIAA set a standard in 1954 for the precise amount of low frequencies cut and high 
frequencies boost to be applied when records are made, and the converse boost/cut 
required when records are played back. There were different standards of cut/boost 
before 1954, each requiring amplifiers with different playback characteristics to achieve 
accurate reproduction, but the RIAA specification became universally adopted and 
allowed all record manufacturers and amplifier manufacturers to work with a common 
standard. The particular equalization curve used is known as the RIAA curve, and its 
shape can be seen in Figure 8. All modern records are cut to the RIAA standard. The 
line input connections, designed for tape machines and CD players do not have the 
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RIAA curve. Every phono pre-amplifier must have this playback equalization built into 
it. 
 
The curve was designed to allow the record pressing plant (and mastering facility) to 
pre-emphasize higher frequencies, which evened out the size of the grooves making 
high quality records much easier to manufacture. The curve acts as a sort of equalizer, 
attenuates low frequencies and amplifies high frequencies (relative to a 1 kHz reference 
point) in order to achieve the maximum dynamic range for a lateral cut vinyl disc. The 
grooves in a stereo phonograph disc are cut by a chisel shaped cutting stylus driven by 
two vibrating systems arranged at right angles to each other. The cutting stylus vibrates 
mechanically from side to side in accordance with the signal impressed on the cutter. 
The resultant movement of the groove back and forth about its centre is known as 
groove modulation. The amplitude of this modulation cannot exceed a fixed amount or 
cutover occurs. Cutover, or overmodulation, describes the breaking through the wall of 
one groove into the wall of the previous groove. Since low frequencies cause wide 
undulations in the groove, they must be attenuated to prevent overmodulation. At the 
other end of the audio spectrum, high frequencies must be amplified to overcome the 
granular nature of the disc surface acting as a noise generator, thus improving signal-to-
noise ratio. 
 
When the recording RIAA filter is missing (no pre-emphasis) two main aspects are 
noticeable: the bass frequencies, with their long wavelengths, are so big and loud that 
they cause the groove to make really large squiggles. And secondly, the records are 
noisy. If the playback RIAA filtering is missing (no preamplifier) the recording sounds 
with very low loudness overtime, a very “weak” sound. 
 

 
3.3. Playback speed in vinyl recordings - The pitch control 
 
A variable speed pitch control is a mechanism on an audio device such as a turntable, 
tape recorder, or CD player that allows to deviate from a nominal speed (see Figure 9). 
Analog pitch controls vary the voltage being used by the playback device, whereas 
digital controls use digital signal processing to change the playback speed or pitch. A 
typical DJ deck allows the pitch to be increased or reduced by up to 8%. In the turntable 
mechanism, it is achieved by increasing or reducing the speed at which the platter 
rotates. Because the pitch of a sound is directly related to its frequency, lowering the 
frequency will also lower the pitch. This is what pitch control does: it slows down (or 
speeds up) the platter rotation by a certain amount. This reduces (or increases) the 
number of times the record will spin past the needle in one second and therefore the 
pitch will drop (or rise). In addition, the tempo (measured in beats per minute, or BPM) 
of the track also drops. 
 

 
 
 
 
 
 
 

Figure 9. Detail of the pitch control of a turntable 
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When digitizing recordings from those legacy formats, it is important to be sure the 
speed the recording is played at is the nominal one. Otherwise, the digitized audio file 
will not be as equal as the original one: the playback speed will get altered. This 
problem can appear due to a different position of the pitch control when digitizing, but it 
can also be caused by problem in the rotor of the turntable, so that nominal speed is not 
reached or overpassed due to a low-quality or faulty equipment. 
 
The purpose of this thesis is to detect if an audio recording was digitized in such 
abnormal conditions, either due to the pitch control not being at nominal value (0%), or 
due to a defect on the turntable’s rotor mechanism. 
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4. Method 
 
4.1. Materials 
 
a) The datasets 
 
a) Dataset for RIAA detection 
 
The dataset used for testing and in the final implementation consists on 1000 files split 
in 10 different music genres (100 files each): Classical, Electronic-Dance, 
Experimental, Jazz, Lounge-Downtempo, Metal-Industrial, Pop-Rock, Rap-Dubstep, 
Reggae-Ska, Soul-Funk. This selection of music genres tries to cover a large number of 
music spectrum.  
 
For each original file, the corresponding “RIAA-less” counterpart has been created, by 
filtering the inverse response of the RIAA (that is, filtering with the recording curve as 
seen in Figure 10): 
 

 
Figure 10. RIAA and Non-RIAA instances creation. 

 
 
In total, the number of instances is 2000: 1000 with correct RIAA and 1000 without the 
RIAA filtering applied. 
 
 
b) Dataset for altered playback speed. 
 
The dataset in this case consists on 100 files split in 8 different music genres: Classical, 
Electronic-Dance, Jazz, Lounge-Downtempo, Pop-Rock, Rap-Dubstep, Reggae-Ska and 
Soul-Funk. 
 
For each original file, the corresponding altered counterparts are created (as shown in 
Figure 11), by modifying the speed at the different percentages (pitch ranges) explained 
before: +/-1%, +/-2%, +/-5% and +/-8%. As a result, a total the of 800 instances is 
created and different speeds. 
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Figure 11. Different altered instances creation from the original input 

 
 
 

b) Software tools 
 
a) MA-Toolbox 
 
The Music Analysis Toolbox (MA-Toolbox) [13] is a collection of functions for 
MATLAB44 created by Elias Pampalk. It contains functions to analyze and compute 
similarities on audio. The implemented measures focus on aspects related to timbre and 
periodicities in the signal. In this case, the function ma_sone() has been used in order to 
get the bark spectrum of each file under test. The bark spectrum (bark scale) is 
explained in the next section. 
 
b) WEKA and Python-weka-wrapper 
 
WEKA or “Waikato Environment for Knowledge Analysis” [3] is a collection of 
machine-learning algorithms for data mining tasks developed by the Wakaito University 
from New Zealand. It is open source software issued under the GNU General Public 
License. is published under the GNU General Public License. It is implemented in Java, 
and the algorithms can be applied either directly to a dataset or called from Java code. 
Weka contains tools for data pre-processing, classification, regression, clustering, 
association rules, and visualization. 
 
