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Abstract

This paper deals with the problem of the recognition of human hand touch by a robot equipped with large area tactile

sensors covering its body. This problem is relevant in the domain of physical human-robot interaction for discriminating

between human and non-human contacts and to trigger and to drive cooperative tasks or robot motions, or to ensure a

safe interaction. The underlying assumption, used in this paper, is that voluntary physical interaction tasks involve hand

touch over the robot body, and therefore the capability of recognizing hand contacts is a key element to discriminate a

purposive human touch from other types of interaction.

The proposed approach is based on a geometric transformation of the tactile data, formed by pressure measurements

associated to a non uniform cloud of 3D points (taxels) spread over a non linear manifold corresponding to the robot

body, into tactile images representing the contact pressure distribution in 2D. Tactile images can be processed using

deep learning algorithms to recognize human hands and to compute the pressure distribution applied by the various

hand segments: palm and single fingers.

Experimental results, performed on a real robot covered with robot skin, show the effectiveness of the proposed

methodology. Moreover, to evaluate its robustness, various types of failures have been simulated. A further analysis

concerning the transferability of the system has been performed, considering contacts occurring on a different

sensorized robot part.
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1. Introduction

Human-Robot Interaction (HRI) has the goal of making
possible the cooperation between humans and robots, in
order to exploit the strengths of both players to accomplish
complex tasks, otherwise difficult to be tackled, or tedious
and error prone. To this aim, and in order to ensure safe
interaction, robots are expected to embed human-like sensing
modalities such as vision, touch, speech, etc.

In the literature HRI has been largely based on vision
systems, for example to recognize gestures (Li 2012), to
cooperate with robots in assembly tasks (Kimura et al. 1999)
and to deal with collision detection problems (Ebert and
Henrich 2002).

Of course, when contacts occur, interaction control of
the robot is required based on the capability of sensing
the contact phenomena. To this aim force/torque sensors
have been largely used in order to ensure safe physical HRI
(pHRI), by detecting collisions (Haddadin et al. 2008) and

ensuring robot compliant behaviour in response to external
forces (Grunwald et al. 2003; Duchaine and Gosselin 2007).

Bicchi et al. (1993) have shown that for a given robot
geometry for contacts over small areas it is possible to
reconstruct the interaction forces and the contact centroid
location by processing lumped force/torque measurements.
Although this method has been proven effective for object
manipulation using robot hands, it can be hardly scaled in
case of multiple contacts, or complex interactions expressed
over large areas, which are phenomena expected to arise in
tasks involving tight HRI.
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Figure 1. Proposed approach: (a) a human is touching the robot arm using the hand; (b) the 3D contact measurements are
mapped on the mesh representing the robot body; (c) the robot skin measurements are transformed into an image and classified to
recognize a human hand; (d); if it is, the parts of the hand are segmented; (e) the segmentation is back-projected on the original 3D
space.

Humans perceive contacts mostly through the skin;
therefore, tactile sensors mimicking its functionality and
integrated on the robot body are expected to provide
additional information with respect to force/torque sensors.
Large area tactile sensors composed of different transducers
(pressure, vibration, temperature, proximity, etc.), also
referred to as robot skin, have been proposed in the past years
by several authors (Cheung and Lumelsky 1989; Um et al.
1998; Someya et al. 2004; Ohmura et al. 2006; Mizuuchi
et al. 2006; Mukai et al. 2008; Minato et al. 2007; Cannata
et al. 2008; Mittendorfer and Cheng 2011; Tawil et al. 2011).
Typically, robot skin sensors should make possible to
measure the contact pressure distribution applied on the
robot body over an arbitrary area, thus opening new
scenarios in physical HRI, for control and for cognitive level
processing, enabling the interpretation of physical contacts.

Usually, humans physically interact with objects, or with
other people, hopefully in peaceful conditions, using their
hands. Similarly, in HRI it can be expected that if an operator
wants to physically interact with a robot, for example to teach
a movement (Billard et al. 2008), a natural way to begin the
cooperation would be touching or grasping one or more of its
links. As a matter of fact, various vision-based HRI methods
are based on the assumption that the hands are the main input
for interacting with robots. Indeed, they address the problem
of computing from images the placement of the fingers and

of the palm of the human player (Raheja et al. 2011; Liang
et al. 2012) in order to recognize gestures. In the physical
HRI domain, it can then be argued that when a person
interacts using the hand, the contact distribution generated
by each finger and by the palm, in terms of positions, areas
and relative applied pressures, could imply a specific type of
interaction.

Therefore, according to what discussed so far, it is
reasonable to assume that if a human is interacting with a
robot using her/his hand, the contact could be interpreted as
a voluntary touch, performed to start a cooperation. Then,
in order to engage an appropriate HRI task, the robot must
be capable to discriminate if the applied contact has been
generated by a human and it should be capable to segment
the measured pressure distribution associated to the various
parts of the hand.

In this work, we present a method based on robot skin
feedback measurements to:

• recognize a human voluntary touch performed using
a single hand, with respect to a generic contact or
collision;

• segment the hand contact shape, obtaining the
pressure distribution applied by each part of the hand
(fingers and palm) during the interaction.
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As shown in Figure 1, the proposed approach consists
of creating a tactile image of the contact distribution
by performing a set of geometric transformations making
possible to obtain a planar 2D representation of the robot
body. The main advantage of using this technique is that it
allows to apply state of the art image processing techniques.
As explained in detail in Section 4, the pressure distribution
will be classified and segmented using machine learning
techniques since the variabilities produced by a human
touching a robot skin make the definition of interaction
models hard. The novelty of the proposed approach is that the
tactile images are generated from robot skin measurements,
where pressure sensors are distributed in a non-uniform way
over a complex non-planar 2-dimensional manifold (i.e., the
robot body). Indeed, while tactile images have been used to
process data in the case of small scale planar tactile sensors,
to the best of our knowledge, tactile images originated from
a non-regular large area distribution of tactile sensors have
been first proposed in Albini et al. (2017b): this paper
completes and extends those results.
In particular, beyond the original problem of the human
hand contact recognition (Albini et al. 2017b), this paper
also investigates the problem of the human hand contact
segmentation. Furthermore, since robot skin is prone to
failure due to its nature, a robustness analysis of the
performance of the classification and segmentation models
against different types of taxel failures has been performed.
Finally, an analysis of the transferability of the hand
recognition system has been experimentally performed by
testing the proposed method on tactile data originated from
contacts occurred on a completely different robot part.

The paper is organized as follows. Section 2 provides a
review of the literature: first the use of tactile sensors in
pHRI is discussed; second the techniques related to contact
shape processing are analyzed, discussing the differences
and the improvements proposed in this paper. Sections 3
and 4 respectively describe: the process of computing tactile
images from robot skin feedback, and the specific problems
related to the processing of human hand contact shapes.
Sections 5 and 6 describe the machine learning-based models
employed for human hand recognition and segmentation.
In Section 7 the experimental setup and the data collection
procedure are detailed. The experimental results to asses
the performance of the proposed method are discussed in
Section 8. In Section 9 additional experiments are presented
to analyse: (i) the robustness of the system with respect to
hardware failures and changes in the spatial resolution; (ii)
the transferability of the system, by testing it on a different
sensorized robot part. Conclusions follow in Section 10.

