A A
PSPt
uieals
PSPt
uieals
PSPt
uieals
PSPt
uieals
PSPt
uieals
PSPt
uieals
e

mm mm mm mm mm mm mm

A HISTORY OF F#

By and large, the goal of introducing new programming
languages has been to make it simpler to express more
complex behavior.

M ot h e r Just like half of the world's spoken tongues, most of the 2,300-plus computer Code-raker Grady Booch, Rational Software’s chief scientist, is working with the Computer Key

progr g languages are either endangered or As powerh CiC+s, History Musuem in Silicon Valley to record and, in some cases, maintain languages by writing 1934 Year Inirodused

Visual Basic, Cobol, Java and other modern codes dominate our syst new compilers so our ever-changing hardware can grok the code. Why bother? “They tell Actve: thousards of ssers

hundreds of older languages are running out of life. us about the state of software practice, the minds of their inventors, and the technical, social, Protecieg: st sl urhurates, conglen

I n u e s An ad hoc collection of engineers-electronic lexicographers, if you wili-aim to and economic forces that shaped history at the time,” Booch explains. “They'll provide the ovabis

save, or at least document the lingo of classic software. They're combing the globe's raw material for software archasologists, historlans, and developers to learn what worked, Craangares a1 rcong ot

9 milllon developers in saarch of coders still fluent In these nearly forgotten lingua what was briltlant, and what was an utter fallure.” Hare's a peek at the strongest branches Estinct: 1) hown 22ive Usets &f -
Tracing the roots of computer frangas. Among the most endangered are Ada, APL, B (the predecessor of C), Lsp, of programming's family tree. For a nearly exhaustive rundown, check out the Language List cenpéen

Oberon, Smalitalk, and Simula. at HTTP:/\www.informatik.uni-freiburg.de/Java/misciang_Nsthtml. - Michasl Mendeno Unesge cormnies

languages through the ages

154 1955 166 156 151 WS e 1561 12 1963 1964 1365 w66 1067 1860 196 M WM 1802 W 19T WS S W7 19T 190% 1R YIEY a2 163 1564 188 13 a7 1568 HH 190 1841 19Q " e 1S 18 1957 1686 R 20 20

A5 Cont 1 750 Cobn 33
;’m I' Sthevw (EEE Schens RSAS
s DRy

Benrers Gearps Packa s steegt
Langge. 12 Comding 1w bont

foaterms 3! Fonan,

Cadol and Aigei 6. - Covrnse
oot sad Age \?’ Corea .

defaorocensny
Lavyamyri

ANS| Commen Lag
= A\ CTe
= -y NG

= A SN s

Ageerton
i

= Lisgiage drsiyuc
Lrgsige fer scinetic

Algod 6 s sampleaty
"ot sher 3vead of Ay Sew or rphthuly
focramd dopesting 21 whor yad et

70 e

Pazaut n Lirope daeg the Mhoronoft's srmwer 1o divs.
e - S g ¥

ceecopiof

Lavyanp
Yoeday A SRRt The daet
. . aneTed etavetz O
Survival of the Fittest
Reasons a language endures, with examples of some classic tongues l
Appesis to u wide audience C (bolstared by the popularity of Unix) / m] [}

Gets a job done Cobal (designed for businesa-report weting)
Delivars new functionallty Java (runs on any hardware platform)

C—
T .

[\] e o=
e

Fllis a niche Maik tics § és up)

Offers a modicum of elegance 'con (has frandly. line-onentad syntax)
Has a powerful user base or backer CH (developed by Microsoft for Net)
Has a charismatic leader Ped (programmer-author Larry Wall)

Fregiavency ssy eivet

WD Tha doacendant of
Secbel 1es's 33 reed 1
trera Tw axdwigang O6

Sources: Paul Boutin: Breat Hallpern, ussociate direcior of compaiter science ot IBM R H; The Relr g Museumn: Todd Prosbating, senior russarchaer ot Microsoft; Gio Wisderbold, computer sciantist, Stunford Uneveesity

PREHISTORY

GOTTFRIED LEIBNIZ, 1646-1716

CHARLES BABBAGE (1791-1871) &

ADA LOVELACE: THE
SECRET ORIGIN

IN WHICH is Introduced our Cast of
Characters in an Instructive Biography
of Ada, Countess of Lovelace. Formation

of the POCKET UNIVERSE,

In 1 Part

Lovelace & Babbage Vs.

