P versus NP

Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

Abstract

P versus NP is considered as one of the most important open problems in computer science. This consists in knowing the answer of the following question: Is P equal to NP? It was essentially mentioned in 1955 from a letter written by John Nash to the United States National Security Agency. However, a precise statement of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed. Another major complexity classes are L and NL . Whether $\mathrm{L}=\mathrm{NL}$ is another fundamental question that it is as important as it is unresolved. We demonstrate if L is equal to $N L$, then $L=N P$. In this way, we demonstrate that the L versus NL problem is as hard as P versus NP.

2012 ACM Subject Classification Theory of computation \rightarrow Complexity classes; Theory of computation \rightarrow Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, polynomial time, reduction, logarithmic space, one-way

1 Introduction

In previous years there has been great interest in the verification or checking of computations [13]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi can be viewed as a model of the verification process [13]. Dwork and Stockmeyer and Condon have studied interactive proofs where the verifier is a space bounded computation instead of the original model where the verifier is a time bounded computation [13]. In addition, Blum and Kannan have studied another model where the goal is to check a computation based solely on the final answer [13]. More about probabilistic logarithmic space verifiers and the complexity class $N P$ has been investigated on a technique of Lipton [13]. In this work, we show some results about the logarithmic space verifiers applied to the class $N P$ and logarithmic space disqualifiers applied to the class coNP which solve one of the most important open problems in computer science, that is P versus $N P$.

The P versus $N P$ problem is a major unsolved problem in computer science [5]. This is considered by many to be the most important open problem in the field [5]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $\$ 1,000,000$ prize for the first correct solution [5]. The precise statement of the $P=N P$ problem was introduced in 1971 by Stephen Cook in a seminal paper [5]. In 2012, a poll of 151 researchers showed that $126(83 \%)$ believed the answer to be no, $12(9 \%)$ believed the answer is yes, $5(3 \%)$ believed the question may be independent of the currently accepted axioms and therefore impossible to prove or disprove, $8(5 \%)$ said either do not know or do not care or don't want the answer to be yes nor the problem to be resolved [9].

The $P=N P$ question is also singular in the number of approaches that researchers have brought to bear upon it over the years [7]. From the initial question in logic, the focus moved to complexity theory where early work used diagonalization and relativization techniques [7]. It was showed that these methods were perhaps inadequate to resolve P versus $N P$ by demonstrating relativized worlds in which $P=N P$ and others in which $P \neq N P[4]$. This shifted the focus to methods using circuit complexity and for a while this approach was deemed the one most likely to resolve the question [7]. Once again, a negative result showed that a class of techniques known as "Natural Proofs" that subsumed the above
could not separate the classes $N P$ and P, provided one-way functions exist [16]. There has been speculation that resolving the $P=N P$ question might be outside the domain of mathematical techniques [7]. More precisely, the question might be independent of standard axioms of set theory [7]. Some results have showed that some relativized versions of the $P=N P$ question are independent of reasonable formalizations of set theory [10].

It is fully expected that $P \neq N P[15]$. Indeed, if $P=N P$ then there are stunning practical consequences [15]. For that reason, $P=N P$ is considered as a very unlikely event [15]. Certainly, P versus $N P$ is one of the greatest open problems in science and a correct solution for this incognita will have a great impact not only in computer science, but for many other fields as well [1]. Whether $P=N P$ or not is still a controversial and unsolved problem [1]. We show some results that could help us to prove this outstanding problem.

2 Theory and Methods

In 1936, Turing developed his theoretical computational model [18]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation [18]. A deterministic Turing machine has only one next action for each step defined in its program or transition function [18]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [18].

Let Σ be a finite alphabet with at least two elements, and let Σ^{*} be the set of finite strings over $\Sigma[3]$. A Turing machine M has an associated input alphabet Σ [3]. For each string w in Σ^{*} there is a computation associated with M on input $w[3]$. We say that M accepts w if this computation terminates in the accepting state, that is $M(w)=$ "yes" [3]. Note that M fails to accept w either if this computation ends in the rejecting state, that is $M(w)=$ " $n o$ ", or if the computation fails to terminate, or the computation ends in the halting state with some output, that is $M(w)=y$ (when M outputs the string y on the input w) [3].