2. Related Works

Within the scope of this paper, the role of tactile sensors
has been studied with respect to two different domains of
application. The first one is related to HRI and the second
one to contact shape processing and classification.

2.1. Tactile Sensors in Human-Robot Physical
Interaction

Tactile sensors measurements have been used in the context
of HRI in order to implement touch-based control strategies.

Wosch and Feiten (2002) showed that patches of pressure
sensors integrated on a robot link allow human operators to
guide a robot arm. The pressure readings are translated into
motion vectors used for controlling the arm position.
Similarly, Schmidt et al. (2006) used an array of capacitive-
based pressure sensors mounted on a robot gripper to
implement a control strategy allowing the robot to adapt its
posture in response to the force applied by a human operator.

Frigola et al. (2006) implemented a compliant behaviour
in a robot arm exploiting the feedback of a force sensitive
bumper skin. Leboutet et al. (2016) achieved a whole robot
body compliance by using a technique based on hierarchical
force propagation exploiting force feedback provided by
an artificial skin. Albini et al. (2017a) proposed a touch
triggered task based control method using robot skin tactile
feedback allowing a human operator to physically drive robot
motions in Cartesian or joint space.

Tactile sensors have been also used to recognize different
touch modalities, namely actions (e.g. Pat, Push, etc.)
performed by human subjects using the hand. The general
approach is similar in most of the techniques proposed in the
literature: a set of features is extracted and classified using
supervised machine learning algorithms (e.g. Silvera-Tawil
et al. (2015)), the main differences among the various
solutions being the number of modalities classified and the
training methodologies adopted. In particular, Naya et al.
(1999) used a k-neighbor algorithm to classify 5 touch
modalities, based on data collected in experiments involving
11 users. A neural network has been considered by Stiehl
and Breazeal (2005) in order to classify a set of 8 interactions
performed by a single subject. Tawil et al. (2012) used the
LoogitBoost algorithm (Friedman et al. 1998) to recognize 9
touch modalities acquired from 40 subjects. Finally, Kaboli
et al. (2015) implemented an SVM to recognize 9 touch
modalities using a multimodal robot skin providing pressure,
acceleration and proximity measurements.
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In all the works discussed above it is implicitly assumed
that a person is interacting with the robot: namely, all the
contacts used for the classification have been generated
by humans. Therefore, they all have not been addressing
the possibility of discriminating human touch from other
possible types of contacts. We show in this paper that such a
discrimination can be achieved by analysing the shape of the
contact pressure distribution. A review of the methods and
techniques for contact shape processing is presented below.

2.2. Contact Shape Processing and
Classification with Tactile Images

In applications requiring to process and classify the contact

shape, it is common to convert the pressure data distribution
into a tactile image, which is a representation where the
intensity of each pixel corresponds to a pressure value.
The advantage is obviously that tactile images can be
processed or classified using state of the art image processing
techniques.

Schneider et al. (2009) used a small pressure array
integrated onto a robot fingertip to actively touch objects of
interest and the resulting tactile images were classified using
a Bag of Visual Words model. Liu et al. (2012b) showed
that tactile images generated from a fingertip can be used
to classify in real time primitive shapes and poses of the
contact. Liu et al. (2012a) covered a robot hand with small
planar tactile patches mapping the whole pressure readings
onto a single image. Finally, they trained a neural network
to classify a set of grasped objects. Cao et al. (2016) used
a stream of tactile images obtained during a grasping task
to classify 10 different objects using a convolutional neural
network. Gandarias et al. (2018) proposed an approach
where a high-resolution patch of pressure sensors integrated
on a gripper is used to classify the tactile images generated
by objects, human limbs, and fingers through a convolutional
neural network.

Besides the use of robot hands, other approaches employ
a rectangular patch of tactile sensors mounted on the
robot end-effector. Pezzementi et al. (2011) proposed to
obtain a set of tactile images generated from a sequence
of contacts and used a Bag of Visual Words model for
object recognition. A similar approach has been considered
by Luo et al. (2015b) in order to classify a set of objects
using an innovative tactile SIFT descriptor (a specialization
of the SIFT algorithm originally developed for image data
processing). The extracted features are then classified using
the Visual Bag of Words algorithm producing very good
classification results. Taking advantage of the similarity

between tactile and visual images, the same authors proposed
algorithms to merge tactile and visual feedback for object
localization and classification (Luo et al. 2015a; Liu et al.
2017). The combination of tactile and visual feedback has
also been exploited by Yang and Lepora (2017) to implement
an object exploration strategy.

Therefore, it appears clear from the previous discussions
that tactile images have been proved to be a powerful tool
for classifying tactile data, although in most of the cases they
have been generated from planar tactile patches containing
sensors distributed on a regular grid with uniform spatial
resolution and generally covering a small area.

3. Tactile Image Formation from Distributed
Tactile Sensors Measurements

In this Section, the problem of generating a tactile image
from a contact distributed on the robot body is addressed.
The proposed technique makes possible to create a picture
of the contact with minimal distortion with respect to the
original 3D shape.

3.1. Map the Robot Body onto a Flat
Representation

It is assumed to have a robot link covered with robot skin
(see Figure 2(a) as an example).
The robot skin is here intended as a set of N distributed
pressure transducers called taxels.

The position and the response of each taxel to a given
pressure stimulus on the robot body are assumed to be
known, possibly as the outcome of a calibration procedure.
Then it is possibile to define the set T = {t1, . . . tN}, where
the element ti ∈ IR3 represents the 3D position of the i-th
taxel; the set T can be intended as a sort of point cloud where
each taxel position ti is referred with respect to the reference
frame of the sensorized robot link (see Figure 2(b)).

A Delaunay triangulation (Fortune 1997) applied to T ,
allows to define a list of topological relations F between
adjacent taxels, thus creating a 3D mesh S∗ = (T,F),
representing a piecewise linear approximation of the robot
link shape S (see Figure 2(c)).

As proposed by Cannata et al. (2010), the idea is to exploit
the Surface Parameterization theory (Desbrun et al. 2002) to
transform the mesh S∗ into a 2D flattened representation of
the robot body, thus allowing to preserve sensor locations,
displacements, density and proximity relationships among
the sensors. Formally, the flattening allows to define a
piecewise linear mapping Ψ : S → M between the robot
body surface S and an isomorphic 2D (flat) surface M, also
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(a) Real robot link covered with robot skin.

(b) Placement of the taxels obtained from the spatial
calibration of the skin.

(c) The mesh S∗ approximating the robot body shape S.

Figure 2. Steps for constructing the 3D mesh S∗.

called tactile map in the following, defined by a mesh of
points M∗ = ({m1, . . . ,mN},F) where the elements mi ∈ IR2

best preserve the properties of the mesh S∗ minimizing the
distorsions from 3D to 2D.
Therefore, for each ti, a corresponding mi exists such that
ti = Ψ−1 (mi).
An example of the flattening transformation applied to the
mesh in Figure 2(c) is shown in Figure 3(a).

