
An Approach for Reviewing Security-Related Aspects in Agile Requirements
Specifications of Web Applications

Hugo Villamizar, Amadeu Anderlin Neto, Marcos Kalinowski,
Alessandro Garcia

Software Engineering Laboratory
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil
{hvillamizar, aanderlin, kalinowski, afgarcia}@inf.puc-rio.br

Daniel Méndez

Software Engineering Research Lab Sweden
Blekinge Institute of Technology

Karlskrona, Sweden
daniel.mendez@bth.se

Abstract—Defects in requirements specifications can have
severe consequences during the software development lifecycle.
Some of them result in overall project failure due to incorrect
or missing quality characteristics such as security. There are
several concerns that make security difficult to deal with; for
instance, (1) when stakeholders discuss general requirements in
meetings, they are often unaware that they should also discuss
security-related topics, and (2) they typically do not have
enough expertise in security. This often leads to unspecified
or ill-defined security-related aspects. These concerns become
even more challenging in agile contexts, where lightweight
documentation is typically involved. The goal of this paper is to
design and evaluate an approach for reviewing security-related
aspects in agile requirements specifications of web applications.
The approach considers user stories and security specifications
as input and relates those user stories to security properties
via Natural Language Processing. Based on the related security
properties, our approach then identifies high-level security
requirements from the Open Web Application Security Project
to be verified and generates a reading technique to support
reviewers in detecting defects. We evaluate our approach via
two controlled experiment trials. We compare the effectiveness
and efficiency of novice inspectors verifying security aspects
in agile requirements using our approach against using the
complete list of high-level security requirements. The (statisti-
cally significant) results indicate that using our approach has
a positive impact (with large effect size) on the performance
of inspectors in terms of effectiveness and efficiency.

Keywords-agile requirements; requirements verification; soft-
ware inspection; software security;

I. INTRODUCTION

Requirements Engineering (RE) is an inherently complex

part of software engineering. Misunderstandings and defects

in requirements-related artifacts can easily lead to design

flaws and cause severe and costly problems [18]. Agile

RE relies on lightweight documentation and face-to-face

collaborations between customers and developers [6]. Yet,

agility does not necessarily compensate the problems of

more plan-driven software process models. In fact, it can

even make those problems more explicit if a key prerequisite

for successful RE is not given: human-intensive exchange,

collaboration, and trust [14]. In other words, agile RE has

already helped to address some specific problems of RE, but

it has also brought others to the surface [24].

Security is an essential Non-Functional Requirement

(NFR) that requires special attention, inter alia, due to

business needs to protect data. Much of sensitive informa-

tion is hosted on the internet, making web applications a

target. Security requirements often appear throughout but

also beyond the elicitation phase, so stakeholders are often

simply unaware of them. For instance, when stakeholders

make decisions during the meetings, they are often unaware

that these decisions might also raise data protection-related

issues [18]. This often leads to unspecified security aspects.

However, the picture is even more challenging in an

agile context. Several studies have identified problems that

could result from the poorly detailed requirements specifica-

tions [6], [27]. These problems can result in overall project

failure due to incorrect or missing functionalities and/or

quality characteristics. According to Eberlein [11], there is

a need for agile methods to include techniques that make

it possible to identify NFRs early. There is also a need to

describe them in such a way that they may be analyzed early,

thus reducing the likelihood of costly rework [22]. In that

sense, agile RE should include more detailed requirements

verification into the process [11], [27].

Despite the apparent disadvantages of integrating secu-

rity into agile contexts, a recent study by Villamizar et

al. [36] identified a lack of research on security requirements

verification. Such activities should be conducted to assure

that agile requirements specifications are correct, consistent,

unambiguous, and complete. This means properly covering

security-related aspects, such as task-flow constraints or

assignment of administrative privileges.

Given this scenario, our work aims at contributing to

closing the literature and industry gaps that exist concerning

to security requirements verification in agile contexts. More

specifically, our goal is to propose and evaluate an approach

for reviewing security-related aspects in agile requirements

specifications of web applications. We decided to focus on

web applications, given that they have become a common

86

2019 IEEE 27th International Requirements Engineering Conference (RE)

2332-6441/19/$31.00 ©2019 IEEE
DOI 10.1109/RE.2019.00020

target for accessing information and manipulating or ex-

tracting sensible data. To achieve this goal, we defined the

following specific goals:

1) Develop an approach for reviewing security aspects in

agile requirements specifications of web applications.

2) Evaluate the approach to analyze whether it helps

inspectors to review security aspects. To this end, we

report on a controlled experiment to observe the im-

pact on effectiveness and efficiency. We also observe

the perceived usefulness and ease of use.

As a result of our work, we found that using our approach

had a positive impact when reviewing security in agile speci-

fications of web applications. Our results indicate significant

differences when comparing the performance of inspectors

using our approach versus other defect-based technique.

The remainder of this work is organized as follows.

Section II introduces the background on agile RE and how

security verification is typically performed in this context.

Section III introduces the approach we designed to deal with

security verification in agile and early manner. Section IV

presents the study design used to evaluate the approach. The

results are presented and discussed in Sections V and VI,

respectively. Section VII provides a discussion of limitations

of our approach before we conclude with Section VIII.

II. BACKGROUND AND RELATED WORK

This section introduces the background on agile and

security requirements and describes work related to security

requirements verification in agile context.

A. Agile Requirements

The term “agile requirements” emerged in response to the

agile manifesto. It is used to define the “agile way” of exe-

cuting and reasoning about RE activities [19]. Yet, not much

is known about the challenges posed by the collaboration

oriented agile way of dealing with RE activities. Ramesh et

al. [28] performed a study with 16 organizations that develop

software using agile methods. They identified that agile RE

practices resulted in challenges regarding neglected NFRs,

minimum documentation and no requirements verifications.

The recent report from the NaPiRE initiative [14] extends

the challenges with (i) communication flaws between teams

and customers, and (ii) under-specified requirements that

remain too abstract and, thus, are not measurable. These

observations give a picture on the difficulties of dealing

with NFRs in agile contexts. It is reasonable to believe that

security requirements are no different in this respect.

