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Abstract

A homogenized model based on simpli�ed kinematic assumptions for the analysis of masonry

columns subjected to axial forces is presented. A Unit Cell (UC) characterized by di�erent

arrangements of clay bricks and mortar joints is modeled and analyzed. The kinematic

unknown �elds are approximated by cubic interpolation functions and the compatible strain

�elds are accordingly derived. Stresses in bricks and mortar are evaluated on the basis

of a damage constitutive law, relying on a modi�ed Willam-Warnke yield criterion and an

exponential evolution for the damage variable. The equilibrium equations are consistently

deduced via the virtual displacement principle. A numerical solution procedure is proposed

and described in detail, using the collocation technique to solve the nonlinear evolution

problem of damage variables in masonry constituents. Numerical applications are presented

to validate the proposed model. The response of UCs characterized by di�erent geometrical

textures is numerically studied and the results are compared with those obtained by well

assessed nonlinear nonlocal �nite element (FE) modeling approaches. Finally, a parametric

investigation on the e�ects of constituents mechanical properties on the overall UC response

is performed and a comparison with experimental evidences is illustrated.
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1 Introduction

Masonry is a heterogeneous material, often made of the assemblage of clay bricks joined by

mortar layers, which can be characterized by very di�erent mechanical properties, mainly in

old constructions. Both the constituents show cohesive response with softening branches in

the stress-strain relationship both in tension and compression. Concerning overall masonry

properties, tensile strength, mainly due to decohesion and opening of the mortar-brick inter-

face, usually shows di�erent values in di�erent regions of the building and can change during

the construction's lifetime. Hence, this is a very uncertain parameter commonly character-

ized by a low, if not negligible, value. Relying on this, no-tension models have been widely

adopted, where vanishing tensile strength is considered [4, 15].

Considering that old masonry constructions are commonly characterized by very low values

of operating compressive stresses with respect to the ultimate strength, failure of masonry

elements is mostly due to limited tensile strength of the material, which induces opening of

fractures and, hence, activation of collapse mechanisms.

Nevertheless, the accurate evaluation of masonry compressive strength is relevant to prevent

crushing mechanisms that can occur for thin structural elements or reinforced masonry. This

parameter depends on the nontrivial interaction between mortar and bricks and can be

identi�ed on the basis of laboratory tests on small assemblage of bricks and mortar, or

via the micromechanical analysis of masonry specimens [3, 9].

Therefore, the correct determination of masonry compressive strength as a function of the

mechanical properties of bricks and mortar and their geometrical arrangement is still an

interesting task deserving attention. One of the pioneer works on this topic is that by

Hilsdorf [21], who derived the strength of the masonry for a staking sequence of bricks and

mortar layers based on simpli�ed kinematic hypotheses. Results of monotonic and cyclic

uniaxial compressive tests on natural stone and clay bricks specimens, as well as natural

stone and clay brick prisms have been presented in [27]. The sti�ness degradation evolution,

the relevance of hysteretic energy dissipation and the failure modes are discussed.

More recently, an experimental investigation on the in�uence of mortar and brick properties

and arrangement on masonry prisms and wallettes overall response has been illustrated in [18].

A further experimental and modeling study devoted to the determination of simple formulas

describing the nonlinear stress-strain response of brick-mortar staking masonry has been

developed in [22], performing linear regression analyses of the experimental data. A numerical

study to investigate the response of brick-mortar elements has been carried out in [32],

developing micromechanical three-dimensional nonlinear �nite element analyses, where brick
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and mortar failure has been modeled using the Willam-Warnke �ve-parameter criterion. The

in�uence on the compressive strength of straw and moisture content has been experimentally

investigated. A sensitivity analysis of the response of unreinforced concrete masonry made

of materials with di�erent mechanical properties and geometrical layouts has been developed

in [30], where analyses have been performed adopting a three-dimensional �nite element

micro-modeling approach and accounting for damage and plasticity e�ects. An experimental

investigation on masonry subjected to compression loading condition has also been performed

for textures made of tu� blocks [5], de�ning di�erent nonlinear stress-strain models for each

loading direction to account for masonry orthotropy and describe strain-softening behavior.