The method described above refers to a class of robot
skin systems composed of discrete taxels rigidly attached to
the robot links. There are several examples of technologies
corresponding to this assumption, e.g. Ohmura et al. (2006);
Schmitz et al. (2011); Mittendorfer and Cheng (2011);

(a) Robot tactile map M∗, obtained by flattening the 3D
mesh S∗.

(b) A regular grid superimposed on M∗. Barycentric
interpolation allows to compute the pressure values
corresponding to the nodes of the grid.

Figure 3. Steps for constructing the tactile image from a 2D
mesh with a non-uniform placement of the taxels.

Cheung and Lumelsky (1989); Minato et al. (2007); Mukai
et al. (2008); Mizuuchi et al. (2006).

Remark 1. Conceptually the method could also be applied

to other robot skin technologies not based on discrete taxel

sensing, provided that the geometry of the sensor surface

is known and that the pressure at discrete points can be

computed or estimated. One example of these types of tactile

systems is the one based on EIT technology (Tawil et al.

2011).

Remark 2. It is also worth noting that the computation of

the map Ψ can be performed off-line for contacts expressed

on a single link. Then, it does not pose significant problems

for real time computations since in practice the map Ψ is

implemented as a look-up table. In case of more complex

type of contacts involving more than one link, the flattening

should be computed, in principle, at each given robot

posture. These computational aspects are beyond the scope

of this paper; however, suboptimal flattening procedures

addressing the problem of the relative displacement of

the taxels caused by robot motion has been preliminary

addressed in Albini and Cannata (2018).
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3.2. Tactile Image Creation

The tactile map M∗ is a 2D entity representing the non-
uniform planar displacement of the taxels. In order to
generate a tactile image, M∗ must be re-sampled. This is done
by superimposing a regular grid with R rows and C columns
on the tactile map M∗, as shown in Figure 3(b). The position
of the grid point corresponding to row r and column c is
defined as xrc.

During a contact, the robot skin senses the applied pres-
sure generating a set of measurements P = {p1, p2, . . . , pN},
where pi ∈ IR is the measurement of the i-th taxel. Figure
4(b) represents the discrete pressure distribution of the con-
tact at a given time instant, obtained by associating the tactile
measurements P to the mesh S∗. Similarly, P can be mapped
on M∗ generating a discrete pressure map (see Figure 4(c)).

Remark 3. In Figure 4(b) and 4(c) all the taxels involved in

the contact are marked as red dots for clarity of visualization.

The actual sensor taxel response is assumed to be continuous

and not binary (as better detailed in Section 7.1).

In order to compute the tactile image (see Figure 4(d)),
for each point of the grid xrc that lies in the triangle defined
by (m j,mk,mh), a pressure value Krc is computed, using the
barycentric interpolation:

Krc =

(
Ak j ph +Ah j pk +Ahk p j

)
A

,

where p j, pk and ph are the pressure values of the taxels
associated to m j,mk,mh, while A, Ak j, Ah j and Ahk are the
areas of the triangles defined by the vertices (m j,mk,mh),
(m j,mk,xrc), (mh,m j,xrc) and (mh,mk,xrc) respectively
(see Figure 5).

Krc are the elements of a matrix K that can be converted
into a classical grayscale image, by scaling each Krc value
into a grayscale level Irc, with the following formula:

Irc = 255
⌊ Krc

max(pi)

⌋
where b·c is the floor function and i = {1,2, . . .N}.

The conversion described above generates a tactile image
normalized with respect to the maximum value measured in
the current contact. This is motivated by the fact that in this
work we focus only on the shape profile generated during
the contact. The normalization of K allows to highlight the
contact shape, making the classification and segmentation
of the pressure distribution independent from the magnitude
of the applied contact pressure. However, it is worth noting
that the normalization above is used for the tactile image

generation only, while the actual pressure exerted is known
from P (or in the interpolated form K).

4. Tactile Images from Human Hand
Contacts

Some examples of human hand tactile images generated
with the discussed procedure are shown in Figure 6. As it
can be seen, in some images it is possible to identify the
shape of the human hand, while other pictures (e.g. Figure
6(b), 6(d), 6(f) and 6(g)), can be easily confused with the
non-hand contacts in Figure 7. However, it is quite evident
that the contact shape can vary significantly even in the
images where the hand is visible. For example, Figure 6(l)
clearly shows the human hand shape, while others just show
a portion of the hand or possibly only the fingertips. This is
due to various factors linked to the geometry of the robot
skin and to the characteristic of the interaction.

Robot skin related aspects:

• unlike cameras, the spatial resolution of the tactile
elements composing the skin can be not uniform.
Therefore, there could be areas poorly or even not
sensorized at all that could produce holes (loss of
information) in the resulting tactile image;

• the flattening operation introduces distortions depen-
dent on the ”complexity” of the robot body shape; this
implies that the similar contacts applied in different
positions can produce slightly different 2D tactile
images. Examples of this fact are given in Figures,
6(h) and 6(k) where the fingers appear to be bent, or
in Figures 6(a) and 6(f) where the distortions are more
evident.

Human interaction related aspects:

• the tactile images are characterized by the type of
interaction: for example, while pushing away the robot
arm requires the whole hand, pulling the same part
mainly involves the fingertips; moreover, in some
actions not all the fingers or the palm are involved (see
Figure 6(e) and 6(k));

• depending on the human operator physical character-
istics (e.g. height, size of the hands, strength, etc.) and
her/his relative posture with respect to the robot, each
subject will interact with the robot body with different
intensities or configurations of the hand; for example
Figure 6(i) and 6(j) represent a similar contact geome-
try expressed with different pressure distributions.
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(a) Example of a physical contact of a hand on the robot
forearm.

(b) Pressure measurements mapped onto the mesh S∗

(actual intensity values not shown for clarity).

(c) Pressure measurements applied on the tactile map
M∗ (actual intensity values not shown for clarity).

(d) Resulting tactile image of the contact obtained with
a grid of 247×362 pixels.

Figure 4. Steps to obtain a tactile image.

Figure 5. Interpolation with the pressure values of nearby
vertices.

Due to these variabilities, it is hard if not impossible to
define a general model of a human hand in contact with a
robot body.

For this reason, since our goal is to classify and segment
the pressure distribution, it appears reasonable to use
machine learning based techniques. In particular supervised

methods have been considered.

5. Hands Classification

In order to recognize if the contact distribution is generated
by a human hand, the corresponding tactile image is
classified using machine learning techniques.

Convolutional Neural Networks (CNNs) for image classi-
fication outperformed previous approaches (Krizhevsky et al.
2012), proving their robustness against image variations such
as scale and rotation (Farfade et al. 2015). Moreover, they
have been successfully employed to recognize hand gestures
in real-time (Lin et al. 2014; Nagi et al. 2011; Kim et al.
2008) and in tasks of tactile objects classification (Cao et al.
2016).