B. Security Requirements (SRs)

Software development should be conducted with secu-

rity in mind at all stages and it should not be an af-

terthought [22]. Developing secure software is not a trivial

task due to the lack of security expertise in developers and

the inadequacy of methodologies to support developers who

are not security experts [18]. Yet, in the majority of projects,

security is often dealt with in retrospective, when the system

has already been designed and put into operation [23].

SRs have traditionally been considered quality require-

ments [8], [9]. Like other quality requirements, they tend

not to have simple yes/no satisfaction criteria. Haley et

al. [17] present some challenges related to SRs. First, people

generally think about and express SRs in terms of “bad

things” (negative properties) to be prevented. It is very

difficult, if not impossible, to measure negative properties.

Second, for SRs, the tolerance on “satisfied enough” is

small, often zero, given the implications of noncompliance.

Moreover, stakeholders tend to want SRs satisfaction to be

very close to yes. Third, the effort stakeholders might be

willing to dedicate to satisfying SRs also depends on the

likelihood and impact of a failure to comply with them.

This is even more challenging in agile contexts because,

apparently, functionality is the primary focus in agile, while

NFRs are typically either ignored or ill-defined [27].

C. SRs Verification in Agile Contexts

In general, several authors have worked on quality as-

surance methods for verifying the quality properties of

different artifacts. One of the most compared and evaluated

methods, in several experiments and studies, are inspection

techniques. In that direction, we can name reading support

techniques for defect detection such as Perspective-Based

Reading (PBR) [3], Defect-Based Reading (DBR) [15] and

Use-Based Reading (UBR) [38], which are well known and

established. As far as security inspections are concerned,

little work has been published (e.g., [7], [10], [12]) on

how to support inspectors with detailed reading support for

reviewing security-related aspects.

Elberzhager et al. [12] propose a model for security goals

that involves guided checklists to support inspectors when

checking security. They describe a step-by-step guide that

results in questions to be checked by an inspector. This

model is similar to our proposal because it works using

a reading technique that supports the inspector on how

to review security. However, there are differences. First,

our approach focuses on verifying SRs in early stages,

i.e., right after requirements specification and within agile

requirement artifacts. Second, our approach addresses high-

level SRs as defined by the Open Web Application Security

Project (OWASP) [26], which provides a well-known indus-

try standard on security. Furthermore, our proposal involves

classifying the defects found by inspectors, providing a

better understanding of the distribution of the problems.

Carver et al. [7] further describe a set of perspectives

that provide security-specific questions for a requirements

inspection. Two of them are part of the PBR technique

(designer and tester). They also created a new perspective

based on the needs of a black hat tester. In this additional

perspective, the reviewer focuses on three types of security

87

information: cryptography, authentication, and data valida-

tion. According to the authors, those types of information

and the related questions were adapted for requirements from

Araujo and Curpheys article on security code reviews [1].

However, due to the large number of software vulnerabilities

and the variety of ways to deploy computer attacks, it is not

enough to consider only three types of security controls.

Indeed, the list is incomplete when compared to OWASP

high-level SRs.

In the agile context, the picture is even poorer. We are

aware of only one study that it is part of the results of a

recent systematic mapping [36]. Domah et al. [10] propose

a lightweight methodology to address NFRs early in agile

software development processes. NFRs elicitation, reason-

ing, and validation are considered within that methodology.

Regarding verification, it depends on a quantification taxon-

omy with different levels of decomposition for identifying

quantified validation criteria for each NFR. However, this

methodology does not offer specific guidance to support

inspectors in identifying security-related defects in require-

ments specifications. Hence, previous knowledge on security

is required to take advantage of the methodology. In sum-

mary, few approaches exist to address the systematic analysis

and detection of security problems, especially during early

stages, and the scenario is even worse in agile contexts.

III. OUR APPROACH

In this section, we propose our approach for reviewing

security-related aspects in agile requirements specifications

of web applications. The approach aims at addressing secu-

rity in early stages of the software development lifecycle.

A. Assumptions

The approach was designed with some underlying as-

sumptions in mind. These assumptions are as follows.

Requirements are specified in a user story format. The

software industry has gradually increased the use of agile

and hybrid methods in its projects [20]. In this context, user

story is the most frequently used artifact for requirements

specification [29]. Therefore, the approach is focused on

agile and, more specifically, on user stories. The stories are

often analyzed independently and structured in a sentence

as follows: As a [role], I want to [feature], so that [reason].

The OWASP represents a reliable baseline and standard
of security guidelines. OWASP has a strong focus on web

applications, one of the targets of our approach. OWASP

concerns providing practical information about security in

web applications to individuals, corporations, universities,

government agencies, and other organizations worldwide.

Many open source security-related tools (e.g., SonarQube)

and current research (e.g., [32]) on web application security

use OWASP as a definitive reference. Hence, we consider

the reliability of this project as a reasonable assumption.

B. Approach Scope Delimitation

Hereafter, we answer some potential questions to provide

further understanding of the intended approach.

To whom is the approach intended? Our approach was

designed to support novice inspectors and security analysts.

It provides them with a reading technique to assist in the

identification of defects related to security aspects in agile

requirements specifications. According to Nerur [25], people

with a high-level of competence are of vital importance in

agile teams. Much of the knowledge in agile development

is tacit and resides in the heads of the development team

members [5]. Nevertheless, in agile contexts, there is a

focus on functionality. Competence in software security is

typically not widely spread among agile practitioners [16].

Therefore, our approach focuses on providing a detailed

reading technique to support novice inspectors. We believe

that more experienced security analysts could still use the

approach, but they are outside in the scope of our evaluation.

What security-related aspects does the approach cover?
We decided to focus on security properties and high-level

SRs as proposed by the OWASP [26]. These high-level SRs

describe the most important security features that architects

and developers should include in every web application [26].

The System and Software Quality Requirements and Eval-

uation (SQuaRE) model [39] also define security charac-

teristics, which hereafter, for term compatibility, will also

be referred to as security properties. OWASP contains three

security properties: confidentiality, integrity, and availability.

SQuaRE, in contrast, contains five: confidentiality, account-

ability, integrity, non-repudiation, and authentication. Based

on their definitions, all of the SQuaRE security properties

can be mapped onto the OWASP security properties. For

our final list of considered security properties, we used the

OWASP properties with a single change, splitting confiden-

tiality into two separate properties: (i) confidentiality and

(ii) identification and authentication. Table I presents the

security properties considered by our approach.