THE ECONOMIC
MODEL
IN WHICH an entirely unprecedented
Crisis of Debt threatens the REALM and
an Economic Model is constructed.

With Appearance by the Celebrated

Engineer Mr. LK. Brunel.

In 3 Parts

GOTTLOB FREGE (1848-1925) &
GIUSEPPE PEANO (1858-1932)

DAVID HILBERT, 1862-1943

MOSES SCHONFINKEL, 1889-1942

RILBERT'S 23 QUESTIONS, 1900

1900: Hilbert poses his "23 questions” (now known as Hilbert's
problems) at the Second International Congress of
Mathematicians in Paris in 1900.

The second is simply, “Prove that the axioms of mathematics are
consistent.”

PRINCIPIA MATHEI\/IATICAI’,’

*¥0443. F:.a,Bel.dianB=A.=.avBe2 %
Dem. S LY
}-.*54'26.3}-:.a=L‘a:.,8=L‘y.D:au,8e2.:—:.d)c Y. .
[%¥51°231] Aenty=A.
[%13°12] anfB=A (1)
F.(1).%11'11'85.D
Fi(gqo,y).a=tz.B=ty.d:avBe2.=.anB=A (2)
Fo(2).%11'54.%52'1 . F. Prop

From this proposition it will follow, when arithmetical addition has been
defined, that 1 +1 =2,

HILBERT'S SECOND PROBLEM,
REDUX. 1928.

Recasts his second problem into three questions:
1) Is mathematics complete?
2) Is mathematics consistent?

3) Is mathematics decidable?

19305

GODEL'S INCOMPLETENESS
THEOREMS, 1931

GODEL STARTED A FAD

=

UNDEFINABILITY THEOREM, 1936

Arithmetical truth cannot be defined in arithmetic.

GODEL STARTED A FAD

L)
 _

ALAN TURING & HALTING
PROBLEM, 1936

Can you determine, from a description of
an arbitrary computer program and an
input, whether the program will finish
running or continue to run forever?

GODEL STARTED A FAD

L)
Q.d

ENTSCHEIDUNGSPROBLEM, 1936

Can an algorithm be derived that takes a statement of first-order
logic, and determines whether that statement is valid in every
structure satisfying the axioms?

Can a given statement be proven from the axioms, using the rules of
logic?

ALONZO CHURCH

19408 & 19505

EARLY COMPUTERS

/1,72, 73: Z1 proposed 1935, Z3 delivered 1941
ENIAC: 1943 (proposed) 1946 (delivered)

EDVAC: 1944 (proposed) 1949 (delivered)
Manchester Baby: 1946 (proposed) 1948 (delivered)
EDSAC: 1946 (proposed) 1949 (delivered)

Pilot ACE: 1950 (delivered)

JOHN VON NEUMANN, 1903-1957

FORTRAN, 1954

FORTRAR =T ATEMEMT

l..;uf:.:'.lt-u*.-.[’l"l'lilili'u Filyecbooogooooooooaa0 'u'i:‘aTﬂTﬂu‘ﬂTﬂ'i:‘u‘h:uﬁﬁ'ﬂ'ﬁ'u LI

tla o o wfnfr b @ g W T 28 T e e N -|.|-|.'||-.|-Il.l-I-I'l|l|:|.'l|l-:rl:'lIrl:|tH-lHH-FI-II""I'.il'l]

1|1IIl-l.11I|Il1'|'|I|l:'|'|'|||Ii1‘||||l]111|Il!ll111|||||.]!111|||||.|!|.l!:|1'|||||||i

I
R R R R R R A R kR R R R A A R A R R R R

]]]!,]FH]-I]JH".’I! 13 FFNNNININNNNRIIINNANNNNNRNNNNNGNIRIEIRNNNNNNININNDNGNNG
-I-H-Iil'H'HH:I: EEEE EEE RN E R R R R R R R R R R EEEEERERERREEE R EEERREREEESSERRLEER RS

AR REER R R R R R E R R ! E-','-!-'.iHuH555-555‘1555555-‘----.uii’!li”ln"'".l!!!l“lii:l-1
11 AR A AR A AR N A A R AR A A A A ARANRNNAARRRRORARNNRIEZEERIYINIANNILILLY

|!|IEZ'E-‘.-- | |

..Ilrn'.‘.‘..ll RS R R R R R R R R R R R R R R R R AR R R R R R PR R NN RN B R R AR R

| |
ll."'!Illl"!!-:!-II!I-!-I-:FIIIIIICII:!:IIII-I-I:IIIIIIlilillIilIIl-lIlllllllI-i-'ttl||||||-!-|:$!||||||||-
|

I!I}'.‘i [1 = 1 [1 [g4 1
it 1 5 a) - IH N

i
i Bl

FLOW-MATIC, 1935 &
COBOL, 1959

INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT PRICED-INV FILE-C UNPRICED-INV
FILE-D ; HSP D .

COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERATION 10 ;
IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO OPERATION 2 .

TRANSFER A TO D .

WRITE-ITEM D .

JUMP TO OPERATION 8 .

TRANSFER A TO C .

MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .

WRITE-ITEM C .

READ-ITEM A ; IF END OF DATA GO TO OPERATION 14 .

JUMP TO OPERATION 1 .

READ-ITEM B ; IF END OF DATA GO TO OPERATION 12 .

JUMP TO OPERATION 1 .

SET OPERATION 9 TO GO TO OPERATION 2 .

JUMP TO OPERATION 2 .

TEST PRODUCT-NO (B) AGAINST 2Z2Z2ZZZ2%Z2Z%%2%ZZ ; IF EQUAL GO TO OPERATION 16 ;
OTHERWISE GO TO OPERATION 15

REWIND B .

CLOSE-OUT FILES C ; D .

STOP . (END)

IDENTIFICATION DIVISION.
PROGRAM-ID. hello-world.
PROCEDURE DIVISION.

DISPLAY "Hello, world!"

ALGOL, 1958

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m,
is transferred to y, and the subscripts of this element to i and k;
begin
integer p, q;
y :=0; i :=k = 1;

for p := 1 step 1 until n do
for g := 1 step 1 until m do
if abs(a[p, g]) > y then
begin y := abs(a[p, q]);
i ¢='p; k = q
end

end Absmax

LISP, 1958
(defun factorial (n &optional (acc 1))
(if (= n 0) acc

(factorial (- n 1) (* acc n))))

“Lisp is the medium of choice for people who enjoy free style
and flexibility.”

— Gerald Jay Sussman (introduction to [Friedman, 1987], p. ix)

Lisp first had: tree data structures, automatic storage
management, dynamic typing, conditionals, higher-order
functions, recursion, and the self-hosting compiler. (First? REPL)

MERVYN PRAGNELL'S LOGIC STUDY
GROUP, LATE 19505

The sessions were held illicitly after-hours at Birkbeck College
(University of London), without the knowledge or permission of the

college authorities. Pragnell knew a lab tech with a key that would let
them in.

Members included: Christopher Strachey, Peter Landin, Rod Burstall,
Dana Scott, Robin Milner (and more)...