In this work a CNN classifier trained from scratch for
recognizing the human hand touch, referred in the following
as HandsNet, is proposed. Then, since this CNN architecture
is not specific for tactile measurements, but it works on
images, its performance will be compared with a pre-trained
model (Yosinski et al. 2014). Furthermore, since several
works discussed in Section 2.2 rely on the Bag of Visual
Word model (BoVW) for classifying tactile images, also the
performance of this model is tested.

Table 1 shows the layers of the HandsNet model. The first
part is composed of four stacked convolutional blocks, each
containing three layers: a Convolutional layer with padding
and stride equal to one, a Batch Normalization layer and
finally a threshold operation performed through a Rectified
Linear Unit (ReLU) layer (Goodfellow et al. 2016). Then
the output is downsampled with a 2× 2 MaxPool filter with
stride 2 before being further processed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Examples of tactile images generated by human subjects during different interactions with the robot. Some fingertips
seem to be cut (e.g. Figure 6(h)) since the person did not fully touch the sensorized area.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Examples of tactile images not generated by hand contacts.

The differences among the four blocks are in the number
of filters of the convolutional layers and in the size of the
kernels. According to Goodfellow et al. (2016), the depth of
the network has been selected by increasing the number of
layers and evaluating the accuracy on the training set, until
a satisfactory performance has been obtained. The output
of the last max pooling operator is sent as an input to
a fully connected layer composed of 64 neurons (fc 1 in
Table1). Two further fully connected layers containing 32

and 2 neurons respectively follow. Finally, the output is 2-
way softmax unit computing a probability distribution over 2
classes: hand and non-hand.
In order to reduce the overfitting, dropout layers have been
inserted, by choosing their probabilities according to Park
and Kwak (2017) who suggest to apply a low drop rate in the
initial layers (usually < 0.5).

The classification performance of HandsNet has been
compared with other state of the art models used in image
classification. Focusing on pre-trained CNNs, there are
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Table 1. Structure of HandsNet. The nomenclature conv i
refers to a computational block formed by a convolutional layer
followed by a batch normalization and finally by ReLu.

layer shape
conv 1 32×7×7
max pool 1 2×2
dropout 1 (10%) -
conv 2 64×5×5
max pool 2 2×2
dropout 2 (20%) -
conv 3 128×3×3
max pool 3 2×2
conv 4 256×3×3
max pool 4 2×2
fc 1 64
dropout (60%) -
fc 2 32
dropout (50%) -
fc 3 2
softmax 2

mainly two ways to adapt a model to a particular problem.
Since the initial layers of the network are able to extract
generic features (Yosinski et al. 2014), one possible solution
is to remove the classification layers and to use the network
as a feature extractor. Once the features are computed for the
new dataset, they can be used to train a new classifier (e.g. a
Support Vector Machine).

The other approach is the fine-tuning, consisting in
replacing the classification layer with a new one having
the appropriate number of classes and then retraining the
network. During this phase, the strategy is to use a very small
learning rate to update the weights of the initial layers. On
the contrary, a higher learning rate is applied to train the final
layers, by adapting them to the new data.

Both methods have been considered in this study applied
to the VGG16 model presented in Simonyan and Zisserman
(2014). This model is pre-trained on the ImageNet dataset
(Deng et al. 2009), and it has been proved to be a very good
choice to initialize a classifier or to be used as a feature
extractor (Guo et al. 2016).

Finally, the last model considered is the BoVW model,
already exploited for tactile image classification.

To summarize, four following models will be evaluated
and compared:

• HandsNet: the model having the structure described
in Table 1;
• VGG16+SVM: the features are extracted with the pre-

trained VGG16 and classified using a linear SVM;

• VGG16+ft: fine tuning on the VGG16 pre-trained
model;

• BoVW: Bag of Visual Word model trained with SIFT
features (Lowe 2004).

The loss function and the hyper-parameters used during
the training phase are detailed in the Appendix.

6. Hands Segmentation

The goal of this Section is to describe how to segment the
pressure distribution applied by a human hand, in order to
identify the fingers and the palm area. Since tactile images
are used, this task can be seen as a problem of semantic

segmentation. Also in this case, an approach using deep
learning has been considered. Indeed, the segmentation of
tactile images is specific, since the number of classes could
vary depending on the type of contact (e.g. the number of
fingers touching the robot body could change). Furthermore,
the regions composing a part of the hand could be not
connected, as for the case of the palm contact in Figure
6(l). Therefore, the classical techniques often referred in the
literature, (such as k-means, watershed, thresholds, etc.) do
not appear to be suitable in this context (Dhanachandra et al.
2015; Morar et al. 2012; Grau et al. 2004).

Modern approaches presented in the past few years,
dealing with the problem of semantic segmentation, rely on
deep networks performing classification tasks (Guo et al.
2018), where a label is associated to each pixel instead of
the whole image.
In this paper, two models have been considered: the SegNet
(Badrinarayanan et al. 2017) and FCN (Long et al. 2015).
Both are widely applied in the literature, representing the
state of the art in semantic segmentation (Garcia-Garcia et al.
2018).

Deep networks performing a pixel-wise classification
require a large amount of data to be trained from scratch.
Although we collected a dataset of human hand contacts (as
detailed in the next Section), the pixel-wise classification of
the whole dataset is a time-consuming operation. For this
reason the convolutional layers of both models are initialized
with the weights of a VGG16 model trained on ImageNet.
In this way the network can be trained using less data, thus
requiring to label just a portion of the whole dataset.

The two models have been trained in order to segment
and recognize the following 6 classes: Thumb, Index, Middle,

Ring, Pinkie and Palm. The training details are reported in the
Appendix.
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(a) Triangular module of the robot skin. The diameter of each
taxel is 3.5 mm, with a pitch of 8 mm among nearby taxels.

(b) Sensorized link mounted on the real robot and covered with
a conductive ground plane.

Figure 8. Experimental setup.

7. Dataset

In this Section the robot skin technology and the procedure
used to collect a dataset for training the machine learning
models are described.

7.1. Experimental Setup

The robot skin used in this work is an engineered version of
the technology presented in Schmitz et al. (2011). In this new
version the thickness of the dielectric has been reduced to 0.5
mm in order to improve the sensitivity of the sensor.
The skin is composed of interconnected modules forming a
network of sensors. Each single module (shown in Figure
8(a)) is implemented with a flexible PCB and contains 11
capacitive pressure transducers. A capacitance to digital
converter embedded on each module provides, for each taxel,
a response in the range 0÷65535.

As shown in Figure 2(a), the skin has been integrated on
a Baxter robot, covering the upper part of the forearm with
768 pressure sensors. The final experimental setup is shown
in Figure 8(b), where the forearm is mounted on the Baxter

and covered with a black conductive fabric used as a ground
plane.

