
P versus NP
Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
Another major complexity classes are L and NL. Whether L = NL is another fundamental question
that it is as important as it is unresolved. We demonstrate if L is equal to NL, then L = NP. In this
way, we demonstrate that the L versus NL problem is as hard as P versus NP.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, polynomial time, reduction, logarithmic
space, one-way

1 Introduction

In previous years there has been great interest in the verification or checking of computations
[13]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed
as a model of the verification process [13]. Dwork and Stockmeyer and Condon have studied
interactive proofs where the verifier is a space bounded computation instead of the original
model where the verifier is a time bounded computation [13]. In addition, Blum and Kannan
have studied another model where the goal is to check a computation based solely on the
final answer [13]. More about probabilistic logarithmic space verifiers and the complexity
class NP has been investigated on a technique of Lipton [13]. In this work, we show some
results about the logarithmic space verifiers applied to the class NP and logarithmic space
disqualifiers applied to the class coNP which solve one of the most important open problems
in computer science, that is P versus NP .

The P versus NP problem is a major unsolved problem in computer science [5]. This
is considered by many to be the most important open problem in the field [5]. It is one of
the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a
US$1,000,000 prize for the first correct solution [5]. The precise statement of the P = NP

problem was introduced in 1971 by Stephen Cook in a seminal paper [5]. In 2012, a poll of
151 researchers showed that 126 (83%) believed the answer to be no, 12 (9%) believed the
answer is yes, 5 (3%) believed the question may be independent of the currently accepted
axioms and therefore impossible to prove or disprove, 8 (5%) said either do not know or do
not care or don’t want the answer to be yes nor the problem to be resolved [9].

The P = NP question is also singular in the number of approaches that researchers have
brought to bear upon it over the years [7]. From the initial question in logic, the focus moved
to complexity theory where early work used diagonalization and relativization techniques
[7]. It was showed that these methods were perhaps inadequate to resolve P versus NP
by demonstrating relativized worlds in which P = NP and others in which P 6= NP [4].
This shifted the focus to methods using circuit complexity and for a while this approach
was deemed the one most likely to resolve the question [7]. Once again, a negative result
showed that a class of techniques known as “Natural Proofs” that subsumed the above

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com

2 P vs NP

could not separate the classes NP and P , provided one-way functions exist [16]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [7]. More precisely, the question might be independent of standard
axioms of set theory [7]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [10].

It is fully expected that P 6= NP [15]. Indeed, if P = NP then there are stunning
practical consequences [15]. For that reason, P = NP is considered as a very unlikely event
[15]. Certainly, P versus NP is one of the greatest open problems in science and a correct
solution for this incognita will have a great impact not only in computer science, but for
many other fields as well [1]. Whether P = NP or not is still a controversial and unsolved
problem [1]. We show some results that could help us to prove this outstanding problem.

2 Theory and Methods

In 1936, Turing developed his theoretical computational model [18]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [18]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [18]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [18].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each
string w in Σ∗ there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [3].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M(w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M(w) = y (when M outputs the string y on the
input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [6].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [6]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [6]. We
denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [6]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = “yes” for some string c}.

F. Vega 3

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information is
called certificate. NP is the complexity class of languages defined by polynomial time verifiers
[15]. If NP is the class of problems that have succinct certificates, then the complexity class
coNP must contain those problems that have succinct disqualifications [15]. That is, a “no”
instance of a problem in coNP possesses a short proof of its being a “no” instance [15].

I Definition 1. We will extend the definition of succinct disqualification for an element
w ∈ L2 when L2 ∈ coNP as the polynomially bounded string c by w such that M(w, c) = “no”
and M is the polynomial time verifier of the complement of L2 in NP .

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[18]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [8]. A language L1 ⊆ {0, 1}∗ is NP–complete
if:

L1 ∈ NP , and
L′ ≤p L1 for every L′ ∈ NP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard
[6]. Moreover, if L1 ∈ NP , then L1 ∈ NP–complete [6]. A principal NP–complete problem is
SAT [8]. An instance of SAT is a Boolean formula φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [8]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal
form or 3CNF , if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. Another relevant NP–complete language is 3CNF satisfiability,
or 3SAT [6]. In 3SAT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