1952 [1963 | 1954 l 1968 1966 1957 !’Sl 1959]m ‘*‘ 1962 1963 | 1964 1965 | 1966 1967 1968 | 1963 | 1970 19N
LANGUAGE HISTORY CHART SRRT ChoE e T e ¥ T = v L + * it +—+—————+
. -
Fiest Jetler of such rume hat beon aligond wim e »-:n-.-. | uﬂm-wu-cc === UMicoor FORTRAN Standards,
appecaireate dase on whish wosk began. o
THIS TYPE STYLE nacates unguage of Loy 8 2ot ‘O‘;Tﬁ”‘ "'%‘0* b ‘...:.JJJ,T e s e
i) roer ool sacAIC T ORTRART e ey = kg, S U
w sechakal ggnifizanan, NUMERICAL b4 ‘ e..» o = "‘""r L., Y
THIS TYPESTYLE indutes eguges of SCIENTIFIC LeoL e = = ALGOL B3 . rog
modmaie importance . “Al." SPEAKEASY
L]
THIE TYPE STYLE s et fow ot othar CII f mu%uu.
Pacemtheses were weed to indicate allermate saser, — ll¥~
OF The larer w3800 of The wagaence mamber “1." Two-Di ional o=
re—CSTLINU PE) — " - ek b T IO Tl =T
argrags s » Sxvct exten -‘~~~
won of tha finet A U [T dualasic
PE—] / - -
larguage iy 1 AppruT TR /
wxhendan of the finet, Ia.,
wery smlier to e fut, ’ P TeL D]ﬁA:
vt ot cuzzhealy o2 ON-LINE A 77 Phgac
ward sarmpatible /4 ///
——— AL O e /s 7 ,/ E LANG. | L
sotaetiows the seecad P, S . -
largrags is “loe, o in the 7 '/ 7
tybe of™ the Tl PR R - /4 P gum— . "
------------- WA AR AP 1 7 A < EvMEAL CAMAL
sebon Ve
Each o dhve fulurwing rearks m sskoctatod wilh the /’ A /7 - -""‘\l‘m . - J ——— m“'l‘.
fargrage sbore o % i lefl: NON-NUMERICAL Va4
@ odlates polininmy o SCIENTIFIC / // 4 P R.\!Nm. IAI. Mn.um,
afermal gpealh (= Formula Mamipulation) / / | SCRATCIOAD
P y \ &
W Oy pebs D, / / / L > rw“w 1 I
o PR) l-/‘*, o fss - i \ e - | anrey
bracoeot il /1|] rLowmaTicm—-t—— COBOL 70
A reicase for euge swide BUSINESS / / (.3-0) I\ ™ P \ s
devdopraent grasp f !/ \ ~s. \
DATA h | \ . \»
PROCESSING | | \ s ;Powmdww \
| o \
| \
N
Gemeral Commeats 3y ‘i s W - R TRt = L“\% =73 Qi samgew
Ths chai My The pessonal qrimons of
e nn;::'m;-’):q:;u m'mrnc, List | \ LM s —PLy uv?\ NN\ T »
A the warhor's best Fatimwie in sy cesen as far Processing \ \ e 2
as duten are emelwad. The Irdticariom of e siafl "= "
of 152wk are the ot \ \ \ LEAF .
x;mm::mmwh 1974 s based \ \
andl s “Rostar of
. STRING coMIY
ALY ard Avtamatiog,
m::olu irese TOVIY NS - T AND LIST \ \ \\ ®
I smont cases. dislects with @fYeriag sames Rave PROCESSING \ \ \ ’L‘.
bean comitind This has ths weforns e slfect of
sppeariag 1o miviraze D importascs of sme String \ A\ 5 8
bargoigrs whbby spumred oo serrsen sernicon uséer Processing N o ‘.%‘m
Alfercy sarsss (s ., N55) \ A N AN VULCaAn
Lanpmagns Sa1 specilied sppieaion N . .
dovalation, -:':nm::vmd nmx:..t::c‘r-. \ \\ \\
wyvbezi D oot beoe wcladng \
"'......"f'“"‘“&..,..""" m;r"f.rmmm h \‘\\ Ll “fees 5‘\1 siresiiis ol vrr o B on g Arnan ey B e e e B]
T T Lo, MU N ~_._JOVIAL JOVIAL 2 ceap L
Ackscwicapreent: The ada for wach 3 chart i 1ack SN \~_-__-__ RSN B 4 Formuls ALGOL
h‘-:u..nnnn '*“C('-"'“"’W‘"l Shaw ~ \\ f\ \: il | | WTRAN .
ontit] TP
a0d inchoded with She [ACM Les Angeies Chugter | MULTIPURPOSE \\~\\~‘- \“-—__‘\ 'LI: —’f—- PSR e dnat ad L r L LT o e
SIGFLAN sccwes, Fabeuscy 1965, B Sl oot mii S S i S # REF-ANE
T T ‘ - o R e s »e o 1—1\‘-.-}'2....:.~1r.‘---:‘v" !,—-.....;....‘;:.j-? m“:'.'
PROTELS . erc
ot L ey and Fonne EXPERIMENTAL g Esedlsy x
L
Dvmaee af u-wu.w 15, baty 1012 AND OTHERS . L. N - N . S » ﬂgw'“ =
3 . Ire —t + - +——t +——4 + +
1951 1953 | 1964 | 1955 19656 | 1957 | 1958 | 1959 1960 1961 1962 | 1963 | 1084 1965 | 1966 1967 1968 | 1969 1970 | 19N

19605

CHRISTOPHER STRACHEY, 1916-
1975

PETER LANDIN, 1930 - 2009

PETER LANDIN'S PAPERS

Mechanical evolution of expressions (1964).

A correspondence between ALGOL-60 and Church's lambda-
notation (1965).

The next 700 programming languages (1966).

Programs and their proofs: an algebraic approach (1968). With
Rod Burstall.