Another relevant advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [6]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [6]. The language accepted by a Turing machine M, denoted $L(M)$, has an associated alphabet Σ and is defined by:

$$
L(M)=\left\{w \in \Sigma^{*}: M(w)=\text { "yes" }\right\} .
$$

Moreover, $L(M)$ is decided by M, when $w \notin L(M)$ if and only if $M(w)=$ "no" [6]. We denote by $t_{M}(w)$ the number of steps in the computation of M on input $w[3]$. For $n \in \mathbb{N}$ we denote by $T_{M}(n)$ the worst case run time of M; that is:

$$
T_{M}(n)=\max \left\{t_{M}(w): w \in \Sigma^{n}\right\}
$$

where Σ^{n} is the set of all strings over Σ of length $n[3]$. We say that M runs in polynomial time if there is a constant k such that for all $n, T_{M}(n) \leq n^{k}+k[3]$. In other words, this means the language $L(M)$ can be decided by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be decided by deterministic Turing machines in polynomial time [6]. A verifier for a language L_{1} is a deterministic Turing machine M, where:

$$
L_{1}=\{w: M(w, c)=\text { "yes" for some string } c\}
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [3]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L_{1}. This information is called certificate. $N P$ is the complexity class of languages defined by polynomial time verifiers [15]. If $N P$ is the class of problems that have succinct certificates, then the complexity class $c o N P$ must contain those problems that have succinct disqualifications [15]. That is, a "no" instance of a problem in coNP possesses a short proof of its being a "no" instance [15].

- Definition 1. We will extend the definition of succinct disqualification for an element $w \in L_{2}$ when $L_{2} \in \operatorname{coNP}$ as the polynomially bounded string c by w such that $M(w, c)=$ "no" and M is the polynomial time verifier of the complement of L_{2} in $N P$.

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just $f(w)$ on its tape [18]. Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [8]. A language $L_{1} \subseteq\{0,1\}^{*}$ is $N P$-complete if:

- $L_{1} \in N P$, and
- $L^{\prime} \leq_{p} L_{1}$ for every $L^{\prime} \in N P$.

If L_{1} is a language such that $L^{\prime} \leq_{p} L_{1}$ for some $L^{\prime} \in N P$-complete, then L_{1} is $N P$-hard [6]. Moreover, if $L_{1} \in N P$, then $L_{1} \in N P$-complete [6]. A principal $N P$-complete problem is $S A T$ [8]. An instance of $S A T$ is a Boolean formula ϕ which is composed of:

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow($ implication $), \Leftrightarrow($ if and only if $) ;$
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks whether a given Boolean formula is satisfiable [8]. We define a $C N F$ Boolean formula using the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [6]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [6]. A Boolean formula is in 3-conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [6].

For example, the Boolean formula:

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$. Another relevant $N P$-complete language is $3 C N F$ satisfiability, or $3 S A T$ [6]. In $3 S A T$, it is asked whether a given Boolean formula ϕ in $3 C N F$ is satisfiable.

A logarithmic space Turing machine has a read-only input tape, a write-only output tape, and read/write work tapes [18]. The work tapes may contain at most $O(\log n)$ symbols [18]. In computational complexity theory, L is the complexity class containing those decision problems that can be decided by a deterministic logarithmic space Turing machine [15]. $N L$ is the complexity class containing the decision problems that can be decided by a nondeterministic logarithmic space Turing machine [15].