WEKA uses a proprietary file format called Attribute-Relation File Format (ARFF)45, 
which is used to store all information needed for a dataset and the data mining tasks to 
be performed with it. It is structured in two main parts: the header (containing the name 

                                                 
44 http://uk.mathworks.com/products/matlab/index.html 
45 http://weka.wikispaces.com/ARFF 
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of the dataset the attribute types and the available classes of data) and the data of each 
instance following the rule in the example below: 
 

@RELATION riaa 
@ATTRIBUTE ratio_0_9 NUMERIC 
@ATTRIBUTE ratio_1_9 NUMERIC 
@ATTRIBUTE ratio_2_9 NUMERIC 
@ATTRIBUTE ratio_21_9 NUMERIC 
@ATTRIBUTE ratio_22_9 NUMERIC 
@ATTRIBUTE ratio_23_9 NUMERIC 
@ATTRIBUTE ratio_4_0 NUMERIC 
@ATTRIBUTE ratio_5_0 NUMERIC 
@ATTRIBUTE ratio_6_0 NUMERIC 
@ATTRIBUTE class {riaa_ok, riaa_ko} 
@DATA 
0.46483529, 0.66772020, 0.80625808, 0.66896194, 0.55944031, 0.40802291, 
1.91796827, 1.98463261, 2.09811139, riaa_ok 
0.64432651, 0.87849170, 1.02301598, 0.58938521, 0.46214759, 0.31966868, 
1.78075182, 1.80180609, 1.77807617, riaa_ok 

 

 
This file is created when extracting the parameters from the signal and later used to train 
the system, as explained in the procedure of the algorithm in section 4.2. 
 
In order to use WEKA from python code, the Python-weka-wrapper46 has been used.  
The python-weka-wrapper package makes it easy to run Weka algorithms and filters 
from within Python, as it offers access to Weka API using wrappers around JNI calls by 
a bridge from Java code. This wrapper has been included in the classification process 
between for both detection algorithm, explained in the next section. 
 

 
c) FFMPEG 
 
FFmpeg47 is a free software project that produces libraries and programs for managing 
multimedia data, originally developed by Fabrice Bellard. FFmpeg includes libavcodec, 
an audio/video codec library, libavformat, an audio/video container multiplexing and 
demultiplexing library, and the ffmpeg command line program for transcoding 
multimedia files. FFmpeg is published under the GNU General Public License, and can 
be used under most operating systems, including Linux, Mac OS X, Microsoft 
Windows, Android or iOS. 
 
This tool has been used to filter the original files with the recording (RIAA inverse) 
filtering in batch mode in order to create the dataset. 
 
 
d) SoX 
 
SoX48 stands for Sound-eXchange and is a cross-platform (Windows, Linux, MacOS X, 
etc.) command line utility that can convert various formats of computer audio files in to 
other formats. It can also apply various effects to these sound files, and, as an added 

                                                 
46 http://pythonhosted.org/python-weka-wrapper/ 
47 http://ffmpeg.org/ 
48 http://sox.sourceforge.net/sox.pdf 
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bonus, SoX can play and record audio files on most platforms. In this case, SoX has 
been used to prepare the instances with different playback speeds. 
 
 
 

4.2. Detection algorithms 
 
The algorithms to detect the aforementioned defects base their design in two main 
concepts: the bark decomposition of the signal spectrum and the use of machine-
learning algorithms such as Decision Trees, Support Vector Machines and Dynamic 
Time Warping. They are explained in the following sections so the whole procedure can 
be easily understood. 
 
 

a) Bark bands - The bark scale 
 
The Bark scale is a psychoacoustical scale proposed by Eberhard Zwicker [54] to model 
the frequency resolution of the human cochlea (that is, the bandwidth of the auditory 
filters). It is named after Heinrich Barkhausen who proposed the first subjective 
measurements of loudness. It is a frequency scale on which equal distances correspond 
with perceptually equal distances by the human auditory system. Above about 500Hz 
this scale is more or less equal to a logarithmic frequency axis, and below 500Hz it 
becomes more and more linear. 
 
The Bark scale is calculated using the formula below, that lets changing from frequency 
scale to barks scale: 
 

Bark = 13arctan(0.00076 f) + 3.5arctan ((f / 7500)2) 

The scale ranges from 1 to 24 and corresponds to the first 24 critical bands of hearing, 
that is, the regions in basilar membrane where there is a distinction in sound amplitude 
(see Table 2 below). 

Band 
number 

Central 
Frequency (Hz) 

Cut-off Frequency 
(Hz) 

Bandwidth (Hz) 

  20  

1 60 100 80 

2 150 200 100 

3 250 300 100 

4 350 400 100 

5 450 510 110 

6 570 630 120 

7 700 770 140 

8 840 920 150 

9 1000 1080 160 

10 1170 1270 190 

11 1370 1480 210 

12 1600 1720 240 

13 1850 2000 280 

14 2150 2320 320 
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15 2500 2700 380 

16 2900 3150 450 

17 3400 3700 550 

18 4000 4400 700 

19 4800 5300 900 

20 5800 6400 1100 

21 7000 7700 1300 

22 8500 9500 1800 

23 10500 12000 2500 

24 13500 15500 3500 

Table 2. Bark scale 

These bands have been directly measured in experiments on the threshold for complex 
sounds, on masking, on the perception of phase, and on the loudness of complex 
sounds. In all these cases the critical band seems to play an important role. The critical 
bands have a certain width, but their position on the frequency scale is not fixed, it can 
be changed continuously, perhaps by the ear itself. Therefore, the important attribute of 
the Bark scale is the width of the critical band at any given frequency, not the exact 
values of the edges or centres of any band. 

The Bark scale can therefore be a compact representation of the audio spectrum when 
calculating the spectrum’s energy for each band. This principle is used in the RIAA 
detection algorithm as it is described later. 

 

b) Machine-learning methods: C4.5 decision tree, Support Vector 
Machines and Dynamic Time Warping 
 
Machine-learning [26] comprises the techniques that let performing data mining, that is, 
the process of discovering patterns in data [19]. Data mining is defined as the extraction 
of meaningful information previously unknown and potentially useful from the data. 
This allows the analysis and the obtention of knowledge from it, so that a model of 
learning can be created. Later, this model can be applied to other data and predict or 
classify it. One can find many types of techniques, so that they can be applied 
depending on the nature of the data and according to the task to be performed: 
prediction, classification, clustering, etc. 
 
Normally, the process of data mining takes the following steps: 
 
1- Selection of variables: independent (attributes to be analyzed) and dependent (the 
value to be predicted or the class to be assigned. 
2- Data pre-processing (optional) in case data needs some arrangement such us removal 
of null, missing or inconsistent values. 
3- Knowledge model creation from training data. 
4- Knowledge extraction from observed data patterns. 
5- Model evaluation. 
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Given the type of data used in this thesis, a decision tree and support vector machines 
algorithms have been chosen, as they appear to yield great results on classification 
purposes [19]. Their fundamentals are explained in the next sections. 
 
 
a) C4.5 Decision tree 
 
A decision tree, as its name indicates it, is an algorithm where each branch is a decision 
rule depending on only one attribute: if an attribute a has value X then follow branch T 
(see Figure 12). Once the tree is built, an instance is classified by starting with the rule 
at the root, until a leaf is reached. Leaves are marked with the class, into which the 
instance is classified. C4.5 is a particular implementation of this type of algorithms, 
developed by Ross Quinlan [15]. 
 