4 P vs NP

A logarithmic space Turing machine has a read-only input tape, a write-only output
tape, and read/write work tapes [18]. The work tapes may contain at most O(logn) symbols
[18]. In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [15].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [15].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [18]. The work tapes must contain at most
O(logn) symbols [18]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [18]. We call f a logarithmic space computable function [18]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used in the definition of the complete languages for the
classes L and NL [15]. A Boolean formula is in 2-conjunctive normal form, or 2CNF , if
it is in CNF and each clause has exactly two distinct literals. There is a problem called
2SAT , where we asked whether a given Boolean formula φ in 2CNF is satisfiable. 2SAT
is complete for NL [15]. Another special case is the class of problems where each clause
contains XOR (i.e. exclusive or) rather than (plain) OR operators. This is in P , since an
XOR SAT formula can also be viewed as a system of linear equations mod 2, and can be
solved in cubic time by Gaussian elimination [14]. We denote the XOR function as ⊕. The
XOR 2SAT problem will be equivalent to XOR SAT, but the clauses in the formula have
exactly two distinct literals. XOR 2SAT is in L [2], [17].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine, the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason this kind of special tape is called “read-once” [3]. Besides, in
the certificate-based definition of NL, we assume the certificate string is appropriated for the
instance [15]. For example, a truth assignment for a Boolean formula φ is appropriated for
the instance when every possible variable in φ could be evaluated in that truth assignment
string, but we cannot affirm the same for every possible binary string.

I Definition 2. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ appropriated u ∈ {0, 1}p(|x|) such that M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape and the
certificate u is placed on its special read-once tape, and M uses at most O(log |x|) space on
its read/write tapes for every input x where | . . . | is the bit-length function [3]. M is called a
logarithmic space verifier [3].

An important complexity class is coNP–complete [8]. A language L1 ⊆ {0, 1}∗ is
coNP–complete if:

F. Vega 5

L1 ∈ coNP , and
L′ ≤p L1 for every L′ ∈ coNP .

If L1 is a language such that L′ ≤p L1 for some L′ ∈ coNP–complete, then L1 is coNP–hard
[6]. Moreover, if L1 ∈ coNP , then L1 ∈ coNP–complete [6]. A principal coNP–complete
problem is UNSAT [8]. A Boolean formula without any satisfying truth assignment is
unsatisfiable. The problem UNSAT asks whether a given Boolean formula is unsatisfiable
[8].

coNL is the complexity class containing the languages such that their complements belong
to NL [15]. We can give a disqualification-based definition for coNL [3]. The disqualification-
based definition of coNL assumes that a logarithmic space Turing machine has another
separated read-only tape, that is the same kind of special tape called “read-once” that we use
in the certificate-based definition for NL [3]. Besides, in the disqualification-based definition
of coNL, we assume the disqualification string is appropriated for the instance [15].

I Definition 3. A language L1 is in coNL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∀ appropriated u ∈ {0, 1}p(|x|) then M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape and
the disqualification u is placed on its special read-once tape, and M uses at most O(log |x|)
space on its read/write tapes for every input x where | . . . | is the bit-length function. M is
called a logarithmic space disqualifier.

For example, there is a well-known coNL problem that states: Given a directed graph
G = (V,E) and two nodes s, t ∈ V , is there no possible path from s to t? In that problem,
an appropriated disqualification u is a sequence of nodes contained in V when s is the first
node and t is the last one such that this sequence of nodes is not a path: There is at least a
consecutive pair of nodes in the sequence where they are not connected by an edge.

2.1 Hypothesis
The two-way Turing machines may move their head on the input tape into two-way (left
and right directions) while the one-way Turing machines are not allowed to move the input
head on the input tape to the left [12]. Hartmanis and Mahaney have investigated the
classes 1L and 1NL of languages recognizable by deterministic one-way logarithmic space
Turing machine and nondeterministic one-way logarithmic space Turing machine, respectively
[11]. They have shown that 1L 6= 1NL (by looking at a uniform variant of the string
non-equality problem from communication complexity theory) and have defined a natural
complete problem for 1NL under deterministic one-way logarithmic space reductions [11].
Furthermore, they have proven that 1NL ⊆ L if and only if L = NL [11].

We state the following Hypothesis:

B Hypothesis 4. Given a nonempty language L1 ∈ 1NL, there is a language L2 in
coNP–complete under logarithmic space reductions with a deterministic Turing machine M ,
where:

L2 = {w : M(w, u) = y,∀ appropriated u such that y ∈ L1}

whenM runs in logarithmic space in the length of w, u is placed on the special read-once tape
of M , and u is polynomially bounded by w. In this way, there is a coNP–complete language

6 P vs NP

defined by a logarithmic space disqualifier M such that when the input is an element of the
language with any of its appropriated disqualification, then M always outputs a string which
belongs to a single language in 1NL.

I Theorem 5. When the Hypothesis 4 is true, therefore if L = NL, then L = NP .

Proof. We can accept the elements of the language L1 ∈ 1NL by a nondeterministic one-way
logarithmic space Turing machine M ′. In this way, there is a nondeterministic logarithmic
space Turing machine M ′′(w, u) = M ′(M(w, u)) which will accept when w ∈ L2 for all the
appropriated disqualification u, where u is placed on the special read-once tape of M ′′.