Table I
SECURITY PROPERTIES CONSIDERED BY OUR APPROACH

Security Property Description

Confidentiality (C)
Degree to which the data is disclosed only as
intended.

Integrity (I)
Degree to which a system or component prevents
unauthorized access to, or modification of, com-
puter programs or data.

Availability (A)
Degree to which a system or component is oper-
ational when required for use.

Identification
Authorization (IA)

Degree to which the identity of a subject or
resource can be proved to be the one claimed.

What types of requirements defects does the approach
cover? In RE, a defect can be defined as any problem of

correctness and completeness with respect to the require-

ments, internal consistency, or other quality attributes [33].

A common defect taxonomy used when inspecting require-

88

ments is the one proposed by Shull [30]. The defect types in

this taxonomy are: omission, ambiguity, inconsistent infor-

mation, incorrect fact, and extraneous information. However,

we excluded the extraneous information defect type (which

concerns specifying requirements that are not needed). This

decision was taken because we use the OWASP high-level

SRs as a reference; while they are stated as mandatory

for inclusion, they are not necessarily complete, given that

specific security needs may sprout for specific applications.

Hence, given the impact that a missing security requirement

can have on the application, we did not feel comfortable

to recommend exclusions. Table II shows the defect types

covered by our approach and their definitions.

Table II
DEFECT TYPES DEFINITION IN SCOPE OF OUR APPROACH

Defect Type Definition

Omission (O)
Necessary information about the system has
been omitted from the software artifact.

Ambiguity (A)
A requirement has multiple interpretations due
to multiple terms for the same characteristic.

Inconsistency (IS) Two or more requirements are in conflict.

Incorrect Fact (IF)
A requirement asserts a fact that cannot be true
under the conditions specified for the system.

What kind of review technique does the approach use?
Typically, developers and software analysts rely on ad-hoc

methods or checklists to analyze documents. In an ad-hoc

review, the reader is not given directions on how to read. The

result is that reviewers tend to build up skills in document

understanding slowly based on individual experiences ac-

quired over time [2]. For this reason, we decided to focus the

review of our approach on a reading technique to increase

the effectiveness of individual reviewers by providing a

systematic guide that can be used to examine, in our case,

security-related aspects and consequently to identify defects.

To which part of the lifecycle of agile methods can the
approach be applied? Agile methods are characterized by

having iterative structures that should allow early delivery,

continual improvement, and rapid and flexible response to

change [4]. Hence, we envision that our approach is used

just before a user story is defined as ready for codifying.

C. Overview of our Approach

We propose our approach in two defined phases: (1) gen-

erating the reading technique based on the agile requirements

specification, and (2) following the reading technique to

identify defects. These phases are shown in detail in Figure 1

and explained as follows.

Phase 1: Generate Reading Technique. To generate the

focused reading technique, we use Natural Language Pro-

cessing (NLP) to extract keywords from the user story.

Thereafter, these words are used to identify security prop-

erties and to link the related OWASP high-level SRs to be

verified. The availability of automatic tools for the quality

analysis of natural language requirements is recognized as

Figure 1. Overall structure of our approach

a key factor for achieving software quality [21]. Details on

how keywords and security properties are identified follow.

Extracting keywords. This activity involves automatically

analyzing a user story that describes the features and func-

tional requirements of the software to be built. Our approach

extracts the relevant verb (action) of the user story that

indicates a potential behavior to consider when thinking

about security. In some cases, the nouns of the user story can

also indicate situations where certain security features should

be considered. This is particularly important to identify

availability needs, e.g., time values (day, hour, second,

period) may indicate scale/performance restrictions of the

software. Therefore, nouns are also extracted for matching

purposes. In summary, the verb is extracted from the second

block of the user story format and the nouns are extracted

from the third block (cf. Table III).

Table III
WAY TO EXTRACT THE KEYWORDS FROM THE USER STORY

Type of Word User Story Skeleton
Verbs As a [user], I [want to], [so that].
Nouns As a [user], I [want to], [so that].

To extract the words, we developed a Software Framework

(FESRAS),1 which uses the Stanford CoreNLP tool2 through

a library that provides a set of natural language analysis tools

written in Java. The library represents each sentence as a

directed graph where the vertices are words and the edges

are the relationships between them. Thereby, the software

framework can take the verbs and nouns of the user story

and then analyze them to link security properties.

1https://github.com/hrguarinv/FESRAS
2https://github.com/stanfordnlp/CoreNLP

89

Identifying Security Properties and Linking High-Level
SRs. After identifying the keywords of the user story, we

need to identify security properties in order to map high-

level SRs that represent a set of security-specific features to

be verified. As an example, Table IV shows some keywords

that are part of the repository used to indicate which se-

curity properties should be considered. Our online material,

available at Zenodo, contains all the words of the repository.

Table IV
RELATIONSHIP BETWEEN THE KEYWORDS AND SECURITY PROPERTIES

Keyword
Security Property

Confidentiality Integrity Availability IA
Access X X
Change X
Export X
Recover X
Password X

This repository is based on a similar one provided by

Slankas [31] in their work about automated extraction of

NFRs in available documentation. The changes are that we

focused on security and therefore we complemented the set

of keywords with synonyms and more specific words stated

by OWASP. If there is no match between the keywords and

the security properties, our approach will link the user story

to all the security properties stored in the repository. Table V

shows the OWASP high-level SRs by security property.

Table V
OWASP HIGH-LEVEL SRS BY SECURITY PROPERTY

Property OWASP High-Level SRs

C
o

n
fi

d
en

ti
al

it
y

C1. Data shall be protected from unauthorized observation
and disclosure both in transit and when stored.
C2. System sessions shall be unique to each individual and
cannot be shared.
C3. System sessions are invalidated when timed out during
periods of inactivity.
C4. TLS protocol shall be used where sensitive data is
transmitted.
C5. System shall use strong encryption algorithm at all
times.

In
te

g
ri

ty

I1. Any unauthorized modification of data must yield an
auditable security-related event.
I2. All input is validated to be correct and fit for the intended
purpose.
I3. Data from an external entity shall always be validated.