ISWIM, 1966

“If you See What | Mean”

ISWIM is an imperative language with a functional core, consisting of
a syntactic sugaring of lambda calculus, plus mutable variables and
assignment and a powerful control mechanism—the J operator.
Because it is based on the lambda calculus, ISWIM has higher order
functions and lexically scoped variables.

PETER LANDIN'S CONTRIBUTIONS

Term “syntactic sugar” Algebraic data types
Functional programming languages Streams
Domain-specific languages Connection between streams and

coroutines

SECD machine

Si?nificant whitespace (the off-side
rule)

Graph reduction
Sharing
Strictness analysis

Where expressions Delayed evaluation

Disentangling nested applications

: | Partial evaluation
into flat where expressions

Circularity to implement recursion
J Operator

Closures
First-class continuations

HASKELL CURRY, 1900-1982

CURRY-HOWARD ISOMORPHISM

Curry -Howard Isomorph.sm .

h Category theory for JavaScript programmers #22: Curry-Howard
,_'-:25-53 M—Y isomorphism
?(OVOS\.x" "N : ; Cov\-\-’rac+ Mike Stay

6\)&(&9.0(L. i 840 vi

19708

THEOREM PROVERS (TO TODAY)

LCF

HOL series (HOL88, HOL90, HOL98, HOL4, HOL Light, ProofPower,
HOL Zero)

F*
Coq
Isabelle
Agda

LCF, 1972

AD-785 072

LOGIC FOR COMPUTABLE FUNCTIONS
DESCRIPTION OF A MACHINE IMPLEMENTATION

Robin Milner

Stanford University

ROBIN MILNER, 1934-2010

“The idea of a machine proving theorems in
logic, and the idea of using logic to
understand what a machine was doing... This
double relationship began to inspire me
because it was clearly not very simple.”

NPL, 1977

setofeven(X) <= <:x: X 1n X & even(x) :>

HOPE, 1977

dec fact : num -> num;
-—— fact 0 <= 1:

—-—- fact n <= n*fact(n-1);

HINDLEY-MILNER TYPE INFERENCE,
1978

Algorithm W

rz:0el’ 1=1inst(o)
_— [Var]
Ftwa:r

F'twe:mgo 'Fwer:nn 7 =newvar unify(ry, m — 7')

A
FI—W €0 61:7" [PP]

r=newvar I, z:7Fwe:7

Ab
I'twAzx.e:7— 7 [Abs]

I'bwep:T T,z:T(n)Fwer:7

Let
I'Fw letx =€y ine; : 7 b

EDINBURGH LCF, 1979

There are no doubt many ways of compromising between these two
styles, in an attempt to eliminate the worst features of each - e.g.
the inefficient general search strategies of automatic theorem
provers, and the tedious and repetitive nature of straight proof
checking. The main aims of our system are as follows:

(1) To provide an interactive netaianguage (ML) for conducting
proofs, in which in principle almost any style can be programmed,
but which provides the greatest possible security against faulty

(2) To accomodate well a particular style which we believe is
natural.

(3) To experiment with ML and with this style of proof in the
particular calculus PPLAMBDA, in which properties of recursively
defined functions over a wide variety of domains can be quite well
formulated (in particular, problems to do with the syntax and
semantics of programming languages) and in which proofs are often
found by one of a few good strategies, together with rather few
creative steps supplied by the user. ;

These aims - particularly the provision of a metalanguage - arose
from an earlier implementation of a restriction of PPLAMBDA carried
out at Stanford in 1971-2 (see Bibliography under LCF Studies). 1In

ML, 1979

fun fact n = let
fun fac 0 = 1
| fac n = n * fac (n - 1)

in
if (n < 0) then raise Fail "negative argument”
else fac n

end

19805

LUCA CARDELLI & VAX ML, 1981

New features: Importance: s
- New labelled record and Demonstrates viability of ML .
union types a general language with an

- The el e far muielle efficient implementation.

values Creates incentive to control

: : roliferation of dialects
- Declaration combinators for ¥

building compound An immediate precursor of
declarations Standard ML
— Modules A testbed for early experiments

_ Stream 1/0 w/ bi-directional with Standard ML design

streams.

STANDARD ML DESIGN STARTS
19383.

You've worked with Simon Peyton Jones and Sir Tony Hoare who are both at Cambridge Labs. Did you
feel a sense of competition with them?