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and read/write work tapes [18]. The work tapes must contain at most $O(\log n)$ symbols [18]. A logarithmic space transducer M computes a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where $f(w)$ is the string remaining on the output tape after M halts when it is started with w on its input tape [18]. We call f a logarithmic space computable function [18]. We say that a language $L_{1} \subseteq\{0,1\}^{*}$ is logarithmic space reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{l} L_{2}$, if there exists a logarithmic space computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

The logarithmic space reduction is used in the definition of the complete languages for the classes L and $N L$ [15]. A Boolean formula is in 2-conjunctive normal form, or $2 C N F$, if it is in $C N F$ and each clause has exactly two distinct literals. There is a problem called $2 S A T$, where we asked whether a given Boolean formula ϕ in $2 C N F$ is satisfiable. $2 S A T$ is complete for $N L$ [15]. Another special case is the class of problems where each clause contains $X O R$ (i.e. exclusive or) rather than (plain) $O R$ operators. This is in P, since an XOR SAT formula can also be viewed as a system of linear equations mod 2 , and can be solved in cubic time by Gaussian elimination [14]. We denote the $X O R$ function as \oplus. The $X O R$ 2SAT problem will be equivalent to $X O R S A T$, but the clauses in the formula have exactly two distinct literals. $X O R 2 S A T$ is in L [2], [17].

We can give a certificate-based definition for $N L[3]$. The certificate-based definition of $N L$ assumes that a logarithmic space Turing machine has another separated read-only tape [3]. On each step of the machine, the machine's head on that tape can either stay in place or move to the right [3]. In particular, it cannot reread any bit to the left of where the head currently is [3]. For that reason this kind of special tape is called "read-once" [3]. Besides, in the certificate-based definition of $N L$, we assume the certificate string is appropriated for the instance [15]. For example, a truth assignment for a Boolean formula ϕ is appropriated for the instance when every possible variable in ϕ could be evaluated in that truth assignment string, but we cannot affirm the same for every possible binary string.

- Definition 2. A language L_{1} is in $N L$ if there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \Leftrightarrow \exists \text { appropriated } u \in\{0,1\}^{p(|x|)} \text { such that } M(x, u)=\text { "yes" }
$$

where by $M(x, u)$ we denote the computation of M where x is placed on its input tape and the certificate u is placed on its special read-once tape, and M uses at most $O(\log |x|)$ space on its read/write tapes for every input x where $|\ldots|$ is the bit-length function [3]. M is called a logarithmic space verifier [3].

An important complexity class is coNP-complete [8]. A language $L_{1} \subseteq\{0,1\}^{*}$ is coNP-complete if:

- $L_{1} \in \operatorname{coNP}$, and
- $L^{\prime} \leq_{p} L_{1}$ for every $L^{\prime} \in \operatorname{coNP}$.

If L_{1} is a language such that $L^{\prime} \leq_{p} L_{1}$ for some $L^{\prime} \in$ coNP-complete, then L_{1} is coNP-hard [6]. Moreover, if $L_{1} \in \operatorname{coNP}$, then $L_{1} \in$ coNP-complete [6]. A principal coNP-complete problem is UNSAT [8]. A Boolean formula without any satisfying truth assignment is unsatisfiable. The problem UNSAT asks whether a given Boolean formula is unsatisfiable [8].
coNL is the complexity class containing the languages such that their complements belong to $N L$ [15]. We can give a disqualification-based definition for coNL [3]. The disqualificationbased definition of coNL assumes that a logarithmic space Turing machine has another separated read-only tape, that is the same kind of special tape called "read-once" that we use in the certificate-based definition for $N L[3]$. Besides, in the disqualification-based definition of $c o N L$, we assume the disqualification string is appropriated for the instance [15].

- Definition 3. A language L_{1} is in coNL if there exists a deterministic logarithmic space Turing machine M with an additional special read-once input tape polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \Leftrightarrow \forall \text { appropriated } u \in\{0,1\}^{p(|x|)} \text { then } M(x, u)=\text { "yes" }
$$

where by $M(x, u)$ we denote the computation of M where x is placed on its input tape and the disqualification u is placed on its special read-once tape, and M uses at most $O(\log |x|)$ space on its read/write tapes for every input x where $|\ldots|$ is the bit-length function. M is called a logarithmic space disqualifier.

For example, there is a well-known coNL problem that states: Given a directed graph $G=(V, E)$ and two nodes $s, t \in V$, is there no possible path from s to t ? In that problem, an appropriated disqualification u is a sequence of nodes contained in V when s is the first node and t is the last one such that this sequence of nodes is not a path: There is at least a consecutive pair of nodes in the sequence where they are not connected by an edge.