A
v
ai

la
b

il
it

y

A1. The application server shall be suitably hardened from
a default configuration.
A2. HTTP responses contain a safe character set in the
content type header.
A3. Backups must be implemented and recovery strategies
must be considered.

Id
en

ti
fi

ca
ti

o
n

A
u

th
o

ri
za

ti
o

n

IA1. Users are associated with a well-defined set of roles
and privileges.
IA2. The digital identity of the sender of a communication
must be verified.
IA3. Only those authorized are able to authenticate and
credentials are transported and stored in a secure manner.
IA4. Passwords treatment must include complex
passphrases, options to recover and reset the password and
default passwords not allowed.

For each user story, the reading technique focuses the

reviewer to verify whether its security specifications contain

any of the defect types. This happens when reviewers check

the security specifications against the OWASP high-level

SRs of the linked properties. To reach this, the reading

technique contains a set of verification questions to help

identify the different defect types. Table VI shows the

questions.

Table VI
VERIFICATION QUESTIONS FOR THE DIFFERENT DEFECT TYPES

Type of Defect Question

Omission
When comparing the security specifications with
the OWASP high-level SRs, are there high-level
SRs or characteristics that were not specified?

Ambiguity
Does any security specification allow for multiple
interpretations?

Inconsistency
Are there two or more security specifications in
conflict?

Incorrect Fact
Is there any security specification stating informa-
tion that is not true under the conditions specified?

Phase 2: Following the Reading Technique. This phase

aims to guide the reviewer in finding such requirements

defects. Using the generated reading technique, reviewers

can follow the instructions and answer the questions in order

to look for defects.

To facilitate the review, our approach rewrites the OWASP

high-level SRs in a way so that inspectors can easily identify

certain security aspects. For instance, we use the AND

logical connector in capital letters to get the attention of

the reader and indicate that both aspects must be considered

to satisfy the high-level SR, e.g., C1. Data shall be protected
from unauthorized observation or disclosure both in transit
AND when stored. In this case, if the specifications were

well specified, they must consider security aspects related

to data protection both in transit and in storage. Otherwise,

there is an omission defect.

Furthermore, the security statements also present exam-

ples for some concepts in order to give inspectors an

idea about the context of the OWASP high-level SRs. An

example follows: I2. All input, e.g., query parameters, string
variables and cookies, is validated to be correct and fit for
the intended purpose. That way, reviewers are provided with

a reading technique that should increase their performance

during the review. Next, we present a motivational example.

D. Motivational Example

In the following, we demonstrate the application of our

approach in an example setting. Table VII shows a user

story and its set of security specifications with some defects

commonly applied to any agile software project.

With the user story in sight, the framework extracts

the keywords of the second and third block of the user

story, and then matches these keywords related to security

properties. In this case, the extracted words are “export”

90

Table VII
INPUT OF THE APPROACH AS AGILE REQUIREMENTS SPECIFICATION

User Story Security Specification (SS)

As a customer,
I want to be
able to export
my personal
information
so that I can
use it in other
systems.

1. The system shall ensure that there is no
residual data exposed.
2. The system shall store credentials securely
using the AES encryption algorithm.
3. The system shall use the RSA encryption
algorithm to protect all data all the time.
4. The system shall deactivate a session when
it exceeds certain periods of inactivity.
5. The system shall encrypt the roles and
privileges of the system.

(second block) and “system” (third block). Thereafter, the

framework can verify whether some security property is

related to the extracted words. According to Table IV,

“export” matches confidentiality, while “system” does not

match any of the security properties. Therefore, our approach

can propose OWASP high-level SRs for the confidentiality

security property to be verified for the user story (cf. Table V,

confidentiality).

Our approach then generates the defect reporting form

by showing the user story with its security properties and

its OWASP high-level SRs, and the verification questions.

Thus, inspectors know which security aspects they should

verify. The verification process starts at this point. By having

inspectors responding to the verification questions looking

for defects, we expect to obtain valuable insights from them

on the quality of the SS. A sample enactment of answering

these questions follows.

When comparing the security specifications with the
OWASP high-level SRs, are there high-level SRs or char-
acteristics that were not specified? In this case, 3 out of

5 OWASP high-level SRs linked in Table V are related or

make sense to the security specifications. This means that

two OWASP high-level SRs (C2 and C4) are not covered

by the security specifications. Therefore, we have detected

two defects that should be marked as “omission”.

Does any SS allow for multiple interpretations? SS4

reflects a weak statement as the amount of time concerning

“certain periods of inactivity”. It could be hours or seconds.

Thus, we have identified a defect related to ambiguity.

Are there two or more SS in conflict? SS2 and SS3 conflict

because SS3 indicates to encrypt all data using the RSA

algorithm. Nevertheless, SS2 indicates to protect credentials,

which are also data, using the AES algorithm. Thus, we have

identified a defect related to inconsistency.

Is there any SS stating a characteristic that cannot be
true under the conditions specified for the system? SS5

is not correct because the concepts of the system cannot

be encrypted. The action “encrypt” is not correct in the

statement.

Finally, the reviewers fill out the defect reporting form

that summarizes the defects found. Table VIII presents the

output of the review using the reading technique. Note that

the O column is related to the OWASP high-level SRs that

were omitted to satisfy the Security Property (SP). The other

columns are related to the remaining defect types.

Table VIII
DEFECTS REPORTING FORM

User
Story SP OWASP High-Level

Security Requirements O A IS IF

US1

C
o

n
fi

d
en

ti
al

it
y

C1. Data shall be pro-
tected from unauthorized
observation AND disclo-
sure both in transit AND
when stored.

SS4
SS2
SS3

SS5

C2. System sessions shall
be unique to each individ-
ual AND cannot be shared.

X

C3. System sessions are in-
validated when timed out
during periods of inactivity.
C4. TLS protocol shall be
used where sensitive data is
transmitted.

X

C5. System shall use strong
algorithms (e.g, DES, AES,
RSA) to encrypt data.

In summary, this table indicates that the security speci-

fications related to the user story contain six defects. Two

out of them were marked as omission because the OWASP

high-level SRs (C2, C4) are not related to the security

specifications. The rest of the defects (4) are related to

ambiguous, inconsistent and incorrect fact defects. In this

case, SS4 was marked as ambiguous, SS2 and SS3 were

marked as inconsistent and SS5 was marked as incorrect.