7.2. Data Collection

The dataset has been collected performing an experiment
which involved voluntary human subjects 1. The experiment
has been designed in order to capture the variabilities
discussed in Section 4. It has been asked to the people to
interact with the robot arm performing the following actions:

1. Grasp the forearm
2. Grasp and torque clockwise the forearm (i.e. a twist

with respect to the forearm axis)
3. Grasp and torque counter-clockwise the forearm
4. Push the forearm to the left
5. Push the forearm to the right
6. Push the forearm away
7. Pull the forearm

Each action has been repeated twice in two different
positions of the robot arm (see Figure 9).
Each person interacted with the robot without any constraint
related to the hand posture and intensity of the touch.
After that, for five times, the user moved the robot arm in
to a different configuration, performing one interaction of
the list. In this phase, the arm position, the relative posture
with respect to the robot and the interaction type have been
chosen by the user.

During the whole experiment, the robot is commanded
to maintain its pose and the entire interaction has been
recorded. Each interaction produced a sequence of samples
consisting of sensors measurements collected with a
sampling time of 0.1 seconds. From this sequence, the
sample with the highest number of taxels activated by the
contact is selected to generate a single tactile image as
described in Section 3.
The tactile images have been generated using a regular
grid with a step size of 1 mm. The robot tactile map (see
Figure 3(a)) has a dimension of 247 mm× 362 mm, so the
corresponding tactile image is composed of 247×362 pixels.
Finally, in order to reduce the noise and further highlight
the contact shape, an erosion followed by a dilatation of
the image have been performed (Beyerer et al. 2016), using
a circular structural element with 2 and 4 pixels of radius
respectively.

1 Each subject signed an informed consent form and all the data have been
carefully anonymized.
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(a) A user stands in the front of the robot.

(b) A user stands on the side of the robot.

Figure 9. Two different positions taken by a human during the
experiments: in front of the robot (a) and on its side (b).

Table 2. Summary of the characteristics of the subjects
involved in the experiment.

Hand Length 2 Age Weight Height
Min 15 cm 20 48 Kg 154 cm
Max 22 cm 59 105 Kg 194 cm

Mean 18 cm 26 70 Kg 178 cm

The experimental procedure discussed above is the same
followed in Albini et al. (2017b). The difference is that
the number of people involved in the experiment has been
increased from 43 to 90. The subjects have different gender
(66.67% Male, 33.33% Female), handedness (77.78% Right,
22.22% Left) and biometric characteristics (Table 2).
At the end of the data collection 1710 tactile images of hands
have been acquired.

In order to train the models described in Section 5, the
dataset has been completed by adding 1820 non-hand images
produced from contacts with other human limbs or generic
objects. Contacts with objects have been collected by the
authors over time by touching the robot on the sensorized
area with objects having different properties such as shape,
size, material (e.g. plastic, metal, etc.) and softness. The
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Figure 10. Histogram representing the average frequency of
pixels for segmented class. The colors shown in the histogram
are also used in the following to identify the segments in the
tactile images.

contacts with human body parts (e.g. torso, arm, forearm,
shoulder, back) have been collected both by the authors and
by the subjects involved in the experiment without using a
formal protocol. In particular, all the users have been asked
to touch the robot five times with different body parts other
than the hand. In summary, about 35% non-hand images have
been created from contacts with body parts and the remainder
from contacts with objects.

Some examples are shown in Figure 7. As an outcome, the
dataset used to train the classifiers in Section 5 is composed
of 3530 tactile images.
The dataset has been split in a training set (70%) and
in a test set (30%). In order to evaluate the classifiers
on previously unseen human subjects, the test set has
been created containing images generated from subjects not
included in the training set.

The semantic segmentation models described in Section
6 require pixel-wise labelled tactile images as ground truth.
According to what discussed in Section 6, the initialization
with pre-trained weights allowed to use only a fraction of the
whole dataset. In particular, 350 samples have been picked
from the whole dataset of human hands and labelled pixel by
pixel. The distribution of classes is shown in Figure 10. Also
for this task, the dataset has been split in training set (70%)
and test set (30%).

Both datasets, for the classification and segmentation
tasks, are provided as supplementary material.

2 The hand length is measured from the wrist to the tip of the middle finger.
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8. Experimental Results

This Section reports the experimental results obtained with
the models in Sections 5 and 6 using the datasets acquired as
discussed in Section 7.
The models have been trained on Matlab running on a server
equipped with two Intel Xeon E5 CPUs and two Nvidia P100
GPUs with 16 GB of RAM each.
For each model, a set of hyper-parameters has been selected
and tuned. Details about the training and tuning procedures
are reported in the Appendix.

8.1. Human Hand Touch Classification

The models trained with the parameters described in the
Appendix are evaluated on the test set. The results are shown
in Table 3 where the mean accuracy and the classification
times are reported.

Table 3. Performance of the models. For each one the mean
accuracy on the test set and the time for classifying one tactile
image have been computed.

Accuracy Time (ms)
HandsNet 97.81% 12.6
VGG16+SVM 95.40% 14.4
VGG16+ft 96.69% 27.5
BoVW 94.03% 17.6

A more detailed analysis about the results obtained on the
test set is shown in Tables 4-7, representing the confusion
matrices of the models.

It can be seen that HandsNet performs slightly better than
VGG16+ft. The difference in terms of accuracy is larger than
1% and it is faster with respect to VGG16+ft. It is worth
noting that the model VGG16+SVM obtained good results
in terms of accuracy and time, having only a single hyper-
parameter to tune (see Appendix), while the BoVW showed
lower performance with respect to the other models.

An example of tactile images misclassified by the
HandsNet model is given in Figure 11, while the full list of
tactile images correctly classified and misclassified for each
model can be found in the provided supplementary material.

8.2. Human Hand Touch Segmentation

To evaluate the models described in Section 6, the four
metrics discussed in Long et al. (2015) have been considered.

Table 4. Confusion matrix of the HandsNet model applied on
the test set. The mean accuracy is 97.81%.

Hand Non-Hand
Hand 96.88% 1.28%

Non-Hand 3.12% 98.72%

Table 5. Confusion matrix of the VGG16+SVM model applied
on the test set. The mean accuracy is 95.40%.

Hand Non-Hand
Hand 96.49% 5.69%

Non-Hand 3.51% 94.31%

Table 6. Confusion matrix of the VGG16+ft model applied on
the test set. The mean accuracy is 96.75%.

Hand Non-Hand
Hand 98.64% 5.14%

Non-Hand 1.36% 94.86%

Table 7. Confusion matrix of BoVW classifier applied on the
test set. The mean accuracy is 94.03%.

Hand Non-Hand
Hand 96.49% 8.44%

Non-Hand 3.51% 91.56%

(a) (b)

(c) (d)

Figure 11. Examples of tactile images misclassified by
HandsNet; (a) and (b): non-human hand contacts classified as
hands; (c) and (d): human hand contacts classified as
non-hands.

The first one is the pixel accuracy Acc, which evaluates the
percentage of correctly classified pixels without considering
their classes. The second is the pixel mean accuracy mAcc,
i.e. the percentage of correctly predicted pixels for each
class, averaged over the classes.
The third metric is the mean intersection over union mIoU,
which computes how well the sets of predicted classes
overlap the ground truth. Finally, due to the presence of
imbalances in the dataset (see Figure 10), the frequency

weighted intersection over union fwIoU has also been
considered, i.e. a weighted version of the mIoU which takes
into account the appearance frequency of each class.