This study presents a numerical model to perform fast numerical testing of masonry prisms

subjected to compressive loading conditions. Masonry overall response can be deduced by

applying suitable homogenization techniques, widely discussed in literature. Among others,

homogenization procedures for masonry with periodic microstructure have been presented in

in [2], where an enriched plane state formulation was introduced, in [6], where higher-order

continuum models were adopted and in [11], where rigid or elastic blocks and viscoelastic

mortar were considered. Moreover, in [10] quasi-periodic masonry was considered. Finally,

in [28] non-linear static and limit analyses were performed for masonry arch bridge.

Here, the masonry prism is considered as a heterogeneous medium made of bricks and mor-

tar joints, arranged in di�erent textures. A simpli�ed kinematic model is proposed, which

accounts for transverse dilatation of masonry in compression that can di�ers for brick and

mortar layers. Moreover, considering the possible presence of head joints inside the prism,

an increase of the transverse deformation is introduced in correspondence to vertical mortar

joints. Equilibrium equations are deduced using a variational approach and the Euler equa-

tions are derived consistently with the proposed kinematic model. The nonlinear constitutive

response of bricks and mortar is modeled via Continuum Damage Mechanics [12], introducing

an isotropic damage formulation. A simpli�ed form of the Willam-Warnke criterion, origi-

nally proposed for the tri-axial failure surface of concrete-like materials [34], is adopted for

both the masonry constituents.

A novel numerical procedure to solve the nonlinear evolution problems of damage variables

is proposed. This is based on the collocation technique applied to an approximated form of

the solution. The evolution equations are solved in the framework of backward-Euler tech-

nique. Numerical applications are carried out to validate the proposed numerical procedure,

comparing the obtained results with those evaluated by a nonlocal �nite element method.

An investigation on the dependence of the overall response of masonry Unit Cell (UC) on

the mechanical properties of mortar and brick is illustrated. Finally, a comparison with the
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Figure 1: Schematic of the (a) UC and (b) masonry column characterized by regular periodic
texture.

results of an experimental test on a masonry column is performed.

The paper is organized as follows: in Section 2 the heterogeneous masonry model is pre-

sented, proposing a simpli�ed kinematics for the description of column response with the

corresponding equilibrium equations derived via variational formulation. Section 3 illustrates

the nonlinear constitutive model adopted for bricks and mortar. In Section 4 a numerical pro-

cedure based on the collocation technique is proposed. Numerical applications are described

in Section 5. Finally, concluding remarks are given in Section 6.

2 Heterogeneous masonry model

A masonry column is considered, obtained as the superposition of layers composed of two

bricks bonded by a vertical mortar joint and mortar layers. The brick layers, separated by

the bed mortar joint, are rotated π/2 of each other. Figure 1 contains the three-dimensional

scheme of the column with the Cartesian reference system set such that the x3−axis coincides
with the column axis, while x1 and x2 span the typical cross section of the column.

Because of the masonry texture periodicity, a single UC is studied and a homogenization

procedure is used to derive the overall structural response of the masonry column. As is

known, materials exhibiting strain-softening response are characterized by non-convex stored

energy functionals, leading to the occurrence of localization phenomena. As a consequence of
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the loss of ellipticity of the governing equations, instability phenomena can emerge at both

the macroscopic and microscopic level [24, 26]. To overcome the related drawbacks, a length

scale should be introduced in the standard continuum description. Various approaches can

be adopted, as for example nonlocal integral, gradient and enriched continuum formulations.

Relaxation techniques of the non-convex energy functional can also be adopted, based on the

convexi�cation of the stress potential [19]. In the case of a micro-macro homogenization, due

to the localization phenomena the problem of the selection of a repetitive UC also emerges.