 

 
Figure 12. Example of a Decision Tree 

Leaves are created when the node has different possible values. If the no more  
decisions are needed to assign the class, the branch ends with a leaf containing  
the class. 

 
 
The tree is built recursively (starting at the root): if all remaining instances are of the 
same class c, the current node becomes a leaf, otherwise the current node is expanded 
by choosing the attribute for which information gain [2] is maximal and a subtree is 
created for each of its possible values. 
 
 
b) Support Vector Machines (SVM) 
 
A Support Vector Machine (SVM) is a two-class learning algorithm that performs linear 
separation between the instances and it can be extended to n classes [17]. The main idea 
behind the SVM is that the linear separation task is not done on the n attribute values 
directly, but after transforming the n-dimensional attribute space into a so-called 
feature-space of higher dimensionality. Depending on the mapping function (known as 
kernel function), many problems that are not linearly separable in the attribute space get 
linearly separable in feature space). 
 



 

 36 

 
Figure 13. Example of a Support Vector Machine to separate 2 classes 

 
The optimal decision boundary is the hyperplane which separates the two classes and 
that has maximal distance to the closest data points from each class (this hyperplane is 
called maximal margin hyperplane, as can be seen in Figure 13). Once the maximal 
margin hyperplane is computed, its position (and hence the computed model) depends 
only on the points that are closest to it. These points are called support vectors as they 
can be seen as the most informative data points. 
 
 
c) Dynamic Time Warping 

 
Dynamic time warping (DTW) is an algorithm for measuring similarity between two 
temporal sequences which may vary in speed. In general, DTW is a method that 
calculates an optimal match between two given sequences (e.g. time series) with certain 
restrictions [48] [55]. The sequences are "warped" non-linearly in the time dimension to 
determine a measure of their similarity independent of certain non-linear variations in 
the time dimension, yielding a distance quantity between two given sequences, as seen 
in Figure 14: 
 

 
Figure 14. Time alignment of two time-dependent sequences.  

Aligned points are indicated by the arrows. 
 
 
The optimal path (called the cost matrix) of these alignments is calculated and as a 
result a global DTW distance is obtained (the total cost). 
 
This sequence alignment method is often used in time series classification, and it used 
in this thesis for calculating de distances between the reference file and the modified 
instances in the altered playback speed algorithm, explained later in this chapter. 

 
 



 

 37 

c) Procedure for RIAA detection algorithm 
 
The algorithm to detect if an audio file has been correctly converted using the RIAA 
pre-emphasis can be seen in the Figure 15 below: 
 

 
 

Figure 15. Block diagram of the RIAA detection algorithm 
 
 
First, the bark-band decomposition spectrum is obtained from the audio file under test. 
In order to do that, the energy spectrum is calculated along the frames, and the mean 
value for all the frequencies is obtained (as seen in figure 16): 
    
  

  
 

Figure 16. Example of correct RIAA spectrum (left) and incorrect RIAA spectrum (right)  
As can be seen above, the boosting of HF component is clearly noticed: the  
upper half of the spectrum has shifted upwards (more amplitude) and the 
lower has been shifted downwards (less amplitude). 

 
 
After that, the mean spectrum is decomposed in the 24 critical bands in the bark scale 
and the energy percentage is calculated, as shown in Figure 17: 
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Figure 17. Correct RIAA spectrum (up), Incorrect RIAA spectrum (down) using boxplots for a subset of 100 files. 

This method allows to see the energy percentage distribution per each bark band for all analyzed instances. 
 

 
According to Figure 17 , the difference between a correct RIAA processing and the lack 
of it is clearly noticeable. However, the relation between low-frequency and mid-
frequency components on one hand, and the relation between mid-frequency and high-
frequency components on the other, is indeed more relevant to see the spectrum 
behaviour. For that, a vector of bark ratios is calculated. 
 
Bark ratios are obtained taking into account the aforementioned relations between low 
and high frequencies against the mid ones (where no attenuation is performed by the 
RIAA filtering, so the original and the RIAA-less signal are the same). Obtaining such 



 

 39 

relations can provide an idea of the attenuation suffered in the most altered frequencies 
for the RIAA curve.  
 
The ratios calculated are 9 in total: ratio_1_9, ratio_2_9, ratio_3_9, ratio_22_9, 
ratio_23_9, ratio_24_9, ratio_1_4, ratio_1_5, ratio_1_6. That is, for example in ratio 
1_9, the relation of energy for band 1 (around 100Hz) and the band 9 (energy around 
1000Hz) is obtained. If the ratio has a big variation when calculated from RIAA-less 
signal to the RIAA signal, it could be said that low-frequencies have suffered an 
alteration (big ratio value). 
 
The values of those ratios for the given dataset are shown in Figure 18: 

 

       

Figure 18.  Boxplot of bark ratios for a subset of correct RIAA instances (up) and incorrect RIAA instances (down). 
The interval of values for each of the ratios is shown in a box, the red line being  
the mean value and the blue square containing the majority of the instances.  
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These ratios are really useful for the RIAA problem under study, since the spectrum is 
altered in an almost linear manner, as can be seen by the RIAA curves (in Figure 8). 
Therefore, the ratios between boundaries in the spectrum and the bark band number 9 
could be highly discriminant (where the spectrum is not altered as the curve is not 
filtering: it crosses 0dB at 1000Hz, and bark band number 9 contains the information for 
that frequency interval). In addition, the ratios 4-1, 5-1 and 6-1 are calculated due to 
being bands where instruments usually have their fundamental frequencies, and they are 
attenuated when RIAA filtering is not applied. 
 

 Interval Central 

 RIAA_OK RIAA_KO RIAA_OK RIAA_KO 

ratio_1_9 (0.55, 0.80) (0.30, 0.45) 0.65 0.40 

ratio_2_9 (0.75, 1.00) (0.50, 0.70) 0.85 0.60 

ratio_3_9 (0.85, 1.10) (0.65, 0.85) 0.95 0.75 

ratio_22_9 (0.55, 0.75) (0.85, 1.15) 0.65 1.00 

ratio_23_9 (0.40, 0.60) (0.70, 1.05) 0.50 0.90 

ratio_24_9 (0.25, 0.45) (0.55, 0.825) 0.35 0.70 

ratio_4_1 (1.40, 1.85) (1.9, 2.65) 1.5 2.1 

ratio_5_1 (1.40, 1.85) (2.0, 2,75) 1.5 2.2 

ratio_6_1 (1.30, 1.90) (2.0, 3.0) 1.6 2.4 
 

Table 3. Bark ratios for Non-RIAA and RIAA instances from boxplots of figure 15. 
Interval bark ratio values from boxplots for both RIAA-KO and RIAA-OK are shown. 
Also the central value for each ratio is displayed for the whole set of instances.  