2.1 Hypothesis

The two-way Turing machines may move their head on the input tape into two-way (left and right directions) while the one-way Turing machines are not allowed to move the input head on the input tape to the left [12]. Hartmanis and Mahaney have investigated the classes $1 L$ and $1 N L$ of languages recognizable by deterministic one-way logarithmic space Turing machine and nondeterministic one-way logarithmic space Turing machine, respectively [11]. They have shown that $1 L \neq 1 N L$ (by looking at a uniform variant of the string non-equality problem from communication complexity theory) and have defined a natural complete problem for $1 N L$ under deterministic one-way logarithmic space reductions [11]. Furthermore, they have proven that $1 N L \subseteq L$ if and only if $L=N L$ [11].

We state the following Hypothesis:
\triangleright Hypothesis 4. Given a nonempty language $L_{1} \in 1 N L$, there is a language L_{2} in coNP-complete under logarithmic space reductions with a deterministic Turing machine M, where:

$$
L_{2}=\left\{w: M(w, u)=y, \forall \text { appropriated } u \text { such that } y \in L_{1}\right\}
$$

when M runs in logarithmic space in the length of w, u is placed on the special read-once tape of M, and u is polynomially bounded by w. In this way, there is a coNP-complete language
defined by a logarithmic space disqualifier M such that when the input is an element of the language with any of its appropriated disqualification, then M always outputs a string which belongs to a single language in $1 N L$.

- Theorem 5. When the Hypothesis 4 is true, therefore if $L=N L$, then $L=N P$.

Proof. We can accept the elements of the language $L_{1} \in 1 N L$ by a nondeterministic one-way logarithmic space Turing machine M^{\prime}. In this way, there is a nondeterministic logarithmic space Turing machine $M^{\prime \prime}(w, u)=M^{\prime}(M(w, u))$ which will accept when $w \in L_{2}$ for all the appropriated disqualification u, where u is placed on the special read-once tape of $M^{\prime \prime}$.

The reason is because we can simulate the output string of $M(w, u)$ within a read-once tape and thus, we can compute in a nondeterministic logarithmic space the logarithmic space composition using the same techniques of the logarithmic space composition reduction, but without any reset of the computation [15]. Certainly, we do not need to reset the computation of $M(w, u)$ for the reading at once of a symbol in the output string of $M(w, u)$ by the nondeterministic one-way logarithmic space Turing machine M^{\prime}. Actually, the logarithmic space reduction is possible, because of M^{\prime} is in one way. Indeed, it is not necessary to reset the computation of M in the composition $M^{\prime}(M(w, u))$ on the input w and disqualification u, because M^{\prime} never moves to the left the head on the input tape (that would be the output tape of M).

Consequently, $M^{\prime \prime}$ can be converted into a logarithmic space disqualifier for the language L_{2} just assuming that $L=N L$, because of the nondeterministic logarithmic space Turing machine $M^{\prime \prime}$ could be simulated by a deterministic logarithmic space Turing machine. Therefore, L_{2} is in coNL and thus, $L_{2} \in P$ due to coNL $\subseteq P$ [15]. If any single coNP-complete problem can be solved in polynomial time, then $P=N P$ [15]. Since $L_{2} \in P$ and $L_{2} \in$ coNP-complete, then we obtain the complexity class P is equal to $N P$. Since co $N L=N L$ and the language L_{2} is in coNP-complete under logarithmic space reductions, then we obtain $L=N P$ under the assumption that $L=N L$ when the Hypothesis 4 is true.

3 Results

We show a previous known coNP-complete problem:

- Definition 6. 3UNSAT

INSTANCE: A Boolean formula ϕ in $3 C N F$.
QUESTION: Is ϕ unsatisfiable?
REMARKS: $3 U N S A T \in$ coNP-complete [8].
We define a new problem:

- Definition 7. SUM ZERO

INSTANCE: A collection of integers C such that $0 \notin C$ and every integer in C has the same bit-length of the number that represents the cardinality of C multiplied by 3 (we do not take into account the symbol minus in counting the bit-length of the negative integers).