Table 8 reports the scores obtained on the test set for each
metric. SegNet model outperforms FCN providing also a
lower inference time. The confusion matrices in Table 9 and
10 give a detailed information about the pixel accuracy for
each class. A comparative example between the two models
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is shown in Figure 12.

Focusing on SegNet, Figure 13(a) to 13(j) show a set
of segmented tactile images (first row), along with the
misclassified pixels (second row). As it can be seen, the
network is able to correctly create the clusters under different
conditions. For example in Figure 13(a) and 13(b) almost the
whole hand is in contact with the robot body. On the contrary
Figure 13(c), 13(d) and 13(e) show contacts where the fingers
or palm are partially or completely not involved.

The network can also correctly segment fingers composed
of non-connected regions as visible in Figure 13(f) and
13(g), or when the fingers are bent due to the distortions
introduced by the flattening (see Figure 13(h)). Figure 13(i)
and 13(j) show instead two examples of poorly segmented
tactile images with a mean pixel accuracy lower than 80%.
The full list of images segmented using both models is
included as supplemental material.

9. Robustness and Transferability Analysis

Due to repeated physical contacts, the elements composing a
robot skin are prone to failures. The complexity and the costs
of the system could make difficult or infeasible to replace a
damaged part. Therefore, an analysis of the robustness of the
proposed method is performed in the following, considering
an increasing number of faulty tactile elements.

In particular, two different types of failures have been
considered. In the first case, it is assumed that one or more
groups of contiguous taxels fail during a physical interaction,
causing a set of blind spots in the tactile image.

(a) SegNet output mAcc:
98.77%.

(b) FCN output mAcc:
94.86%.

Figure 12. Segmentation performed by SegNet and FCN on
the same tactile image. The first line shows the models output.
The colors of the various segments are the same used in Figure
10. The second line shows the tactile image in binary scale with
red pixels corresponding to misclassified regions.

In the second case, the analysis is made assuming to
eliminate a random distribution of faulty taxels (likewise a
salt and pepper noise) from the 2D triangulation, producing
a tactile map with lower spatial resolution.

To this aim, two experimental tests have been conducted,
simulating: (i) failures of groups of taxels (Test A); (ii)
randomly distributed faulty taxels (Test B). In order to
benchmark these experiments we used the models HandsNet
and SegNet for the classification and segmentation task
respectively, which best performed in Section 8.

Furthermore, an additional experiment (Test C) have been
conducted to analyse how the hand recognition system
behaves when applied on sensorized robot parts having a
significantly different geometry.

9.1. Test A

The goal of this experiment is to evaluate the performance
of the proposed method when groups of contiguous tactile
elements stop working, possibly at run time. In this scenario,
it is assumed that the response of the faulty taxels is zero
producing a sort of blind spot in the tactile map. The problem
of detecting faulty taxels and to set the corresponding
measurements to zero is part of the data acquisition and the
processing pipeline and it is beyond the scope of this paper.

Several tactile maps affected by randomly generated
patterns of faulty taxels (i.e. corrupted maps) have been
considered. For each contact, corresponding to images
belonging to the test sets described in Section 7, a new
tactile image has been regenerated using the corrupted map
for both the classification and segmentation tasks. Then, the
performance of the models has been evaluated on these new
test sets of images. The failure patterns have been created
using the following procedure: a taxel lying on the tactile
map is randomly selected as the center of the blind spot,
then the response of all the taxels within a distance of r̄

is set to zero. The number of blind spots Ns corrupting a
tactile map can range from 1 to 4, while the radius of the
spots r̄ varies from 10 mm to 40 mm with steps of 10 mm.
For each one of the 16 combinations of these parameters,
10 random patterns have been generated, leading to a total
of 160 corrupted maps. Examples of corrupted maps with
different values of Ns and r̄ are shown in Figure 14. The full
list of corrupted tactile maps is included as a supplementary
material.

In order to evaluate the performance in the case of the
segmentation task, the same blind spots appearing on the test
images have been transferred to the ground truth images.

Tables 11 and 12 show the performance for each
combination of Ns and r̄, computed by averaging the results
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Table 8. Metrics evaluated for both models on the test set.

Acc mAcc mIoU fwIoU Time (ms)
SegNet 93.37% 93.05% 89.17% 90.53% 63.37
FCN 88.82% 85.69% 80.14% 83.06% 75.13

Table 9. Confusion matrix of the SegNet model fed with the test set.

Thumb Index Middle Ring Pinkie Palm
Thumb 95.05% 0% 0% 0% 0.04% 0.92%
Index 0% 92.85% 2.59% 0.60% 2.10% 0.92%

Middle 0% 1.29% 90.34% 3.88% 0.25% 0.10%
Ring 0% 0.31% 5.07% 92.08% 1.03% 0.42%

Pinkie 0.38% 2.21 % 0.43% 2.56% 91.34% 1.02%
Palm 4.47% 3.33% 1.57% 0.88% 5.20% 96.61%

Table 10. Confusion matrix of the FCN model fed with the test set.

Thumb Index Middle Ring Pinkie Palm
Thumb 91.24% 0.75% 0.31% 0.23% 1.12% 0.90%
Index 0.81% 83.95% 3.31% 0.40% 3.51% 0.98%

Middle 0% 3.09% 78.41% 5.92% 1.30% 0.61%
Ring 0% 0.79% 9.91% 84.47% 1.48% 0.61%

Pinkie 0.6% 3.12% 1.62% 2.41% 80.10% 0.93%
Palm 7.88% 8.28% 6.42% 6.55% 12.47% 95.96%

(a) mAcc: 98.88%. (b) mAcc: 94.51%. (c) mAcc: 98.00%. (d) mAcc: 94.17%. (e) mAcc: 100.00%.

(f) mAcc: 100.00%. (g) mAcc: 100.00%. (h) mAcc: 96.87%. (i) mAcc: 72.21%. (j) mAcc: 41.51%.

Figure 13. Examples of segmentation results. First line: SegNet output. Second line: thresholded tactile image with red areas
corresponding to misclassified pixels.

obtained for the corresponding 10 random patterns. From
Tables 11 and 12 it can be seen that in the classification case
the system provides an acceptable performance even with
high levels of degradation. In the case of the segmentation
task, the proposed method is less robust, providing a mean
accuracy of about 80% in the worst case.

9.2. Test B

After a failure is detected and there is no contact occurring,
the faulty taxels can be removed from the tactile map and the
triangulation can be recomputed, thus generating a tactile
map with lower spatial resolution. In this experiment, a salt
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(a) NNNs = 1 and r̄rr = 40 (b) NNNs = 3 and r̄rr = 20

(c) NNNs = 4 and r̄rr = 30 (d) NNNs = 3 and r̄rr = 40

Figure 14. Examples of corrupted tactile maps. Red areas
corresponds to contiguous regions of faulty taxels.