MILNER: [I've talked with them, much less with Simon than with Tony. The reason is that | stopped working on

programming language design a long time ago; and in ML | was more focussed on establishing a formal
definition that would remain unchanged, whereas Simon - quite rightly and fruitfully - aims at conceptual

development through the medium of a changing language. I'm sure we agree that it's hard to do both at
once, and that the two aims are complementary.

First participants:

Rod Burstall, Luca Cardelli, Guy Cousineau ,Mike Gordon, David
MacQueen, Robin Milner, Kevin Mitchell, Alan Mycroft, Larry Paulson,
David Rydeheard, Don Sannella, John Scott, Brian Monahan, Stefan
Sokolowski. Gerard Huet. Peter Mosses. David Schmidt

19905

STANDARD ML, 1990

local

—_

rec dala 'a seq < nd ICons of'a 'a seq,

In

;E, 'a mono.w:(. {=> 'a s‘eq/

wifh

- loced ree var a}; ¢— fin nd,m .om
[cons(.@)m . cons(x,ap(¥,m)
In
vor emply <— absmoneid il
and Snglefon (x) <— absmoneid (cons (x, nil))

ad concat (aésmnéd, ¢ 5 absmenad m) == aé‘in‘cno;.d (4{)(Z, ‘M))

OBJECT-ORIENTED PROGRAMMING
GOES VIRAL

C++, 1983. C++ 2.0 19809.

New features in 2.0 included multiple inheritance, abstract classes,
static member functions, const member functions, and protected
members.

Java, initiated 1991. First version, 1995.
C# & .NET, first initiated, 1999. First released: 2002.

ML-2000 TALKS START, 1993

Should we add OO capabilities?

OTHER WILD MLS APPEAR

Standard ML of NJ ANU ML, late 80s
=> MLj Harlequin ML, 1996
=> SML.NET Moscow ML, 1994
PolyML
CAML, 1985 MLKit
=> Caml Light, 1991 Miton | N

=> Caml Special Light, 1995 MLWorks

=> OCaml, 1996 SML ’97
=> F#, 2005 QML '

20005

DON SYME

My F# Journey to 2010

The Ship e Microsoft Research & .NET

.. o] : Li
The Origin 998: Java, Ocaml, Scheme, Lisp,

Haskell, COM, TclTk, Pizza, GJ, MLj

The Destination e 2010: C# 4.0-5.0, F# 2.0

So much of what | loved about programming, was just
missing from the experience of programming in Java. And
that, in a sense, was a big driving motivation. And as C#
1.0 occurred, | was faced with a desperate situation: that |
might actually have to do all my programming in either
Java or C# 1.0. And | actually had to do personally do
something about this at Microsoft, either by improving C#
to the point that it was what | wanted to use, or by working
on a new language.

PUSH FOR .NET GENERICS MAKE IT
IN TO C# 2.0, 1999-2004

Microsoft

®
@ Wins

e e N) p)

Poldclas, FadAls S
'] ”M)) TN

b 2 B yeuca) s

-l

Oy € €=y
T k0

BUG FIXES FOR GENERICS, 2002-
2004

Here are the compulsory bug-fix stats, ... Some of these bugs hide an awful lot of work...

Whidbey M1 (Q3-Q4 2002) M2 (Q1-Q2 2003) Betal (Q3,Q4 2004)
CLR/C# Generics bugs fixed by Cambridge 39 258 229
CLR Generics bugs fixed by CLR team 2 13 ~45

C# Generics bugs fixed by C# team 75 27

Bugs Opened by Cambridge
Total bugs fixed with the word “generics”...

IN WHICH WE FINALLY MEET THE
HERO OF OUR STORY: F#

/// Fibonacci Number formula
let rec fib n =
match n with
| 0| 1 -=>n
| -> £fib (n - 1) + £ib (n - 2)

/// Another approach - a lazy infinite sequence of Fibonacci numbers
let fibSeq = Seq.unfold (fun (a,b) -> Some(a+b, (b, a+b))) (0,1)

// Print even fibs

(1 .. 10]

|> List.map fib

|> List.filter (fun n -> (n % 2) = 0)
|> printList

// Same thing, using a list expression
[for i in 1..10 do

let r = fib i

if r $ 2 = 0 then yield r]
|> printList

A FEW PAPERS RELATED TO F#

Tomas Petricek and Don Syme, The F# Computation Expression Zoo, in Proceedings of Practical Aspects of Declarative
Languages, ACM, 2014.