 
 
As can be seen from Figure 17 and 18 and Table 3 above, it seems to be quite clear 
where thresholds can be set. However, the use of a machine-learning algorithm lets the 
thresholds to be set by the data and not in an absolute manner. Given an unknown 
instance, its resulting ratios vector is then classified using a machine-learning algorithm, 
trained by the aforementioned dataset, so that the class (RIAA_OK, RIAA_KO) is 
yielded as output. 
 
 

d) Procedure for altered playback speed detection algorithm 
 
The proposed algorithm to determine if a given audio file has suffered an alteration of 
the playback speed can be seen in the Figure 19 below: 
 

 
 

Figure 19. Block diagram of the altered playback speed detection algorithm 
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Given the audio file under test, the distance against the reference file is performed (that 
is, the same file but at nominal speed), using Dynamic Time Warping (DTW) technique. 
As a result, a distance value is obtained. Afterwards the instance under test is classified 
according to the distance value using a machine-learning algorithm, that lets to assign a 
class and therefore determine the amount of speed variation the audio file has suffered. 
If the distance is 0, it means the instance is at nominal speed, otherwise it is classified 
into one of the following classes: speed_minus1, speed_plus1, speed_minus2, 
speed_plus2, speed_minus5, speed_plus5, speed_minus8, speed_plus8. 
 
In Figure 20 it can be seen how the distance values move depending on the amount of 
alteration (that is, the percentage of up-speed or down-speed): 
 

 
Figure 20. Boxplot of absolute distance values for different speed variations. 

The interval of values for each of the speeds are shown in a box, the red line being  
the mean value and the blue square containing the majority of the instances 

 
 
The log value of the distance is also considered in order to see if there is any trend in the 
increment of speed following such logarithmic49 behaviour. As seen in Figure 20, the 
amount of distance increment between speeds seems to decrease as the speed alteration 
gets higher. Using the log of can may let us separate the distances more so that 
classification process could be easier for the algorithm. However, according to Figure 
21 below, it doesn’t seem to be the case, as it follows the same trend as using absolute 
distances: 
 
 

                                                 
49 https://en.wikipedia.org/wiki/Logarithm 
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Figure 21. Boxplot of logarithmic distance values for different speed variations. 

The interval of values for each of the speeds are shown in a box, the red line being  
the mean value and the blue square containing the majority of the instances 

 
 
From the Table 4 below, the comparison for absolute and logarithmic distance values is 
exposed: 
 

 Interval Central 

 Absolute value Logarithmic value Absolute value Logarithmic value 

-1% (70, 148) (4.25, 5.00) 105 4.65 

-2% (85, 178) (4.4, 5.15) 120 4.75 

-5% (100, 200) (4.6, 5.25) 135 4.8 

-8% (108, 205) (4.7, 5.3) 140 4.9 

+1% (70, 148) (4.25, 5.00) 105 4.65 

+2% (85, 178) (4.4, 5.15) 120 4.75 

+5% (100, 200) (4.6, 5.25) 135 4.8 

+8% (105, 205) (4.7, 5.3) 140 4.9 
 

Table 4. Absolute and logarithmic distance values  from boxplots of figures 20 and 21. 
Interval distance values from boxplots for all different percentages of speed alteration are  
shown. Also the central value for each distance is displayed for the whole set of instances.  

 
 
According to Table 4, at first sight it does not seem to be any difference in the interval 
or central values when comparing the same speed percentages, as they are clearly 
symetric either for the up-speed and down-speed counterparts (same amount of 
variation when decreasing or increasing the same percentage of playback speed). 
 
Looking at the central values of distance, the increment of distance does not seem to 
follow any regular pattern either when using absolute or logarithmic. In absolute values, 
when doubling from 1% to 2%, the increment is 15, the same as when increasing from 
2% to 5% (that is, more than the double), and later, when going from 5% to 8%, the 
increment gets reduced by 3 (5). For logarithmic values, the sequence is 1 from 1% to 
2%, 0.5 from 2% to 5%, and 1 again from 5% to 8%. 
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e) Evaluation  

 
a) 10-Fold Cross-validation 
 
N-Fold cross-validation is a method to evaluate the algorithm under a large dataset. In 
order to know the accuracy of it, the algorithm is tested against a large amount of files 
to see how it would behave in real data. Although it is impossible to test it for all 
existing data, using a large dataset can give a proper idea about the suitability of the 
system for real-world situations.  
 
The idea behind this method is the following: The dataset is split randomly in n parts of 
the same size. Every iteration, one of the parts is used for testing, and the other n-1 parts 
are used for training. Therefore every part for testing is different in each iteration. The 
results for every round are collected and weighted against the whole dataset, so that an 
estimated global accuracy value is obtained.  
 
The standard mode for this method is the so-called stratified 10-fold cross-validation, 
that is: the dataset is split in 10 parts of equal proportion from the whole dataset. As can 
be seen in Figure 22, 1 part is used for testing and the remaining 9 are used for training. 
As a result, the training process is performed 10 times and the 10 estimated accuracies 
are weighted into a global one. 
 

 
Figure 22. 10-Fold cross-validation procedure 

 
Numerous experiments on different machine-learning algorithms and different datasets 
show that 10 is usually the value that fits best for Music Information Retrieval purposes 
[16] [19]. 
 
 
b) Precision, recall and F-Measure 
 
The accuracy for each algorithm is given by four different measures: the Accuracy, the 
Precision, the Recall, and the F-Measure defined by the formulas below: 
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Where: 
- tp are True Positives: correctly identified. 
- fp are False Positives: incorrectly identified. 
- tn are True Negatives: correctly rejected. 
- fn are False Negatives: incorrectly rejected. 
 
These measures are standards for performance evaluation in machine-learning 
algorithms field [27]. 



 

 45 

5. Results 
 

5.1. Results for RIAA detection 
 
The algorithm was tested using the default parameter values for each classifier, except 
the C4.5, where different values of M (number of instances to create a leaf) have been 
used in order to see the effect of this parameter in the accuracy of the results. The value 
of this parameter is important as it will determine the complexity of the final classifier 
(the compactness of the tree [19]), and can improve predictive accuracy by the reduction 
of overfitting50. 
 