Table 11. Test A - Classification: Mean scores obtained over
the 10 test sets for each combination of number of spots and
radius values.

NNNs r̄rr (mm) Accuracy
1 10 97.81%
1 20 97.50%
1 30 97.61%
1 40 97.21%
2 10 97.68%
2 20 97.28%
2 30 96.88%
2 40 95.18%
3 10 97.73%
3 20 97.00%
3 30 96.16%
3 40 93.95%
4 10 97.67%
4 20 96.78%
4 30 94.42%
4 40 89.74%

and pepper faulty pattern is simulated, randomly removing
from the tactile map a certain percentage p̄ of the taxels. The
goal is to benchmark the system, evaluating its dependency
on the spatial resolution of the tactile map. The percentage
of removed taxels p̄ is a parameter which varies from 10% to
70% with steps of 10%. Taxels are incrementally removed.
This means that the taxels lying on the tactile map generated
with 20% of faulty sensors are a subset of the ones generated
with 10%.

Once the taxels are removed from the tactile map, the
triangulation is recomputed. Also in this case, 10 patterns of

Table 12. Test A - Segmentation: Mean scores obtained over
the 10 test sets for each combination of number of spots and
radius values.

NNNs r Acc mAcc mIoU fwIoU
1 10 93.18% 92.58% 88.66% 90.33%
1 20 92.81% 92.07% 88.03% 89.91%
1 30 92.48% 91.33% 87.36% 89.59%
1 40 91.53% 90.03% 85.89% 88.58%
2 10 93.14% 92.56% 88.63% 90.28%
2 20 92.61% 91.76% 87.72% 89.67%
2 30 91.70% 90.40% 86.04% 88.65%
2 40 90.22% 88.63% 83.96% 87.06%
3 10 93.03% 92.42% 88.44% 90.16%
3 20 91.81% 90.66% 86.05% 88.68%
3 30 90.05% 88.05% 83.43% 86.90%
3 40 86.42% 82.47% 77.51% 83.05%
4 10 92.90% 92.27% 88.31% 90.03%
4 20 92.01% 90.99% 86.81% 89.06%
4 30 88.76% 85.89% 81.03% 85.42%
4 40 84.15% 80.20% 74.40% 80.52%

broken sensors are randomly generated for each percentage
value; therefore, 70 different tactile maps have been created
and for each one a corresponding dataset of tactile images
has been generated. Figure 15 shows examples of the
degradation obtained for different percentage of removed
taxels. The full list of downsampled tactile maps is included
as a supplementary material.

The benchmark for the segmentation task requires labeled
ground truth images (see Section 7.2). Since the tactile maps
have changed, to exactly evaluate the performance of the
segmentation model it would require to label pixel-wise
all the 70 dataset of tactile images: this is practically an
infeasible operation. In order to overcome this issue, for
each low resolution tactile images, the following procedure
has been applied. Given IT

H the segmented ground truth
image at full resolution (see Section 7), and given IO

L the
corresponding tactile image generated from a low resolution
map, a binary mask is computed as:

IM =
[
IT

H
]B∧ [IO

L
]B

where [·]B is the thresholding operator and ∧ is the logical
AND operator. Then the actual low resolution pair

(
IL,IT

L
)

is
computed as:

IL = IO
L ◦ IM

IT
L = IT

H ◦ IM

where ◦ represents the pixel-wise product. Figure 16
graphically describes this process. Clearly, this is an
approximation, since part of the pixels is not considered.
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(a) Original (b) p̄ = 10% (c) p̄ = 30% (d) p̄ = 50% (e) p̄ = 70%

Figure 15. Examples of downsampled tactile maps and tactile images generated for different values of p̄. The first row shows the
tactile maps, while the remaining rows show the level of degradation of the tactile images generated from the corresponding tactile
map.

Ground truth image 

at full resolution

Hand image 

at low resolution

Figure 16. Process for generating data to evaluate the
segmentation model with low resolution tactile maps. In the
example the hand image is generated from a tactile map where
40% of the taxels have been removed.

However, it gives a qualitative assessment of the results
obtained when lowering the resolution of the tactile map.

Tables 13 and 14 show the accuracy of the models
described in Section 8, evaluated on the low resolution
test sets. Similarly to Test A, the scores are computed by
averaging the results obtained on the 10 datasets generated

Table 13. Test B - Classification: Mean scores obtained over
the 10 test sets for each value of p̄.

p̄ Accuracy
10% 97.33%
20% 96.98%
30% 96.63%
40% 95.93%
50% 94.79%
60% 92.67%
70% 88.67%

Table 14. Test B - Segmentation: Mean scores obtained over
the 10 test sets for each value of p̄.

p̄ Acc mAcc mIoU fwIoU pd

10% 92.75% 91.69% 87.83% 89.85% 6.05%
20% 92.59% 91.16% 87.31% 89.65% 11.47%
30% 92.17% 90.54% 86.62% 89.21% 16.40%
40% 91.77% 89.55% 85.69% 88.79% 20.88%
50% 90.71% 87.62% 83.48% 87.43% 25.41%
60% 89.13% 84.88% 80.23% 85.54% 30.58%
70% 84.83% 78.20% 72.83% 80.84% 35.87%

for each p̄ value. In Table 14, the quantity pd represents the
mean percentage of pixels discarded from the low resolution
image as a result of the masking operation described above.

The results obtained from this experiment show that the
system is robust with respect to changes in spatial resolution
of the sensors. Indeed, even with 60% of taxels removed, the
system provides a classification accuracy above 90%. In the
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(a) Robot end-effector partially covered with tactile
sensors.

(b) The robot end-effector tactile map.

(c) Example of a tactile images generated by a human
touching the end-effector.

Figure 17. The sensorized robot end-effector used in this
experiment.

case of the segmentation task, a mean accuracy higher than
90% can be achieved considering 30% of faulty taxels.

9.3. Test C

To test the transferability of the proposed method, a custom
end-effector for the Baxter robot has been designed. The new
part is shown in Figure 17, along with its tactile map and

an example of a tactile image generated from a human hand
contact. As it can be seen, the contacts on this tactile map are
mapped generating tactile images completely different from
the ones used for training the models in Section 5.

Considering the classification task, to validate the
HandsNet model on this new geometry a new dataset is
required. The end-effector has been attached to the robot
and a new dataset has been collected following the same
procedure described in Section 7.2. These new experiments
involved 12 people, leading to a new dataset composed of
228 hand images and 250 non-hand images.

A first experiment consisted in feeding the model
considering the whole amount of images as a new test set.
This produced very poor results, with a mean accuracy below
53%. As it can be seen from Table 15, almost all the hand
contacts are misclassified, which is reasonable, since the
human hand shape is mapped in a completely different way
with respect to the original case.

Table 15. Confusion matrix of the HandsNet model fed with the
images generated from the robot end-effector tactile map. The
mean accuracy is 52.92%.

Hand Non-Hand
Hand 8.71% 2.87%

Non-Hand 91.29% 97.13%

Table 16. Confusion matrix of the HandsNet model after the
fine-tuning procedure. Results are computed on the test set of
tactile images generated from contact occurring on the robot
end-effector. The mean accuracy is 93.57% .