Don Syme, Kenji Takeda, Keith Battocchi, Donna Malayeri, and Tomas Petricek, Themes in Information-Rich Functional
Programming for Internet-Scale Data Sources, ACM, 24 January 2013.

Don Syme, Keith Battocchi, and Gordon Hodgenson, Creating a Type Provider (F#), Microsoft, 12 January 2013.

Don Syme, Adam Granicz, and Antonio Cisternino, Expert F# 3.0, Apress, 7 November 2012.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo Fisher, Jsack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, Wonseok Chae, Uladzimir Matsveyeu, and Tomas Petricek, F#3.0 - Strongly-Typed Language Support for Internet-
Scale’mformation Sources, no. MSR-TR-2012-101, 21 September 20T2.

X(():rl{]/laszg(]at]ricek, Don Syme, and Alan Mycroft, Extending Monads with Pattern Matching, inProceedings of Haskell Symposium,

Tomas Petricek and Don S)/me, Joinads: a retargetable control-flow construct for reactive, parallel and concurrent programming,
in Proceedings of Practical Aspects of Declarative Languages, ACM, 20T1T.

Donald Syme, Tomas Petricek, and Dmitryé Lomoyv, The F# Asynchronous Programming Model, in/n Proceedings of Principles and
Applications of Declarative Languages, 2011, ACM SIGPLAN, 20TT.

composite events, in /SMM 10

Tomas Petricek and Donald Syme, Collecting hollywood's garbage: avoiding space-leaks in co
PLAN, 2010.

Proceedings of the 2010 international symposium on Memory management , ACM SIG

Don Syme, The F# Draft Language Specification, Microsoft, 1 February 2009.

http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=217375
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=192598
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=192597
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=192596
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=173076
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=217376
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=217377
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=147194
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=147195
http://web.archive.org/web/20160304195137/http:/research.microsoft.com/apps/pubs/default.aspx?id=79948

F# 1.0, 2005

b Microsoft.com Home | Site Map

Functional
programming

Saarch Al Rssesaron Unre v

Discriminated unions
Records Downloads
Tuples

Pattern matching

The latest versions of the
downiocaded from the Mx

Copies of some »

SL. piease er

« Type abbreviations
Object programming

Manual
T0 mstall save and unpack the np file f= Manual

Pudkcat-ons USETS report the "save” works but "open
Cowe 3ads read the instaliaton notes and run "Instal- ,
fsharp. bat™. The bat file installs dbrary .diis (mikb MMaNily
and siiD) in the giobal assembly cache

E+ Downloads
Structs
Signature files

Confarences and Evants
Lehwres Ondine

Eaiated Web Sites If the installation fals please et us Know

— Y ’ 4

Scripting files

Imperative Press Resources

§ Larsars <t and check out the F2
programming e it
Modules (no

functors)

Contact Us
M
==

« Nested modules
» .NET Interoperability

22005 Mcrosoft Corporaton. Al ngiits reserved, Terms of Lne Tracterrawks

UNITS OF MEASURE, 2008

let gravityOnEarth = 9.81<m/s"2> // an acceleration
let heightOfMyOfficeWindow = 3.5<m> // a distance

let speedOfImpact = sqrt (2.0 * gravityOnEarth + heightOfMyOfficeWindow)

AAAAAAAAAANIAAAAAAAAAAAAAAANAAAAAAAAA

TYPE PROVIDERS, 2009

"Let’s #r a database!” W77
2010: Jomo Fisher prototypes the Excel and Freebase ' |

type providers

2011: Decided to make it a feature of F# 3.0. Was
called “awesome typing.”

2010

F# 2.0 INCLUDED IN VISUAL STUDIO
2010

Visual Studio
+ 2010

F# IS OPEN SOURCED! 2010

cdd
By s

‘ ~ Miguel de Icaza 7 Follow

—
Guys, Don Syme is on twitter Isyme he is about to
announce something huge. Everyone follow!

l_Jses the Apache N e
license

F# 2.0, 2010

F#1.0 F# 2.0

« Functional » Active patterns
programming « Units of measure

« Discriminated unions =« Sequence expressions

» Records « Asynchronous

e Tuples programming

» Pattern matching « Agent programming

« Type abbreviations « Extension members

« Object programmin « Named arguments
Features Joct prog g g

added » Structs « Optional arguments

« Signature files Array slicing

« Scripting files « Quotations

« Imperative « Native interoperability
programming « Computation

« Modules (no expressions
functors)

» Nested modules

« .NET Interoperability

F# The F# Software Foundation

FSHARP.ORG, 201

Created by Phil Trelford, Tomas Petricek,
Don Syme

2012: Early talks were fueled by much tea
and cake. Domain purchased, and folks
joined by emailing.