The reason is because we can simulate the output string of M(w, u) within a read-once
tape and thus, we can compute in a nondeterministic logarithmic space the logarithmic
space composition using the same techniques of the logarithmic space composition reduction,
but without any reset of the computation [15]. Certainly, we do not need to reset the
computation of M(w, u) for the reading at once of a symbol in the output string of M(w, u)
by the nondeterministic one-way logarithmic space Turing machine M ′. Actually, the
logarithmic space reduction is possible, because of M ′ is in one way. Indeed, it is not
necessary to reset the computation of M in the composition M ′(M(w, u)) on the input w
and disqualification u, because M ′ never moves to the left the head on the input tape (that
would be the output tape of M).

Consequently, M ′′ can be converted into a logarithmic space disqualifier for the language
L2 just assuming that L = NL, because of the nondeterministic logarithmic space Turing ma-
chineM ′′ could be simulated by a deterministic logarithmic space Turing machine. Therefore,
L2 is in coNL and thus, L2 ∈ P due to coNL ⊆ P [15]. If any single coNP–complete problem
can be solved in polynomial time, then P = NP [15]. Since L2 ∈ P and L2 ∈ coNP–complete,
then we obtain the complexity class P is equal to NP . Since coNL = NL and the language
L2 is in coNP–complete under logarithmic space reductions, then we obtain L = NP under
the assumption that L = NL when the Hypothesis 4 is true. J

3 Results

We show a previous known coNP–complete problem:

I Definition 6. 3UNSAT
INSTANCE: A Boolean formula φ in 3CNF .
QUESTION: Is φ unsatisfiable?
REMARKS: 3UNSAT ∈ coNP–complete [8].

We define a new problem:

I Definition 7. SUM ZERO
INSTANCE: A collection of integers C such that 0 /∈ C and every integer in C has the

same bit-length of the number that represents the cardinality of C multiplied by 3 (we do not
take into account the symbol minus in counting the bit-length of the negative integers).

QUESTION: Are there two elements a, b ∈ C, such that a+ b = 0?
REMARKS: We denote this problem as SUM–ZERO.

I Theorem 8. SUM–ZERO ∈ 1NL.

Proof. Given a collection of integers C, we can read its elements from left to right, verify
that every element is not equal to 0, check that every element in C has the same bit-length
and count the amount of elements in C to finally multiply it by 3 and compare its bit-length

F. Vega 7

with the single bit-length from the elements in C. In addition, we can nondeterministically
pick two elements a and b from C and accept in case of a+ b = 0 otherwise we reject. We can
make all this computation in a nondeterministic one-way using logarithmic space. Certainly,
the calculation and store of the bit-length of the elements in C could be done in logarithmic
space since this is a unique value. On the one hand, we can count and store the number of
elements that we read from the input and multiply it by 3 to finally compare its bit-length
with the stored unique bit-length from the elements of the collection, since the cardinality
of C multiplied by 3 could be stored in a binary number of bit-length that is logarithmic
in relation to the encoded length of C. On the other hand, the two elements a and b that
we pick from C have a logarithmic space in relation to the encoded length of C, because of
every integer in C has the same bit-length of the number that represents the cardinality of
C multiplied by 3. Indeed, we never need to read to the left on the input for the acceptance
of the elements in SUM–ZERO in a nondeterministic logarithmic space. J

I Theorem 9. There is a deterministic Turing machine M , where:

3UNSAT = {w : M(w, u) = y,∀ appropriated u such that y ∈ SUM–ZERO}

when M runs in logarithmic space in the length of w, u is placed on the special read-once
tape of M , and u is polynomially bounded by w.

Proof. Given a Boolean formula φ in 3CNF with n variables and m clauses, we can create a
disqualification array A which contains m positive integers between 1 and 3 which represents
the literals of the clauses in φ which appear from left to right. We read at once the elements
of the array A and we reject whether this is not an appropriated disqualification: That is
when the array A does not contain exactly m elements, or the array A contains a number
that is not between 1 and 3. While we read the elements of the array A, we select from the
clauses φ the literals such that these ones occupy the position that represents the number
between 1 and 3, that is the first, second or third place within the clause from left to right.
In this way, we output the selected literals that are represented by a positive or negative (in
case of a negated variable) integer just creating another instance C for SUM–ZERO where
the collection C contains those integers which are the selected literals for each clause in
φ. Therefore, we obtain that all the appropriated array A would be valid according to the
Theorem 9 when:

φ ∈ 3UNSAT ⇔ (∀ appropriated array A such that C ∈ SUM–ZERO)

since we assume the positive and negated literals of some variable in the input φ correspond
to a positive integer and its negative value, respectively. Furthermore, we can make this
disqualification in logarithmic space such that the array A is placed on the special read-once
tape, because we read at once the elements in the array A. Hence, we only need to iterate from
the elements of the array A to verify whether the array is an appropriated disqualification
and pick the m literals from the Boolean formula φ when we write the final integers that
represent these literals to the output. This logarithmic space disqualification will be the
Algorithm 1. We assume whether a value does not exist in the array A into the cell of some
position i when A[i] = undefined. In addition, we reject immediately when the following
comparisons:

A[i] < 1 ∨A[i] > 3

hold at least into one single binary digit. Note, that every possible literal in φ could have a
representation by an integer between −3×m and 3×m with the exception of 0, where m is

8 P vs NP

the cardinality of the collection C. In this way, we guarantee the output collection C is an
appropriated instance of SUM–ZERO just filling with zeroes to the left the elements with
bit-length lesser than |3×m| where | . . . | is the bit-length function. J

Algorithm 1 Logarithmic space disqualifier
1: /*A valid instance for 3UNSAT with its disqualification*/
2: procedure DISQUALIFIER(φ,A)
3: /*Initialize an index*/
4: j ← 0
5: /*m is the number of clauses in φ*/
6: /*Iterate for the elements of the disqualification array A*/
7: for i ← 1 to m+ 1 do
8: if i = m+ 1 then
9: /*There exists an m+ 1 element in the array*/
10: if A[i] 6= undefined then
11: /*Reject the disqualification*/
12: return “no”
13: end if
14: /*Break the for loop*/
15: break
16: else if A[i] = undefined ∨A[i] < 1 ∨A[i] > 3 then
17: /*Reject the disqualification*/
18: return “no”
19: else
20: j ← A[i]
21: end if
22: /*From the indexed ith clause ci = (xj ∨ yk ∨ zr) in φ*/
23: /*Where x, y and z are literals with local indexes {j, k, r} = {1, 2, 3} in ci*/
24: /*Output the integer representation of the jth literal, that is n(xj)*/
25: /*Filled with zeroes to the left until a total of |3×m| bits including the literal*/
26: /*But, the bit-length of the symbol minus is ignored in filling the negated literals*/
27: output “ , n(xj)”
28: end for
29: end procedure

I Theorem 10. The Hypothesis 4 is true.

Proof. Every coNP–complete is logarithmic space reduced to 3UNSAT . Certainly, every
coNP problem could be logarithmic space reduced to 3UNSAT by the Cook’s Theorem
algorithm [8]. Hence, this is a direct consequence of Theorems 8 and 9. J

I Theorem 11. If L = NL, then L = NP .

Proof. This is a direct consequence of Theorems 5 and 10. J

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

F. Vega 9

2 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric
Logarithmic Space. Computational Complexity, 9(2):123–145, 2000. doi:10.1007/PL00001603.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?N P Question.
SIAM Journal on computing, 4(4):431–442, 1975. doi:10.1137/0204037.

5 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://www.claymath.org/sites/default/files/pvsnp.pdf.

6 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

7 Vinay Deolalikar. P 6= NP, 2010. In Woeginger Home Page at https://www.win.tue.nl/
~gwoegi/P-versus-NP/Deolalikar.pdf.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

9 William I. Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012. doi:10.1145/2261417.2261434.

10 Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT
News, 8(4):13–24, October 1976. doi:10.1145/1008335.1008336.

11 Juris Hartmanis and Stephen R. Mahaney. Languages Simultaneously Complete for One-
Way and Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383–390, 1981.
doi:10.1137/0210027.

12 Martin Kutrib, Julien Provillard, György Vaszil, and Matthias Wendlandt. Deterministic
One-Way Turing Machines with Sublinear Space. Fundamenta Informaticae, 136(1-2):139–155,
2015. doi:10.3233/FI-2015-1147.

13 Richard J. Lipton. Efficient checking of computations. In STACS 90, pages 207–215. Springer
Berlin Heidelberg, 1990. doi:10.1007/3-540-52282-4_44.

14 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011.

15 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
16 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24–35,

August 1997. doi:10.1006/jcss.1997.1494.
17 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1–24, September 2008.

doi:10.1145/1391289.1391291.
18 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.

http://dx.doi.org/10.1007/PL00001603
http://dx.doi.org/10.1137/0204037
http://www.claymath.org/sites/default/files/pvsnp.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
http://dx.doi.org/10.1145/2261417.2261434
http://dx.doi.org/10.1145/1008335.1008336
http://dx.doi.org/10.1137/0210027
http://dx.doi.org/10.3233/FI-2015-1147
http://dx.doi.org/10.1007/3-540-52282-4_44
http://dx.doi.org/10.1006/jcss.1997.1494
http://dx.doi.org/10.1145/1391289.1391291

	Introduction
	Theory and Methods
	Hypothesis

	Results