Below, the different accuracy values are provided given by the different values of M in 
C4.5:  
 

M=2 M=5 M=10 M=11 M=12 

94.22% 94.37% 94.82% 94,67% 94,42% 

 
Table 5. Correctly classified instances by C4.5 depending on the number of instances per leaf (M). 

 
As seen in Table 5, the value M=10 seems to reach the best results in the global dataset, 
since lower and higher values than this decrease the accuracy of the model. 
 
The mechanism of the decision tree for the given data can be understood by looking at 
the schema created by the algorithm (see Figure 23). In the example below, the tree is 
built using M=10 into the global dataset (all 2000 instances): 
 

ratio_1_9 <= 0.560713 
|   ratio_22_9 <= 0.619036 
|   |   ratio_2_9 <= 0.533008: riaa_ko (118.0/16.0) 
|   |   ratio_2_9 > 0.533008 
|   |   |   ratio_1_9 <= 0.469211  
|   |   |   |   ratio_23_9 <= 0.265462: riaa_ok (82.0/10.0) 
|   |   |   |   ratio_23_9 > 0.265462: riaa_ko (44.0/7.0) 
|   |   |   ratio_1_9 > 0.469211: riaa_ok (106.0/12.0) 
|   ratio_22_9 > 0.619036: riaa_ko (781.0/13.0) 
ratio_1_9 > 0.560713 
|   ratio_23_9 <= 0.673384: riaa_ok (791.0/12.0) 
|   ratio_23_9 > 0.673384 
|   |   ratio_1_9 <= 0.681671: riaa_ko (44.0/1.0) 
|   |   ratio_1_9 > 0.681671 
|   |   |   ratio_4_1 <= 1.3434: riaa_ok (13.0/3.0) 
|   |   |   ratio_4_1 > 1.3434: riaa_ko (11.0/3.0) 

 
Figure 23. Output yielded by WEKA framework. 

 

                                                 
50 Overfitting occurs when a model is too complex (such as having too many parameters relative to the number of observations). The 
model has poor performance and as it overreacts to minor fluctuations in the data. 
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Figure 24. Design of the decision tree by C4.5 for M=10 in the global dataset (2000 instances). 
 
 
According to it, not all ratios are necessary to find the best model to classify the given 
data (that is, their information gain is not as relevant for the training data as the others 
so no new node is created). Only 9 leaves and 17 nodes are necessary.  
 
It can be observed that the values for those ratios are evaluated (see Figure 24), and a 
new branch or a class is assigned. For example, if ratio_1_9 has a value greater than 
0.5607, then ratio 23_9 is evaluated (left part of the tree). On the other hand, if 
ratio_1_9 is less or equal to 0.5607, another branch is created (right side of the tree) and 
ratio_22_9. When a ratio is evaluated and no new branch is necessary to be created (that 
is, the value for that attribute directly relates to the class), then the class is yielded and 
the branch is finished. An example of this can be seen for ratio_2_9, where values lower 
or equal to 0.533 directly belong to the class RIAA-KO, whereas values greater than 
0.533 create a new sub-branch with other attributes to evaluate (ratio_1_9). 
 
It can also been seen that the same attribute can be evaluated several times with other 
values if that means the information provided by it gives some meaning for the model 
(such as ratio_1_9). 
 
The accuracy for each genre has been also considered for the study as the results can 
give relevant information about the suitability of the algorithm for different kinds of 
music. Since there is an huge variety of music, with their particular spectral 
characteristics (due to the instruments involved, the combination of frequencies and the 
effects into the signal), it has been considered a relevant focus in the experiments. 
 
The results for both learning mechanisms are exposed in Table 6 below: 
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 C4.5 (M=10) SVM 

Classical  83,67% 89,28%  

Electronic-Dance  83,50%  96,50% 

Experimental 79,79%   83,33% 

Jazz  92,42%  97,47% 

Lounge-Downtempo  92,93%  96,46% 

Metal-Industrial  96,42%  98,46% 

Pop-Rock  93,43%  100% 

Rap-Dubstep  96,46% 98,98%  

Reggae-Ska  96%  98% 

Soul-Funk  93%  99% 

GLOBAL 94.82% 95.02% 
 

Table 6. Accuracies for global dataset (all genres) and per genre. 

 
 
For the global dataset, SVM (95.02%) has better results than C4.5 (94,82%). C4.5 
yields the best results for Rap-Dubstep (96,46%) and Reggae-Ska (96%), and the worst 
for Experimental (79,79%), Electronic-Dance (83,5%) and Classical (83,67%). SVM 
yields the best results for Pop-Rock (100%), Rap-Dubstep (98,99%) and Soul-Funk 
(99%), whereas the worst results are for Experimental (83,33%) and Classical 
(89,28%). In overall terms and for both classifiers, the genres Experimental and 
Classical yield the worst results, whereas the best ones depend on the classifier used. 
However, Metal-Industrial and Rap-Dubstep yield similar results for both classifiers. In 
addition, some differences are spotted: Pop-Rock and Soul-Funk and far better classified 
by SVM than by C4.5. 
 
The overall Precision, Recall and F-Measure are given in Table 7 below: 
 

 SVM C4.5 (M=10) 

 RIAA-OK RIAA-KO RIAA-OK RIAA-KO 

Precision 0.935 0.968 0.942 0.954 

Recall 0.969 0.933 0.955 0.942 

F-Measure 0.952 0.950 0.949 0.948 
 

Table 7. Overall Precision, Recall and F-Measure for both classifiers per class. 
 
If we look at the confusion matrices, where detailed information about the correctly and 
incorrectly classified instances is shown (see Table 8), we can see the different 
accuracies for each class: 
  

SVM  C4.5 (M = 10) 

 riaa_ok riaa_ko   riaa_ok riaa_ko 

riaa_ok 964 31  riaa_ok 950 45 

riaa_ko 67 928  riaa_ko 58 937 
 

Table 8. Confusion matrices per SVM and C4.5. 
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The accuracies per genre are all displayed in the annex at the end of the document. 
 
C4.5 and SVM seem to have better results for RIAA-OK (950/964 correct respectively) 
than for RIAA-KO (937/928 correct respectively). RIAA-KO seems to be more difficult 
to detect than RIAA-OK. Per genre, the same pattern seems to happen: SVM also 
outperforms C4.5 for all genres, and RIAA-OK instances seem to be also easier to detect 
than the RIAA-KO instances.  
 

 
5.2. Results for altered playback speed detection 
 
The algorithm was tested using the same classifiers as the RIAA filtering detection and 
using the default parameter values for each of them. 
 