IV. EXPERIMENT

For a better understanding of the feasibility of using our

approach for reviewing security aspects in agile require-

ments specifications of web applications, we conducted a

controlled experiment in academic settings. The choice of

a controlled (difference-making) experiment in a laboratory

setting is intended rather than being opportunistic, because

we are specifically interested in investigating specific phe-

nomena in isolation as preparation for scaling our imple-

mentation (and evaluation) up to practice. To this end, we

followed the guidelines proposed by Wohlin et al. [37].

A. Goal and Research Questions

We detail the goal of this study in Table IX.

We formulated two Research Questions (RQs). (RQ1)
Does the approach have an effect on defect detection effec-
tiveness and efficiency? and (RQ2) How do the inspectors
perceive the usefulness and ease of use of the approach?

B. Experiment Context

The experiment was conducted in two trials, involving

students enrolled in Software Engineering classes at the Pon-

tifical Catholic University of Rio de Janeiro. It is noteworthy

91

Table IX
GOAL-QUESTION-METRIC OF THE EXPERIMENT

Analyze the reading technique generated by our approach
for the purpose of characterization

with respect to the effectiveness, efficiency, usefulness and ease
of use of the approach

from the point of
view of

researcher (on the measured effectiveness and
efficiency) and inspectors (on the perceived use-
fulness and ease of use)

in the context of
novice inspectors using our technique, when
compared to using the OWASP high-level SRs
and the defect types.

that we also carried out a pilot study with two independent

volunteers. The aim was to evaluate the overall (particularly

technical) feasibility, time, adverse events, and improve the

experiment materials before the experiment trials.

We created the specifications based on typical customer

requests for developing web applications, e.g., sending sen-

sitive information to other system and deleting data. When

doing so, we relied as an orientation on SRs specifications

from real industrial software projects as used by our indus-

try partners. Our goal is to increase the similarity to the

studied population units, but did not use real specifications

verbatim in our setting for confidentiality reasons. Our SRs

specifications contain a set of user stories in this format: As

a [Role], I want [Feature], so that [Reason]. The document

also contained the related security specifications with seeded

defects.

To avoid the defect seeding to represent a confounding

factor, the type and amount of seeded defects to evaluate the

suitability of our approach was carefully considered. Table X

shows the distribution of the seeded defects per user story.

In total, 13 defects were seeded. The representativeness of

the requirements specifications and the defects was reviewed

by three independent researchers before conducting the

experiment trials.

Table X
DISTRIBUTION OF THE SEEDED DEFECTS

User
Story

Omission Ambiguity Inconsistency Incorrect
Fact

Total

US1 2 2 2 1 7
US2 2 2 1 1 6

C. Variables Selection

The independent variable in the experiment is the treat-

ment applied by the groups in order to find defects in the SRs

specifications. While the control group received OWASP

high-level SRs and a list of defect types to be found, the

experimental group received our reading technique.

Regarding dependent variables, we used effectiveness and

efficiency, defined as follows. Effectiveness is expressed as

the ratio between the number of real defects found and the

total of seeded defects in the documents. On the other hand,

Efficiency refers to the ratio between the number of real

defects found and the time spent in finding them. For these

variables, we collected quantitative data to test the hypothe-

ses presented in Section IV-D. We also collected qualitative

data with open questions in a follow-up questionnaire. The

aim was to gain insights about the perceived usefulness and

ease of use of the approach.

D. Hypotheses

Using the variables described in the previous subsections,

we defined the following hypotheses.

• H0a: There is no difference in terms of effectiveness

when using both techniques.

• H1a: There is a difference in terms of effectiveness

when using both techniques.

• H0b: There is no difference in terms of efficiency when

using both techniques.

• H1b: There is a difference in terms of efficiency when

using both techniques.

E. Selection of Subjects

Our subjects were intended to represent novice inspectors.

We selected subjects, by convenience, from classes on Soft-

ware Engineering, involving 25 undergraduate (first trial)

and 8 graduate students (second trial).

We characterized the subjects by their experience and

knowledge on four areas: agile software development, RE,

software security and inspections. As a result, we found

that the majority of students had a low level of security

experience and knowledge. We also found that participants

are not familiar with requirements inspection. Hence, they

match our intended profile. Aiming at mitigating threats

to validity concerning the distribution of subjects between

groups, we used the characterization and applied the prin-

ciples of balancing, blocking and random assignment [37].

Hence, students who demonstrated knowledge on software

security (4 out of 33) were separated and distributed equally

into the control and the experimental groups of each trial.

Subjects who found less than 10% of the defects were

discarded as outliers, because, in our understanding, their

results reflect lack of interest in having a good performance

in the review. We discarded 5 subjects from the first trial.

In the second trial, it was not necessary to discard subjects.

F. Experiment Design

Our experiment is composed of one factor with two

treatments: (1) using our proposed reading technique and

(2) directly using the OWASP high-level SRs and a list of

defect types to be found. The study design is composed of

a set of artifacts distributed into three phases. Details of the

artifacts used in the experiment are available at Zenodo.3

Figure 2 shows all the phases of the experiment.

3http://doi.org/10.5281/zenodo.3273298

92

Figure 2. Experimental design

In the first phase, all the students filled out a characteri-

zation questionnaire with questions about their expertise in

the topics related to the study. They also received training to

introduce the main topics. In the second phase, we obtained

quantitative data by conducting two trials. The students of

each trial were divided into two groups in order to evaluate

the performance by executing the review using or not our

approach. Finally, in the third phase, the participants of

the experiment gave us feedback on the execution of the

experiment. The instruments used to conduct the experiment

are further described in the following.

G. Instrumentation

Characterization questionnaire. The goal of the question-

naire is to characterize the experience of the subjects and

identify key characteristics about four topics: agile software

development, RE, software security and inspections.

Follow-up questionnaire. This questionnaire was based

on the Technology Acceptance Model (TAM) with 5-point

scale. TAM has been extensively used in several studies [34].

We wanted to know whether the approach was useful and

easy to use. We included open text questions to gather

feedback about the difficulties and benefits of using our

approach.

Training. The training was focused on the security prop-

erties, the OWASP high-level SRs and on the defect types.

Task description. This document explains to the students

how to fill out the defect reporting form according to their

treatment. Both treatments received the same specifications.

