Near-term and Large-scale Coupled Climate System Responses to Arctic Sea-ice Loss

Amélie Simon, Guillaume Gastineau, Claude Frankignoul

LOCEAN, Sorbonne Université, IPSL/CNRS, Paris, France *amelie.simon@locean-ipsl.upmc.fr

Ocean Sciences meeting, February, 19th 2020

North Atlantic Oscillation

Observation (NAO-):

King et al., 2015 Garcia-Serrano et al., 2015 Simon et al., 2020

Atmosphere model (NAO-/NAO+/no NAO):

Magnusdottir et al. 2004, Screen et al. 2014, Seierstad et al. 2009

Coupled model (NAO-):

Deser et al., 2015 Blackport & Kushner, 2016 & 2017 Smith et al., 2017 Oudar et al., 2017 McCusker et al., 2017

SLP responses in boreal winter (hPa per 10⁶ km² ice loss)

Screen et al., 2018

North Atlantic Oscillation

Atlantification

Arthun et al., 2012 Polyakov et al. 2017 Lind et al., 2018

Polyakov et al., 2017

North Atlantic Oscillation

Atlantification

And many others

North Atlantic Oscillation

Atlantification

Tropical Pacific

AMOC

Deser et al, 2015

Cvijanovic et al. 2017

Objectives

Most previous coupled model studies

Large & Abrupt Arctic sea-ice loss impact on equilibrium climate using one method

In this study (IPSL-CM5 coupled model)

Small & gradual Arctic sea-ice loss

impact on transient climate

using two methods

Objectives

Most previous coupled model studies

Large & Abrupt Arctic sea-ice loss

impact on equilibrium climate

using one method

In this study (IPSL-CM5 coupled model)

Small & gradual Arctic sea-ice loss

impact on transient climate

using two methods

Does the methodology used to force the sea-ice matter?

What are the local & remote transient climate responses to near-term Arctic sea-ice ?

CTRL (external forcing of year 2000)

RCP8.5

(average of 2035-2055 period =+2°C warming / CTRL) ALB (Arctic sea-ice albedo reduction)

THCD

(Arctic sea-ice thermal conductivity reduction)

30-years ensemble of 10 members

Same external forcing Same initial conditions

CTRL (external forcing of year 2000)

RCP8.5

(average of 2035-2055 period =+2°C warming / CTRL) ALB (Arctic sea-ice albedo reduction)

THCD

(Arctic sea-ice thermal conductivity reduction)

30-years ensemble of 10 members

Same external forcing Same initial conditions

Same Arctic sea-ice area

CTRL (external forcing of year 2000)

RCP8.5

(average of 2035-2055 period =+2°C warming / CTRL) (Arctic sea-ice albedo reduction)

THCD

ALB

(Arctic sea-ice thermal conductivity reduction)

30-years ensemble of 10 members

Same external forcing Same initial conditions Same Arctic sea-ice area **ALB** CTRL (Arctic sea-ice albedo reduction) (external forcing of year 2000) 30-years ensemble of 10 THCD **RCP8.5** members (Arctic sea-ice (average of 2035-2055 period thermal conductivity reduction) =+2°C warming / CTRL)

Impact of near-term (period 2035-2055) Arctic sea-ice = ALB (or THCD) – CTRL

Same external forcing Same initial conditions Same Arctic sea-ice area ALB CTRL (Arctic sea-ice albedo reduction) (external forcing of year 2000) 30-years ensemble of 10 THCD **RCP8.5** members (Arctic sea-ice (average of 2035-2055 period thermal conductivity reduction) =+2°C warming / CTRL)

Impact of near-term (period 2035-2055) Arctic sea-ice = ALB (or THCD) – CTRL

Which albedo (thermal conductivity) to obtain the 2035-2055 Arctic sea-ice (without changing GHG) ?

ALB = - 22.6% of sea-ice albedo / CTRL

THCD = -33 % of sea-ice thermal conductivity / CTRL

Similitude for RCP8.5, ALB, THCD

Arctic sea ice area $(x10^6 \text{ km}^2)$

Similitude for RCP8.5, ALB, THCD

Differences for RCP8.5, ALB, THCD

Arctic and North Atlantic responses : atmosphere circulation

Arctic and North Atlantic responses : oceanic circulation ALB - CTRL

(ii) Subtropical Gyre shift south& intensification of the Subpolar Gyre

0-300m temperature (K)

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Large-scale responses

ALB - CTRL

Atlantic meridional Stream Function (shading) and its climatology (contour) in Sv

90 % confidence level (black contour)

ALB - CTRL

Large-scale responses

ALB - CTRL

ALB - CTRL

Large-scale responses

ALB - CTRL

Conclusions

Does the methodology used to force the sea-ice matter?

- Albedo method induces a larger Arctic warming, especially in spring.
- Thermal conductivity method leads to thinner sea-ice in winter/spring.
- Similar climate responses but with different magnitude, for a same Arctic sea-ice loss

What is the local & remote transient climate responses to near-term and gradual Arctic sea-ice loss ?

<u>Arctic and North Atlantic</u> : - negative NAO associated with a shift south of westerlies

 water mass properties changes: "Atlantification" with larger North Atlantic inflow and weaker stratification
 AMOC decrease

Large-scale:

- South tropical Atlantic warming (Atlantic ITCZ shift south)
 Subtropical Pacific cooling (anticyclones North & South Pacific, Pacific ITCZ shift north)
- Shift west of Westerlies (rain in Brazil and dry NW America)

Discussions

Coupled responses to Arctic sea-ice melting show some robust aspects (AMOC weakening, negative NAO-(like)) but link with Pacific is not.

→ need to assess those links in coordinated framework

To be submitted soon : Simon et al., "Transient climate response to near-term Arctic sea-ice loss"

Thank you for your attention

This research was supported by the Blue-Action project (European Union's Horizon 2020 research and innovation programme, grant number: 727852)