QUESTION: Are there two elements $a, b \in C$, such that $a+b=0$?
REMARKS: We denote this problem as SUM-ZERO.

- Theorem 8. $S U M-Z E R O \in 1 N L$.

Proof. Given a collection of integers C, we can read its elements from left to right, verify that every element is not equal to 0 , check that every element in C has the same bit-length and count the amount of elements in C to finally multiply it by 3 and compare its bit-length
with the single bit-length from the elements in C. In addition, we can nondeterministically pick two elements a and b from C and accept in case of $a+b=0$ otherwise we reject. We can make all this computation in a nondeterministic one-way using logarithmic space. Certainly, the calculation and store of the bit-length of the elements in C could be done in logarithmic space since this is a unique value. On the one hand, we can count and store the number of elements that we read from the input and multiply it by 3 to finally compare its bit-length with the stored unique bit-length from the elements of the collection, since the cardinality of C multiplied by 3 could be stored in a binary number of bit-length that is logarithmic in relation to the encoded length of C. On the other hand, the two elements a and b that we pick from C have a logarithmic space in relation to the encoded length of C, because of every integer in C has the same bit-length of the number that represents the cardinality of C multiplied by 3 . Indeed, we never need to read to the left on the input for the acceptance of the elements in $S U M-Z E R O$ in a nondeterministic logarithmic space.

- Theorem 9. There is a deterministic Turing machine M, where:

$$
3 U N S A T=\{w: M(w, u)=y, \forall \text { appropriated } u \text { such that } y \in S U M-Z E R O\}
$$

when M runs in logarithmic space in the length of w, u is placed on the special read-once tape of M, and u is polynomially bounded by w.

Proof. Given a Boolean formula ϕ in $3 C N F$ with n variables and m clauses, we can create a disqualification array A which contains m positive integers between 1 and 3 which represents the literals of the clauses in ϕ which appear from left to right. We read at once the elements of the array A and we reject whether this is not an appropriated disqualification: That is when the array A does not contain exactly m elements, or the array A contains a number that is not between 1 and 3 . While we read the elements of the array A, we select from the clauses ϕ the literals such that these ones occupy the position that represents the number between 1 and 3 , that is the first, second or third place within the clause from left to right. In this way, we output the selected literals that are represented by a positive or negative (in case of a negated variable) integer just creating another instance C for $S U M-Z E R O$ where the collection C contains those integers which are the selected literals for each clause in ϕ. Therefore, we obtain that all the appropriated array A would be valid according to the Theorem 9 when:

$$
\phi \in 3 U N S A T \Leftrightarrow(\forall \text { appropriated array } A \text { such that } C \in S U M-Z E R O)
$$

since we assume the positive and negated literals of some variable in the input ϕ correspond to a positive integer and its negative value, respectively. Furthermore, we can make this disqualification in logarithmic space such that the array A is placed on the special read-once tape, because we read at once the elements in the array A. Hence, we only need to iterate from the elements of the array A to verify whether the array is an appropriated disqualification and pick the m literals from the Boolean formula ϕ when we write the final integers that represent these literals to the output. This logarithmic space disqualification will be the Algorithm 1. We assume whether a value does not exist in the array A into the cell of some position i when $A[i]=$ undefined. In addition, we reject immediately when the following comparisons:

$$
A[i]<1 \vee A[i]>3
$$

hold at least into one single binary digit. Note, that every possible literal in ϕ could have a representation by an integer between $-3 \times m$ and $3 \times m$ with the exception of 0 , where m is
the cardinality of the collection C. In this way, we guarantee the output collection C is an appropriated instance of $S U M-Z E R O$ just filling with zeroes to the left the elements with bit-length lesser than $|3 \times m|$ where $|\ldots|$ is the bit-length function.

```
Algorithm 1 Logarithmic space disqualifier
    /*A valid instance for \(3 U N S A T\) with its disqualification*/
    procedure DISQUALIFIER \((\phi, A)\)
        /*Initialize an index*/
        \(j \leftarrow 0\)
        \(/^{*} m\) is the number of clauses in \(\phi^{*} /\)
        /*Iterate for the elements of the disqualification array \(A^{*} /\)
        for \(i \leftarrow 1\) to \(m+1\) do
            if \(i=m+1\) then
                /*There exists an \(m+1\) element in the array*/
                if \(A[i] \neq\) undefined then
                /*Reject the disqualification*/
                return " \(n o\) "
                    end if
                    /*Break the for loop*/
                break
            else if \(A[i]=\) undefined \(\vee A[i]<1 \vee A[i]>3\) then
                /*Reject the disqualification*/
                return "no"
            else
                \(j \leftarrow A[i]\)
            end if
            \(/ *\) From the indexed \(i^{\text {th }}\) clause \(c_{i}=\left(x_{j} \vee y_{k} \vee z_{r}\right)\) in \(\phi^{*} /\)
            \(/ *\) Where \(x, y\) and \(z\) are literals with local indexes \(\{j, k, r\}=\{1,2,3\}\) in \(c_{i}{ }^{*} /\)
            /*Output the integer representation of the \(j^{t h}\) literal, that is \(n\left(x_{j}\right)^{*} /\)
            /*Filled with zeroes to the left until a total of \(|3 \times m|\) bits including the literal*/
            /*But, the bit-length of the symbol minus is ignored in filling the negated literals*/
            output ", \(n\left(x_{j}\right)\) "
        end for
    end procedure
```

Theorem 10. The Hypothesis 4 is true.
Proof. Every coNP-complete is logarithmic space reduced to $3 U N S A T$. Certainly, every coNP problem could be logarithmic space reduced to $3 U N S A T$ by the Cook's Theorem algorithm [8]. Hence, this is a direct consequence of Theorems 8 and 9.

- Theorem 11. If $L=N L$, then $L=N P$.

Proof. This is a direct consequence of Theorems 5 and 10.

References

1 Scott Aaronson. P $\stackrel{?}{=}$ NP. Electronic Colloquium on Computational Complexity, Report No. 4, 2017.

2 Carme Álvarez and Raymond Greenlaw. A Compendium of Problems Complete for Symmetric Logarithmic Space. Computational Complexity, 9(2):123-145, 2000. doi:10.1007/PL00001603.
3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
4 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the $\mathcal{P}=$? $\mathcal{N} \mathcal{P}$ Question. SIAM Journal on computing, 4(4):431-442, 1975. doi:10.1137/0204037.
5 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at http://www.claymath.org/sites/default/files/pvsnp.pdf.
6 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
7 Vinay Deolalikar. $\mathrm{P} \neq \mathrm{NP}$, 2010. In Woeginger Home Page at https://www.win.tue.nl/ ~gwoegi/P-versus-NP/Deolalikar.pdf.
8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
9 William I. Gasarch. Guest column: The second $\mathrm{P} \stackrel{?}{=}$ NP poll. ACM SIGACT News, 43(2):53-77, 2012. doi:10.1145/2261417. 2261434.

10 Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT News, 8(4):13-24, October 1976. doi:10.1145/1008335.1008336.
11 Juris Hartmanis and Stephen R. Mahaney. Languages Simultaneously Complete for OneWay and Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383-390, 1981. doi:10.1137/0210027.
12 Martin Kutrib, Julien Provillard, György Vaszil, and Matthias Wendlandt. Deterministic One-Way Turing Machines with Sublinear Space. Fundamenta Informaticae, 136(1-2):139-155, 2015. doi:10.3233/FI-2015-1147.

13 Richard J. Lipton. Efficient checking of computations. In STACS 90, pages 207-215. Springer Berlin Heidelberg, 1990. doi:10.1007/3-540-52282-4_44.
14 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press, 2011.

15 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
16 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24-35, August 1997. doi:10.1006/jcss.1997. 1494.
17 Omer Reingold. Undirected Connectivity in Log-space. J. ACM, 55(4):1-24, September 2008. doi:10.1145/1391289. 1391291.
18 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology Boston, 2006.