Hand Non-Hand
Hand 92.41% 5.26%

Non-Hand 7.59% 94.74%

A possible solution to get better results would be
performing a fine tuning, allowing the model to learn the
new introduced distortions. So the new dataset has been
split into training and test sets using the same modalities
described in Section 7.2. Then a fine-tuning of the HandsNet
model has been performed using the train set. The model
has been trained on the new data for 120 epochs using a
batch size of 128 and a learning rate of 0.01 which has been
halved after 60 epochs. The learning rate applied during the
training has been reduced of a 0.1 factor in the first two
convolutional layers. The training process led to a mean
accuracy higher than 93%. In this phase an intensive hyper-
parameters tuning procedure has not been performed. Table
16 shows the confusion matrix of the model fed with the test
set.
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10. Conclusions

In this work, a technique allowing to discriminate between
human hand contacts and other generic type of contacts has
been proposed. Furthermore, it has been shown that human
hand contacts can be segmented with a good accuracy to
recognize the various hand parts involved into the contact.

With respect to the existing literature, mostly based on the
processing of planar tactile measurements, our approach is
based on the transformation of tactile pressure measurements
obtained from taxels non-uniformly placed on curved robot
body parts. This leads to a 2D tactile image which can
be processed and classified using state of the art image
processing techniques.

The results of this paper can have a major impact in
the domain of pHRI since the recognition of a human
hand contact can be seen as a voluntary interaction aimed
at starting a cooperation. Moreover, the possibility of
segmenting the pressure distribution can provide relevant
information about the role of the various part of the hand
involved in the interaction. An example is given in Figure 18,
where it can be seen that, after the segmentation operation,
the information related to the contact distribution can be
extracted for each part of the hand involved in the contact.

Furthermore, the robustness and the transferability of the
proposed method have been analysed, which, to the best of
our knowledge, it is a novel contribution with respect to
current tactile processing/classification literature.

The models used in the classification tasks have been
implemented using Matlab 2018b, with acceptable time
performance with respect to the sampling rate of the tactile
images. This suggests that an efficient implementation of the
models, using optimized libraries, such as Tensorflow (Abadi
et al. 2015), can further speed-up the computation.

It can be observed that the proposed approach is not
tied to a specific technology. Indeed, in order to create a
tactile image, the major requirement is to have a discrete
distribution of contact measurements on the robot body.

The results of this paper represent the stand point for
further research. First by considering the problem of multiple
contacts. Secondly, addressing the problem of recognizing
the type of physical human interaction (e.g. Push, Pull,
Twist, etc.) by analysing the contact dynamics considering
sequences of tactile images.
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(a) Original tactile image. (b) Segmented areas mapped
on the 3D model of the robot.
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(c) Mean pressure distribution for each part of the hand. The scale
can range from 0 to 65536 (see Section 7.1).
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(d) Number of taxels involved into the contact for each part of the
hand.

Figure 18. The segmentation is used for retrieving contact
properties for each part of the hand involved in the interaction.
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Appendix: Training Details

This appendix reports information about the training
procedure and the hyper-parameters selection.

The methodology adopted to find a good set of hyper-
parameters is the same among the models. In particular,
each model has been subjected to a tuning procedure,

where the effects of several possible combinations of hyper-
parameters have been investigated. Each combination has
been evaluated using 5-fold cross-validation on the training
data (Goodfellow et al. 2016). During the process, a dataset

augmentation is performed on the training folds: the images
have been flipped both horizontally and vertically, increasing
the number of images in the training fold by a factor 3.

During the experiments, it was observed that the tactile
image size has an impact on the model performance. So, we
decided to treat it as an hyper-parameter to be tuned.

Images at different resolution have been tested and at the
end it has been kept the one with resolution of 68×100, since
it provided the best scores among the models.

As discussed in Section 3, the shape of the tactile images is
247×362. In the case of the HandsNet, BoVW and SegNet
we can directly resize and feed images of 68× 100 pixels.
On the other hand, the VGG16+SVM, VGG16+ft and FCN,
require an input of 224× 224. In order to work with inputs
having the same resolution, the tactile images of 68× 100
pixels have been padded with zeros in order to fit the shape
of 224×224.

Human Hand Touch Classification

The two networks have been trained in order to minimize
the cross entropy loss (Goodfellow et al. 2016), using the
hyper-parameters reported in Table 17, where lr is the initial
learning rate and lrdf is a drop factor applied to the learning
rate every lrde epochs. The other hyper-parameters are the
batch size, and the number of training epochs.

For what concerns the VGG+ft net, the learning rate,
defined by the parameters reported in Table 17, has been
applied only in the classification layers. Furthermore, during
the training process, the value of the learning rate has
been decreased of a 0.1 factor, to fine tune the first three
convolutional layers of VGG16.

Table 17. Hyper-parameters used to train the networks for the
classification task.

Model lr lrdf lrde batch size epochs
HandsNet 0.01 0.2 40 64 80
VGG+ft 0.1 0.5 40 32 80

In the VGG+SVM model, the network works as a feature
extractor, so there is no need of training. The classification is
performed using a linear SVM, which has been selected by
tuning the penalty parameter C. The classifier with C = 0.25
has been selected, since it provided the highest accuracy.

In the case of BoVW model, the hyperparameters
considered are length of the SIFT descriptors L (Lowe 2004)
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Table 18. Hyper-parameters used to train the networks for the
semantic segmentation task.

Model lr lrdf lrde batch size epochs
SegNet 0.1 0.1 90 16 100
FCN 0.1 0.15 80 8 130

and the vocabulary size K (Kato and Harada 2014), which
have been selected as 128 and 80 respectively.

Human Hand Touch Segmentation

As it can be seen in Figure 10 the class distribution is not
uniform, indeed most of the pixels (almost 40%) are labelled
as Palm. A non balanced dataset can cause problems during
the training phase since the learning process can be biased
in favour of the Palm class. As suggested in the literature
(Badrinarayanan et al. 2017; Sudre et al. 2017) there are
two efficient strategies to deal with an imbalanced dataset.
One solution is to use a cross-entropy loss weighted using
the median frequency balancing. Another approach is to use
the dice loss function. Both methods have been tested. In the
case of SegNet, the weighted cross-entropy loss performed
better, thus it has been selected for training the model. On
the contrary the dice loss produced better results with the
FCN model.

As described in Long et al. (2015) there are three versions
of the FCN, namely FCN-32s, FCN-16s and FCN-8s. The
difference among them is the size of the stride used in the
classification layer. According to Long et al. (2015) the 8s
version provides slightly more accurate predictions. In this
work we trained the FCN-16 since with our data we did not
find any improvement with respect to use FCN-8s which has
a higher computational cost.

The hyper-parameters selected after the tuning procedure
are reported in Table 18. During the training, the models have
been fine-tuned by reducing the applied learning rate of a 0.1
factor in the VGG16 convolutional layers, slightly adapting
their weights to the new data.
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