For one treatment, the technique was generated according to

the user story and its related high-level SRs. For the other

treatment the list of the security properties and the high-level

SRs was provided together with the list of the defect types.

Defect reporting form. This form was used by subjects to

record the start and end time of the review, as well as the

defects by location and type. The defect reporting form for

the experimental group was the one generated for applying

the reading technique in Table VIII.

H. Experiment Operation

The experiment was executed along two days. On the

first day, the subjects answered the characterization form in

order to allow dividing them into experiment groups. On the

second day prior to the execution of the experiment, concepts

of the security properties, high-level SRs, and defect types

were reviewed by subjects in a training session. After that,

the inspection was conducted as follows.

All subjects had up to one hour to finish the review.

During the experiment, the control group used the OWASP

high-level SRs and a list of defect types as support during the

review. The experimental group used our approach. When

the subjects from both groups finished the task, they had

to fill out the follow-up questionnaire. The first and second

trial were conducted with the undergraduate and graduate

students, respectively.

I. Threats to Validity

Internal validity. First, aiming to avoid personal bias, we

used researcher triangulation to collect and analyze all data.

Second, we characterized all the subjects. The characteri-

zation allowed us to apply the blocking principle, which

consisted of removing confounding factors by distributing

the participants so that these characteristics were equally

distributed among the groups. Random assignment was

employed for subjects with similar characteristics. Finally,

participants received the same training.

Construct validity. For our quantitative analysis, we used

metrics (effectiveness and efficiency) that are commonly

used in inspection experiments. Regarding the qualitative

analysis, we used the TAM, which has also been widely

used and evaluated [34].

Conclusion validity. This validity is related to the sample

size and the statistical methods used. The statistical hypoth-

esis testing methods were chosen according to the sample

distribution.

External validity. As we planned to conduct a limited

amount of trials with a limited amount of subjects, the

experiment package is available for external replications.

Regarding the subject representativeness, we used students

to represent novice inspectors. Using students as subjects

remains a valid simplification of real-life settings needed in

laboratory contexts [13]. Regarding the objects, we peer-

reviewed the requirements specifications and the seeded

defects in terms of their representativeness.

V. RESULTS

In the following, we present the results of the experiment.

We also describe the data collection and analysis procedure.

We executed three steps to collect the data necessary for

answering our research questions. First, we collected the

number of defects found. Based on this data, we evaluate

the performance of the treatments in terms of effectiveness.

We also collected the time spent for detecting defects to

93

compare the performance in terms of efficiency. Finally, we

collected opinions of the subjects to receive feedback on the

usefulness and ease of use of the approach.
Regarding the analysis procedure, we conducted both

quantitative (RQ1) and qualitative analyses (RQ2). Related

to the quantitative analysis, descriptive statistics were based

on the metrics above. Thereafter, to answer RQ1, statistical

hypothesis testing was applied. Our analysis was conducted

using the statistical tool RStudio version 1.1.4. For hypothe-

ses testing, we used the Mann-Whitney test with alpha =

0.05. This choice of statistical significance and test was

motivated by the small number of independent samples.

For the qualitative analysis, we present the frequencies of

responses to the TAM questionnaire. Additionally, grounded

theory coding activities were applied to answer RQ2.
RQ1: Does the approach have an effect on defect
detection effectiveness and efficiency?

We wanted to understand the potential of the approach

to detect security defects in agile specifications of web

applications. For this, we compared the performance of

using our approach versus the review based on the OWASP

high-level SRs and a list of defect types. Regarding the

effectiveness, Figure 3 shows the distribution of the number

of defects found by the students in each trial.

Figure 3. Defect detection effectiveness

Observe that in both trials our approach was more effec-

tive than the other review. In the first trial, the experimental

group identified, in median, 54% of the defects while the

control group identified 23%. The difference was higher

when observing the performance of the second trial. Those

who used our approach identified, in median, 69% of the

defects versus 23% identified by the students who did not

use it. This improvement may have happened because we

slightly modified the defect reporting form in the second

trial to ease understanding and fulfillment. The reason was

that several inspectors mentioned in the first trial that the

defect reporting form was confusing. The change consisted

of merge the column A, IS and IR to understand better that

those defect types do not have a 1 to 1 relationship with

the security specifications such as the O column. In other

words, we improved the design of the defect reporting form,

while it remained capturing the same information.
We also wanted to test our null hypothesis on the effec-

tiveness (H0a), i.e., we checked whether these differences

were significant. The results of the tests allowed to reject

the null hypothesis for both trials (p-values of 0.002 and

0.012 for the first and second trial, respectively); this means

there is a significant difference in terms of effectiveness

between our approach and the other defect-based technique.

In addition, we calculated the Cohen’s effect size [35] for

both trials (3.46 and 2.24 for graduate and undergraduate

students, respectively). Thus, we can partially answer RQ1:

Our approach has a positive impact on defect detection

effectiveness with a very large effect size.
After knowing the effectiveness of our approach, we can

question its efficiency by analyzing the defects found per

hour by the inspectors. Figure 4 shows the distribution of

the efficiency of the subjects involved in the experiment.

Figure 4. Defect detection efficiency

Note that the efficiency follows the same pattern of the

effectiveness, that is, the number of defects found per hour

by the experimental group was greater than the one of the

control group. In the first trial, the median of our approach

efficiency was 15 defects found per hour (we seeded only 13

defects, but participants took less than one hour to complete

their tasks), while the median of the other one was four.

In the second trial, the median of our approach efficiency

increased to 21 defects found per hour versus four defects

found per hour by the control group, i.e., inspectors who

used our approach identified defects faster.
Regarding the statistical hypothesis testing for efficiency,

we found that the Mann-Whitney Test suggests rejecting

our second null hypothesis (p-values of 0.02 and 0.01 for

the first and second trial, respectively). This means there is

a significant difference in terms of efficiency between our

approach and the OWASP review. Additionally, the relevance

of this difference (Cohen’s effect size [35]) was large for

both trials (1.56 and 3.29 for undergraduate students and

graduate students respectively). With this information, we

can fully answer RQ1. Our approach has a positive impact

on security defect detection effectiveness and efficiency,

when compared to directly using the OWASP high-level SRs

and the requirements defect types as a basis for verification.
RQ2: How do the inspectors perceive the usefulness and
ease of use of the approach?