Two main different accuracies are calculated: one for the 8 classes of altered speed, and 
another for a binary classification (up_speed and down_speed). For this latter one, all 
the “minus”classes are grouped into down_speed class, and all the “plus” classes are 
grouped into up_speed. The idea in this case is to see if the accuracy improves or 
decreases when the knowledge model is simplified to only 2 classes. In addtion, per 
each experiment, both absolute distances and logarithmic distances are used to test the 
system. The results can be seen in Table 9 below: 
 

 C4.5 SVM 

8 classes – absolute distance 12.74% 13.92% 

8 classes – logarithmic distance 12.74 % 12.86% 

2 classes – absolute distance 50% 49.64 % 

2 classes – logarithmic distance 50% 47.14 % 
 

Table 9. Accuracies for each experiment using both machine-learning algorithms 

 
For the 8-classes dataset, the results show a very low accuracy (less than 14%) for both 
algorithms. However, SVM seems to have slightly better accuracy (13,92% against 
12,74% in the best case). On the other hand, the 2-classes dataset yields far better results 
(although not high enough for the algorithm to be considered useful for that purpose). In 
this case, C4.5 seems to perform better than SVM (50% against 49.64% in the best 
case). In addition, it can be seen that SVM absolute distance values yield slightly better 
results (13.92% and 49.64%) than logarithmic (12.86% and 47.14%). 
 
Due to similarity of the results between absolute and logarithmic approaches plus the 
lower performance of the logarithmic one, this section will be focused on the analysis of 
the absolute distances experiment. However, results from logarithmic distances tests can 
be found in the annex at the end of the document. 
 
The Precision, Recall and F-Measure are given in the Table 10 below for the case of 
absolute values: 
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 SVM C4.5 

 8-classes 2-classes 8-classes 2-classes 

Precision 0.125 0.496 0.107 0.250 

Recall 0.139 0.496 0.127 0.500 

F-Measure 0.113 0.496 0.105 0.333 
 

Table 10. Average Precision, Recall and F-Measure for both classifiers per each experiment. 
 
 
Looking at the confusion matrices we can see the correctly and incorrectly classified 
instances with the different accuracies for each class: 
 

 SVM ABSOLUTE DISTANCES (8-CLASSES) 

 
speed_
minus1 

speed_
plus1 

speed_
minus2 

speed_
plus2 

speed_
minus5 

speed_
plus5 

speed_
minus8 

speed_
plus8 

speed_minus1 46 30 3 8 3 5 8 2 

speed_plus1 47 29 4 6 5 10 4 0 

speed_minus2 41 24 5 4 7 9 12 3 

speed_plus2 41 21 5 7 5 11 14 1 

speed_minus5 39 14 8 7 5 9 18 5 

speed_plus5 36 19 8 6 6 4 21 5 

speed_minus8 33 18 7 11 9 3 18 6 

speed_plus8 36 17 6 8 4 8 23 3 
 

Table 11. Confusion matrices per SVM in 8-class dataset. 

 
 

 C4.5 ABSOLUTE DISTANCES (8-CLASSES) 

 
speed_
minus1 

speed_
plus1 

speed_
minus2 

speed_
plus2 

speed_
minus5 

speed_
plus5 

speed_
minus8 

speed_
plus8 

speed_minus1 23 36 2 2 2 1 19 20 

speed_plus1 33 26 5 2 3 3 15 18 

speed_minus2 25 22 1 15 4 1 20 17 

speed_plus2 21 24 14 5 3 1 22 15 

speed_minus5 10 22 4 6 4 13 26 20 

speed_plus5 13 19 8 4 8 1 31 21 

speed_minus8 15 16 4 4 4 7 28 27 

speed_plus8 9 23 3 4 4 7 36 19 
 

Table 12. Confusion matrices per C4.5 in 8-class dataset. 
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It can be observed in Table 11 and Table 12 that the classes getting the most instances 
are the extremes: minus1/plus1 and minus8/plus8 for both algorithms, that is, the 
classes that yield either the lowest values of distance or the highest values of distance, 
so that the classifier can separate the data in an easier manner. The other classes are in 
the area that overlaps among the classes (see Figure 25 below): 
 

 
Figure 25. Boxplot of absolute distance values for different speed variations. 

The interval of values for each of the speeds are shown in a box, the red line being  
the mean value and the blue square containing the majority of the instances 

 
 
For the 2-class experiment (see Table 13), it seems clear for SVM that there is no class 
easier to classify than the other, since as previously commented, the distance values are 
simmetric (almost equal for each counterpart, i.e minus1 and plus1). In the case of C4.5 
all instances are classified as down_speed, given an unreliable 50% of accuracy.  
 
 

SVM  C4.5 

  down_speed up_speed    down_speed up_speed 

down_speed 202 218  down_speed 420 0 

up_speed 205 215  up_speed 420 0 
 

Table 13. Confusion matrices per SVM and C4.5 for the 2-class dataset 
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6. Discussion 
 
6.1. RIAA detection 
 
Results show a great accuracy on the RIAA filtering detection, as bark ratios yield a 
proper representation of the importance of the frequency components within the 
spectrum. This representation is easily differentiable among audio files where the RIAA 
has not been applied and audio files correctly converted from legacy formats like vinyl. 
The global results show an overall accuracy of around 95% for the case of Support 
Vector Machines which leads us to think that it is a good model to detect such type of 
defect. The differences among classifiers show that SVM machines are more suitable 
for the given data and this particular binary classification. 
 
As can be seen below, it is clear where the ratio value move for RIAA-OK and RIAA-KO 
instances in the global dataset, as shown in Figure 26: 
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Figure 26. Boxplots for the global dataset of RIAA-OK (up) and RIAA-KO (down). 

 
 
However, if we look into the per genre results, we can clearly see that this performance 
decreases for some genres, such as Classical or Experimental. On the other hand, genres 
such as Metal-Industrial, Rap-Dubstep or Reggae-Ska perform really well. 
 
If we check the ratios distribution for Experimental, we see that they comprise a larger 
interval of values (Figure 27): 
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Figure 27. Boxplots for Experimental genre of RIAA-OK (up) and RIAA-KO (down) 

 
Many of the ratios move within a large interval (for example, as seen in Figure 27, 
ratio_2-9 moves from 0.4 to 1.4 for RIAA-OK and from 0.2 to 1.0 for RIAA-KO). This 
behaviour is not observed for the higher-accuracy genres, where the interval of values 
for this ratio is narrower (Figure 28):  
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Figure 28. Boxplots for Metal-Industrial genre of RIAA-OK (up) and RIAA-KO (down) 
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Figure 29. Boxplots for Rap-Dubstep genre of RIAA-OK (up) and RIAA-KO (down) 
 
 
For Metal-Industrial and Rap-Dubstep, ratio_2_9 shows similar values and within a 
smaller interval than Experimental (as seen in figure 21 and figure 22: they move from 
0.6 to 1.1 or 1.2 for RIAA-OK and from 0.4 to 0.8 for RIAA-KO). 
 