2014: Formally organized.

2015: Board elections held; 501c(3)
Charitable organization.

2016: Nearly 1000 members, training
programs, working groups (join!).

F# 3.0, 2012

F#1.0 F# 2.0 F# 3.0(8l

» Functional » Active patterns « Type providers
programming « Units of measure « LINQ query

« Discriminated unions =« Sequence expressions expressions

» Records « Asynchronous » CLIMutable attribute

e Tuples programming « Triple-quoted strings

» Pattern matching « Agent programming » Auto-properties

« Type abbreviations « Extension members « Provided units-of-

« Object programmin « Named arguments measure
Features Joct prog g 9

added » Structs « Optional arguments

« Signature files Array slicing

« Scripting files « Quotations

« Imperative « Native interoperability
programming « Computation

« Modules (no expressions
functors)

» Nested modules

« .NET Interoperability

F# MOVED TO GITHUB, 2015

w Visual F¥ Team

The day has arrived: Visual #fsharp has moved to
Github:git!

M 8'("(_}

F# 3.1, 2015

F#1.0 F#2.0 F# 3.00'8 F#3.1019

» Functional » Active patterns « Type providers « Named union type fields
programming « Units of measure « LINQ query « Extensions to array slicing

« Discriminated unions =« Sequence expressions expressions « Type inference

» Records « Asynchronous « CLIMutable attribute enhancements

e Tuples programming « Triple-quoted strings

» Pattern matching « Agent programming » Auto-properties

« Type abbreviations « Extension members « Provided units-of-

« Object programmin « Named arguments measure
Features Joct prog g 9

added » Structs « Optional arguments

« Signature files Array slicing

« Scripting files « Quotations

« Imperative « Native interoperability
programming « Computation

« Modules (no expressions
functors)

» Nested modules

« .NET Interoperability

F# 4.0, 2016

F#1.0 F# 2.0 F# 3.0(1€] F# 3.11'9 F# 4.0 / planned!2®!

« Functional « Active patterns » Type providers « Named union type fields « Printf on unitized values
programming « Units of measure » LINQ query « Extensions to array slicing Extension property initializers

« Discriminated unions =« Sequence expressions expressions « Type inference Non-null provided types

» Records « Asynchronous « CLIMutable attribute enhancements Primary constructors as functions

« Tuples programming « Triple-quoted strings Static parameters for provided

» Pattern matching « Agent programming » Auto-properties methods

« Type abbreviations « Extension members » Provided units-of- Printf interpolation

« Object programmin « Named arguments measure Extended #if grammar
Features Joct prog g g g

addad » Structs « Optional arguments « Support for 'fixed

« Signature files Array slicing « Tailcall attribute

« Scripting files « Quotations « Multiple interface instantiations

e Imperative « Native interoperability « Optional type args
programming « Computation « Params dictionaries

« Modules (no expressions
functors)

» Nested modules

« .NET Interoperability

Thank you to our contributors

Visual F# 4.0 marks the first major-version release of the F# language and VS tools to include community contributions. As such, we offer a
heart-felt “thank you!” to all of the F# community developers who contributed code, opened issues, or dogfooded early builds.

TODAY: TYPE PROVIDERS ARE
BLOSSOMING
‘

+ many more!

AND BY TYPE PROVIDERS, | MEAN
THE COMMUNITY.

http://fsharp.org, FSSF Slack

F# Weekly
http://fsharpforfunandprofit.com
F# Conf videos

c4fsharp.net

F# COMMUNITY

fssnip.net

#fsharp on twitter
GitHub.com/fsprojects

Google groups

http://fsharp.org/
http://fsharpforfunandprofit.com/
http://c4fsharp.net
http://fssnip.net
http://github.com/fsprojects

A A
PSPt
uieals
PSPt
uieals
PSPt
uieals
PSPt
uieals
PSPt
uieals
PSPt
uieals
e

mm mm mm mm mm mm mm

A HISTORY OF F#