After inspectors reviewed the security specifications, we

asked whether they found the approach useful and easy to

use. Through the TAM questionnaire, we wanted to know

about their perceptions on using our approach. All those

who used our approach strongly agreed (75%) or partially

94

agreed (25%) that their performance improved in some

way (find defects faster). This last one perception may

be strongly related to the lack of experience and security

knowledge of the inspectors and difficulties faced by them

when conducting the review. For instance, one inspector

stated the following: “The review may be exhausting and

time-consuming because the task description document is

not lightweight”. The inspectors also mentioned some diffi-

culties faced such as “confusing defect reporting form” and

“requirement specifications are too abstract”.

Regarding ease of use, again all those who used our

approach strongly agreed (17%) or partially agreed (83%).

The large number of partial agreements indicates that im-

provements could be added to facilitate the use of the

approach. According to the follow-up questionnaire, the

inspectors proposed some points that may improve the

understanding of the approach such as providing a lighter

document, modifying the design of the defect reporting form

and showing an example of how to fill it out correctly. This is

convincing because some inspectors reported difficulties to

adopt the approach. In contrast, three undergraduate students

mentioned that once the review process using the approach

is understood, the detection of defects is simple.

VI. DISCUSSION

In the following, we discuss several further questions that

have implications on future research.

Suitability of the OWASP high-level SRs. We are aware

that not all OWASP high-level SRs might be useful in all

situations. However, we are confident that as a starting point

it is useful to have a basis that allows novice inspectors, at

least, to consider the basic needs to deal with security.

Generalization of our approach. We know that not only

security is challenging in agile projects. Indeed, it seems

that other NFRs such as maintainability and performance

are often ignored or ill-defined in this context. Moreover,

plan-driven software projects may face similar problems.

This provides an opportunity to extend our approach, e.g.,

considering other types of inputs such as open textual

requirements and covering other quality characteristics.

Acceptance of the approach by practitioners. We saw

that in principle our approach supports novice inspectors

to detect defects related to security in agile specifications.

We consider that this contributes to narrowing the security

knowledge gap that exists between experts and novice in-

spectors. In addition, we designed the approach in such a

way that it could work without expensive review cycles,

aligned with the agile philosophy.

VII. LIMITATIONS

We concentrated on a set of concrete security properties

and high-level SRs from the OWASP (matching security sub-

characteristics also described in the SQuaRE quality model).

There are several security standards that are different from

the ones provided by OWASP. Thus, we could complement

the security vision of our approach with other standards.

Moreover, given the complexity of working with NLP in

RE, there is a limitation related to the completeness of the

keyword repository needed to link the user stories with the

security properties. To deal with this, we decided to consider

synonyms regarding the initial set of keywords.

We are also aware that our security specifications consti-

tute a limitation of the study. In a perfect scenario, we would

have security concerns specified by companies or indepen-

dent practitioners, but often this information is restricted.

Therefore, we invested our best efforts to carefully create

and verify the specifications on their representativeness.

Nevertheless, external replications, including a wider range

of user stories and security specifications, are needed to

improve external validity of our results.

VIII. CONCLUDING REMARKS

We proposed an approach for reviewing security-related

aspects in agile requirements specifications of web appli-

cations. The approach considers user stories and security

specifications as inputs and involves applying NLP in order

to relate those user stories to security properties and OWASP

high-level SRs. As a result, the approach provides a focused

reading technique that can be used to support the manual

inspection of agile specifications.

We validated the approach by designing and conducting

two trials of a controlled experiment. The purpose was to

validate the feasibility of using our approach for detecting

defects related to security in web applications. In these trials,

our approach had a positive effect on defect detection effec-

tiveness and efficiency. Inspectors who used our approach

identified more defects in less time than inspectors who

conducted the inspection using the OWASP high-level SRs

and a list of defect types. In principle, subjects found our

approach useful and easy to use.

Future work includes evaluating the performance of using

our approach in industry settings and when compared to

other inspection techniques (e.g., PBR-security [7], even

though it was not designed for the agile context). Further-

more, we consider it important to follow an example process

integration, e.g., by further automatizing the approach within

the FESRAS framework, in such a way that applying the

reading technique could be guided by the framework. This

could help mitigating the difficulties mentioned by the

participants of the experiment. In addition, we are aware

that our repository of keywords is still limited and that our

approach could be evolved beyond exact keyword matching.

ACKNOWLEDGMENT

We would like to thank the CAPES agency for financial

support. We are also grateful to all the experiment partici-

pants.

95

REFERENCES

[1] R. Araujo and M. Curphey, “Software security code review:
Code inspection finds problems,” Software Magazine, 2005.

[2] V. Basili, G. Caldiera, F. Lanubile, and F. Shull, “Studies
on reading techniques,” in Proc. of the Twenty-First Annual
Software Engineering Workshop, vol. 96. Citeseer, 1996, p.
002.

[3] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sørumgård, and M. V. Zelkowitz, “The empirical inves-
tigation of perspective-based reading,” Empirical Software
Engineering, vol. 1, no. 2, pp. 133–164, 1996.

[4] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries et al., “Manifesto for agile software
development,” 2001.

[5] B. Boehm, “Get ready for agile methods, with care,” Com-
puter, no. 1, pp. 64–69, 2002.

[6] L. Cao and B. Ramesh, “Agile requirements engineering
practices: An empirical study,” IEEE software, vol. 25, no. 1,
pp. 60–67, 2008.

[7] J. C. Carver, F. Shull, and I. Rus, “Finding and fixing prob-
lems early: A perspective-based approach to requirements and
design inspections,” STSC CrossTalk, 2006.

[8] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-
functional requirements in software engineering. Springer
Science & Business Media, 2012, vol. 5.

[9] P. T. Devanbu and S. Stubblebine, “Software engineering for
security: a roadmap,” in Proceedings of the Conference on the
Future of Software Engineering. ACM, 2000, pp. 227–239.

[10] D. Domah and F. J. Mitropoulos, “The nerv methodology:
A lightweight process for addressing non-functional require-
ments in agile software development,” in SoutheastCon 2015.
IEEE, 2015, pp. 1–7.