Similar behaviour can be observed in Classical music, however the variability is 
reduced, as the boxes are very narrow compared to the other genres (Figure 30): 
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Figure 30. Boxplots for Classical genre of RIAA-OK (up) and RIAA-KO (down) 
 
 

This means that some instances yield values out of the average range (called outliers, as 
shown in Figure 31 and figure 32), that is, the balances for the bark bands do not follow 
the average path due to the variability of music belonging to those genres. Metal-
Industrial or Rap-Dubstep instances usually follow similar patterns of musicality, 
whereas genres such as Experimental or Classical music have wider musical patterns. 
Therefore, when setting the threshold values for the ratios, many examples of 
Experimental/Classical may not fall in the set interval (as previously seen in the C4.5 
tree for example), and therefore they will be incorrectly classified by the algorithm.  
 

 

 
 

Figure 31. Detail of the Boxplots for Classical genre of RIAA-OK showing outliers. 
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Figure 32. Detail of the Boxplots for Classical genre of RIAA-KO showing outliers. 
 
 
Those outliers, due to their spectral components, do not get that much altered when the 
RIAA filtering is not applied. Experimental music instances usually have most of the 
energy in the extremes of the spectrum (wider range of frequencies), so that attenuation 
has not as relevant effect as in other genres. In addition, since Classical music has lower 
amount of energy in low frequencies than other genres and not much energy in the very-
high frequencies due to the instruments involved, in some cases, the attenuation at those 
frequencies is not as relevant as in other genres such as Metal-Industrial, Rap-Dubstep 
or Reggae-Ska, where there is prominence of the LF components (and loudness) is 
higher. Then, if the RIAA filtering is missing, those frequencies get highly attenuated. 
 
The piece Gata by Jeff Mills (Figure 33) is a good example of the algorithm not 
working properly for Experimental music, due to the invariance of the spectrum. The 
RIAA-KO and the RIAA-OK spectrums have almost the same shape, so the ratios will be 
similar: 
 
 

  
 

Figure 33. Spectrum of Jeff Mills’ Gata for RIAA-OK (left) and RIAA-KO (right) 

 
 
On the other hand, Links 234 from Rammstein is a Metal example where the alteration 
of the spectrum is clearly noticeable. It can be seen how the spectrum shape gets flatter 
when no RIAA filtering is applied (Figure 34): 
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Figure 34. Spectrum of Rammstein’s Links 234 for RIAA-OK (left) and RIAA-KO (right). 

 
 
An example of Classical music brought by Stravinsky, Concerto for Piano and Winds 
can be useful to understand the lower-accuracy results for this genre: 
 

   
 

Figure 35. Spectrum of Igor Stravinslky’s Concerto for Piano and Winds for RIAA-OK (left) and RIAA-KO (right). 
 
 
As seen in Figure 35, the shape of the spectrum remains almost the same, yielding 
similar results for the ratios. 
 
According to the aforecommented results this method seems to work very well for 
genres where the musical patterns are more similar such as Rap-Dubstep, Metal-
Industrial or Jazz-Swing, whereas other musically wider genres such as Classical or 
Experimental will have more difficulties in the detection part. 
 
 
 

6.2. Altered playback speed detection 
 
As can be seen from previously exposed results, the algorithm does not yield a proper 
performance for the given problem.  
 
In one hand, for the 8-classes experiment, accuracy percentage is extremely low (less 
than 14% in the best case). On the other, for the case of the 2-class experiment, the 
maximum reached accuracy is 50% (in the case of C4.5). However, it has been 
demonstrated in the previous section that it not reliable, since all instances are classified 
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to the same class. For the case of Support Vector Machines, the accuracy is a bit lower, 
but at least the clasification is spread between both classes. 
 
All the aforementioned results are mainly caused by the simmetries between positive 
and negative counterparts, since they yield almost the exact value of distance: 
 

 
Figure 36. Boxplot of absolute distance values for different speed variations. 

The interval of values for each of the speeds are shown in a box, the red line being  
the mean value and the blue square containing the majority of the instances 

 
 
As seen in Figure 36, for example, +1% and -1% yield distances within the same 
interval, and it happens for all the altered speed cases: they are clearly symetric either 
for the up-speed and down-speed counterparts (same amount of variation when 
decreasing or increasing the same percentage of playback speed). In addition, the 
intervals of values overlap in most of the cases (boxes move within the same range of 
values) and this phenomenon makes it really difficult for the classifier to establish a 
proper threshold in order to separate the classes, and therefore many instances are 
wrongly classified. 
 
This is seen even clearer with the 2-class example, as both classes (up_speed and 
down_speed) move within almost the same interval of values, and classifiers like C4.5 
directly wrongly classify all the instance to one class (as seen in Table 14 below): 
 

C4.5 

 down_speed up_speed 

down_speed 420 0 

up_speed 420 0 
 

Table 14. Confusion matrices per C4.5 for the 2-class dataset 
 
 
All this leads us to think that using Dynamic Time Warping (at least, calculating 
distances by just comparing sample by sample between two audio signals) does not 
show a proper resolution for the problem under study. 
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7. Conclusions 
 
In this work, current taxonomy of known audio defects is reviewed according to the 
state of the art methods, highlighting the characteristics of each type and the solutions 
(if any) for their detection and correction. Afterwards, the vinyl technology is analyzed 
due to its error-prone nature. That is why the defects related to digitizing vinyl media 
are chosen for research here: the lack of RIAA filtering and the altered playback speed.  
 
Later, the mechanisms for detection are exposed. Those mechanisms are based on the 
psychoacoustic model developed by Zwicker (that is, the use of bark-band 
decomposition of the spectrum) and state-of-the-art machine learning techniques.  
 