[11] A. Eberlein and J. Leite, “Agile requirements definition: A
view from requirements engineering,” in Proceedings of the
International Workshop on Time-Constrained Requirements
Engineering (TCRE02), 2002, pp. 4–8.

[12] F. Elberzhager, A. Klaus, and M. Jawurek, “Software inspec-
tions using guided checklists to ensure security goals,” in
2009 International Conference on Availability, Reliability and
Security. IEEE, 2009, pp. 853–858.

[13] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch,
A. Jedlitschka, and M. Oivo, “Empirical software engineering
experts on the use of students and professionals in experi-
ments,” Empirical Software Engineering, vol. 23, no. 1, pp.
452–489, 2018.

[14] D. M. Fernández, S. Wagner, M. Kalinowski, A. Schekel-
mann, A. Tuzcu, T. Conte, R. Spinola, and R. Prikladnicki,
“Naming the pain in requirements engineering: comparing
practices in brazil and germany,” IEEE Software, vol. 32,
no. 5, pp. 16–23, 2015.

[15] P. Fusaro, F. Lanubile, and G. Visaggio, “A replicated experi-
ment to assess requirements inspection techniques,” Empirical
Software Engineering, vol. 2, no. 1, pp. 39–57, 1997.

[16] K. M. Goertzel, T. Winograd, H. L. McKinley, L. J. Oh,
M. Colon, T. McGibbon, E. Fedchak, and R. Vienneau,
“Software security assurance: a state-of-art report (sar),”
Information Assurance Technology Analysis Center (IATAC),
Tech. Rep., 2007.

[17] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security
requirements engineering: A framework for representation
and analysis,” IEEE Transactions on Software Engineering,
vol. 34, no. 1, pp. 133–153, 2008.

[18] S. H. Houmb, S. Islam, E. Knauss, J. Jürjens, and K. Schnei-
der, “Eliciting security requirements and tracing them to
design: an integration of common criteria, heuristics, and
umlsec,” Requirements Engineering, vol. 15, no. 1, pp. 63–93,
2010.

[19] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and
S. Shamshirband, “A systematic literature review on agile re-
quirements engineering practices and challenges,” Computers
in human behavior, vol. 51, pp. 915–929, 2015.

[20] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi,
M. Felderer, K. Trektere, F. McCaffery, O. Linssen, E. Hanser
et al., “Hybrid software and system development in practice:
waterfall, scrum, and beyond,” in Proceedings of the 2017
International Conference on Software and System Process.
ACM, 2017, pp. 30–39.

[21] G. Lami, S. Gnesi, F. Fabbrini, M. Fusani, and G. Trentanni,
“An automatic tool for the analysis of natural language
requirements,” Informe técnico, CNR Information Science and
Technology Institute, Pisa, Italia, Setiembre, 2004.

[22] G. McGraw, Software security: building security in.
Addison-Wesley Professional, 2006, vol. 1.

[23] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-
Medina, “A systematic review of security requirements engi-
neering,” Computer Standards & Interfaces, vol. 32, no. 4,
pp. 153–165, 2010.

[24] D. Méndez Fernández, S. Wagner, M. Kalinowski,
M. Felderer, P. Mafra, A. Vetrò, T. Conte, M.-T.
Christiansson, D. Greer, C. Lassenius et al., “Naming the
pain in requirements engineering: contemporary problems,
causes, and effects in practice,” 2016.

[25] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of
migrating to agile methodologies,” Communications of the
ACM, vol. 48, no. 5, pp. 72–78, 2005.

[26] OWASP, The Open Web Application Security Project, Febru-
ary, 2019.

[27] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements en-
gineering and agile software development,” in WET ICE
2003. Proceedings. Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003. IEEE, 2003, pp. 308–313.

96

[28] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements
engineering practices and challenges: an empirical study,”
Information Systems Journal, vol. 20, no. 5, pp. 449–480,
2010.

[29] E.-M. Schön, J. Thomaschewski, and M. J. Escalona, “Agile
requirements engineering: A systematic literature review,”
Computer Standards & Interfaces, vol. 49, pp. 79–91, 2017.

[30] F. J. Shull and V. R. Basili, “Developing techniques for
using software documents: a series of empirical studies,”
Ph.D. dissertation, research directed by Dept. of Computer
Science.University of Maryland , 1998.

[31] J. Slankas and L. Williams, “Automated extraction of non-
functional requirements in available documentation,” in 2013
1st International Workshop on Natural Language Analysis in
Software Engineering (NaturaLiSE). IEEE, 2013, pp. 9–16.

[32] S. Subashini and V. Kavitha, “A survey on security issues
in service delivery models of cloud computing,” Journal of
network and computer applications, vol. 34, no. 1, pp. 1–11,
2011.

[33] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili,
“Detecting defects in object-oriented designs: using reading
techniques to increase software quality,” in ACM Sigplan
Notices, vol. 34, no. 10. ACM, 1999, pp. 47–56.

[34] M. Turner, B. Kitchenham, P. Brereton, S. Charters, and
D. Budgen, “Does the technology acceptance model predict
actual use? a systematic literature review,” Information and
software technology, vol. 52, no. 5, pp. 463–479, 2010.

[35] C. W. VanVoorhis and B. L. Morgan, “Understanding power
and rules of thumb for determining sample sizes,” Tutorials in
quantitative methods for psychology, vol. 3, no. 2, pp. 43–50,
2007.

[36] H. Villamizar, M. Kalinowski, M. Viana, and D. M.
Fernández, “A systematic mapping study on security in agile
requirements engineering,” in 2018 44th Euromicro Confer-
ence on Software Engineering and Advanced Applications
(SEAA). IEEE, 2018, pp. 454–461.

[37] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in software engineering.
Springer Science & Business Media, 2012.

[38] Z. Zhang, V. Basili, and B. Shneiderman, “An empirical study
of perspective-based usability inspection,” in Proceedings of
the Human Factors and Ergonomics Society Annual Meeting,
vol. 42, no. 19. SAGE Publications Sage CA: Los Angeles,
CA, 1998, pp. 1346–1350.

[39] D. Zubrow, “Software quality requirements and evalua-
tion, the iso 25000 series,” Software Engineering Institute,
Carnegie Mellon, 2004.

97