Results show a great accuracy on the RIAA filtering detection, as bark ratios yield a 
proper representation of the importance of the frequency components within the 
spectrum. This representation is easily differentiable among audio files where the RIAA 
filtering has not been applied and audio files correctly converted from legacy formats 
like vinyl. The global results show an overall accuracy of around 95% in the best case. 
However, if we look into the per genre results, we can clearly see that this performance 
decreases for some genres, such as Classical or Experimental. On the other hand, genres 
such as Metal-Industrial, Rap-Dubstep or Reggae-Ska perform really well. For genres 
such as Classical or Experimental, some instances yield values out of the average range 
(outliers), as the balances for the bark bands do not follow the average path due to the 
variability of music belonging to those genres and the distribution of their frequencial 
components. Metal-Industrial or Rap-Dubstep instances usually follow similar patterns 
of musicality, whereas genres such as Experimental or Classical music have wider 
musical patterns. Therefore, when setting the threshold values for the ratios, many 
examples of Experimental and Classical do not fall in the set interval and therefore they 
are incorrectly classified by the algorithm. Those outliers, due to their spectral 
components, do not get that much altered when the RIAA filtering is not applied. 
Experimental music instances usually have most of the energy in the extremes of the 
spectrum (wider range of frequencies), so that attenuation has not as relevant effect as in 
other genres. In addition, since Classical music has lower amount of energy in low 
frequencies than other genres and not much energy in the very-high frequencies due to 
the instruments involved, in some cases, the attenuation at those frequencies is not as 
relevant as in other genres such as Metal-Industrial, Rap-Dubstep or Reggae-Ska, where 
there is prominence of the low-frequency components (and loudness) is higher. Then, if 
the RIAA filtering is missing, those frequencies are highly attenuated. 
 
Some improvements could be considered in order to raise the accuracy for those genres. 
The inclusion of other bark ratios (comparing other bark bands) could help and avoid 
the limitation the lower energy in the extremes of the spectrum (in the case of Classical) 
or the inverse phenomenon for Experimental (where main spectral energy appears at 
very-high or very-low frequencies). 

With regards to altered playback speed detection, the algorithm does not yield a proper 
performance for the given problem. In one hand, for the 8-classes experiment, accuracy 
percentage is extremely low (less than 14% in the best case). On the other, for the case 
of the 2-class experiment, the maximum reached accuracy is 50% (in the case of C4.5), 
however, it has been seen in the previous section that this result is not reliable, since all 
instances are classified to the same class. All the aforementioned results are mainly 
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caused by the simmetries between positive and negative counterparts, since they yield 
almost the exact value of distance: they are clearly symetric either for the up-speed and 
down-speed counterparts (same amount of variation when decreasing or increasing the 
same percentage of playback speed). In addition, the intervals of values overlap in most 
of the cases (boxes move within the same range of values) and this phenomenon makes 
it really difficult for the classifier to establish a proper threshold in order to separate the 
classes, and therefore many instances are wrongly classified. This leads us to consider 
that calculating distances by just comparing sample by sample between two audio 
signals does not resolve the problem under study. 

In order to dramatically improve the performance of this algorithm, other approaches 
should be considered. Extracting descriptors for the tonal components of the signal  
could be performed [57], since altering speed also alters the pitch of the signal. 
Therefore, comparing the values of an altered file against the nominal reference may 
improve the classification task. Also, some other parameters such us the duration or 
tempo estimation [58] (increasing or decreasing speed implies increasion or decreasing 
the tempo) could be extracted and used by the classifier when comparing to the 
reference audio file. 
 
 
All code for both algorithms can be found in GitHub: 
https://github.com/ignasi42/defect_detector 
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 I 

ANNEX1 – GENRE CONFUSION MATRICES FOR RIAA 
DETECTION 
 
  

SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 99 1  riaa_ok 88 12 

riaa_ko 6 94  riaa_ko 9 91 
Table A. Confusion matrix per in Electronic-Dance genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 97 2  riaa_ok 86 13 

riaa_ko 5 94  riaa_ko 1 98 
Table B. Confusion matrix per in Lounge-Downtempo genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 83 16  riaa_ok 72 27 

riaa_ko 17 82  riaa_ko 13 86 
Table C. Confusion matrix per in Experimental genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 98 1  riaa_ok 92 7 

riaa_ko 4 95  riaa_ko 8 91 
Table D. Confusion matrix per in Jazz-Funk genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 97 1  riaa_ok 93 5 

riaa_ko 2 96  riaa_ko 2 96 
Table E. Confusion matrix per in Metal-Industrial genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 89 9  riaa_ok 82 16 

riaa_ko 12 86  riaa_ko 16 82 
Table F. Confusion matrix per in Classical genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 99 0  riaa_ok 93 6 

riaa_ko 0 99  riaa_ko 7 92 
Table G. Confusion matrix per in Pop-Rock genre.



 

 II 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok    riaa_ok 97 2 

riaa_ko    riaa_ko 5 94 
Table H. Confusion matrix per in Rap-Dubstep genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 99 1  riaa_ok 98 2 

riaa_ko 3 97  riaa_ko 6 94 
Table I. Confusion matrix per in Reggae-Ska genre. 

 
SVM  C4.5 (M = 10) 

  riaa_ok riaa_ko    riaa_ok riaa_ko 

riaa_ok 100 0  riaa_ok 95 5 

riaa_ko 2 98  riaa_ko 9 91 
Table J. Confusion matrix per in Soul-Funk genre.



 

 III 

ANNEX 2 – LOG DISTANCES CONFUSION MATRICES 
FOR PLAYBACK SPEED DETECTION 
  
 

 SVM LOGARITHMIC DISTANCES (8-CLASSES) 

 
speed_
minus1 

speed_
plus1 

speed_
minus2 

speed_
plus2 

speed_
minus5 

speed_
plus5 

speed_
minus8 

speed_
plus8 

speed_minus1 15 18 7 2 13 9 22 19 

speed_plus1 15 20 4 2 14 10 27 13 

speed_minus2 11 15 3 0 14 13 30 19 

speed_plus2 16 14 2 1 15 8 34 15 

speed_minus5 12 13 2 0 7 9 38 24 

speed_plus5 12 12 2 0 5 8 38 28 

speed_minus8 9 9 4 0 7 13 37 26 

speed_plus8 9 11 3 0 8 9 48 17 

Table A. Confusion matrix per in 8-class dataset using logarithmic distances. 
 
 

 C4.5 LOGARITHMIC DISTANCES (8-CLASSES) 

 
speed_
minus1 

speed_
plus1 

speed_
minus2 

speed_
plus2 

speed_
minus5 

speed_
plus5 

speed_
minus8 

speed_
plus8 

speed_minus1 23 36 2 2 2 1 19 20 

speed_plus1 33 26 5 2 3 3 15 18 

speed_minus2 25 22 1 15 4 1 20 17 

speed_plus2 21 24 14 5 3 1 22 15 

speed_minus5 10 22 4 6 4 13 26 20 

speed_plus5 13 19 8 4 8 1 31 21 

speed_minus8 15 16 4 4 4 7 28 27 

speed_plus8 9 23 3 4 4 7 36 19 
Table B. Confusion matrix per in 8-class dataset using logarithmic distances. 

 
 
 

SVM  C4.5 

 down_speed up_speed   down_speed up_speed 

down_speed 213 207  down_speed 420 0 

up_speed 237 187  up_speed 420 0 
Table C. Confusion matrix per in 2-class dataset using logarithmic distances. 

 