Here, the selected UC in �gure 1(a) is assumed to describe the possible damaging mechanisms

at the micromechanical level. Possible localization problems at the macroscopic structural

level can be overcome by adopting a suitable regularization technique. As shown in �gure

1, the UC is composed of four bricks and two mortar bed joints arranged in four layers

as follows: the �rst is a mortar layer, the second is made up of two bricks bonded in the

x2 − x3 plane by a mortar joint, the third is a mortar layer and the fourth is composed of

two bricks bonded in the x1−x3 plane by a mortar joint. The size of the single brick is b×h
and its thickness by t, while the thickness of the mortar layer is s. The UC total height is

` = 2 (t+ s). The x3 coordinate de�ning the interface among the layer i and i+ 1 is denoted

as `i. Moreover, it results h = 2 b+ s.

2.1 Kinematics

A simpli�ed three-dimensional kinematic description is considered for the masonry UC sub-

jected to an average axial strain E33. The displacement �elds are represented in the form:

u1 = x1 e1(x3) + φ1(x1) d1(x3)

u2 = x2 e2(x3) + φ2(x2) d2(x3)

u3 = E33 x3 + w(x3)

, (1)

where the function φi(xi), with i = 1, 2 is de�ned as:

φi(xi) =


2xi
s

if 0 ≤ |xi| ≤
s

2

h− 2 |xi|
h− s

sgn(xi) if
s

2
< |xi| ≤

h

2

, (2)

with derivative

φi,i(xi) =


2

s
if 0 ≤ |xi| ≤

s

2

− 2

h− s
if

s

2
< |xi| ≤

h

2

, (3)
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Figure 2: Shape function governing the displacement pro�le in the transverse direction.

the subscript `,i' denoting the derivative with respect to xi. The presented kinematic model

is an enhancement of the enriched model proposed in [2].

In Eqs. (1), the axial displacement component is represented as additive composition of an

assigned part depending on the average axial strain E33 and a perturbation function w(x3),

arising due to medium heterogeneity, and assumed constant over the column cross-section;

e1(x3) and e2(x3) describe the transverse dilatation occurring in the column when axially

loaded, while d1(x3) and d2(x3) account for larger transverse dilatation in correspondence

to vertical mortar joints. As the masonry column studied here is made by the repetitive

superposition of UCs, the above kinematic �elds e1(x3), e2(x3), d1(x3), d2(x3) and w(x3)

have to satisfy periodicity conditions at boundary between the UC layers.

The function φi(xi), governing the shape of the transverse deformation in vertical mortar

joints, is depicted in �gure 2.

The compatible strain �elds, derived by the displacements in (1) are collected in the two

axial and shear vectors, ε = {ε11 ε22 ε33}T and γ = {γ13 γ23}T , respectively, expressed as:

ε = L̄η + E =


e1 + φ1,1 d1

e2 + φ2,2 d2

w,3 + E33

 γ = L̃η =

{
x1 e1,3 + φ1 d1,3

x2 e2,3 + φ2 d2,3

}
, (4)

with η = {e1 d1 e2 d2 w}T , E = {0 0 E33}T and

L̄ =


1 φ1,1 0 0 0

0 0 1 φ2,2 0

0 0 0 0
∂

∂x3

 L̃ =

 x1
∂

∂x3

φ1
∂

∂x3

0 0 0

0 0 x2
∂

∂x3

φ2
∂

∂x3

0

 . (5)

Taking into account heterogeneity of the column, in the following the kinematic �eld is
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restricted to the four layers and denoted with the superscripts `(i)' with i = 1, .., 4. Kinematic

functions e
(i)
1 , e

(i)
2 , d

(i)
1 , d

(i)
2 , w(i) have to satisfy continuity and periodicity conditions, which

are written for the typical kinematic function f (i)(x3) as:

f (1)(0) = f (4)(`) = f (4)(1) f (1)(`1) = f 2(`1) = f (1)(2)

f (2)(`2) = f (3)(`2) = f (2)(3) f (3)(`3) = f (4)(`3) = f (3)(4)
(6)

with `1 = t, `2 = t + s and `3 = 2 t + s, where f (h)(k) denotes the function common value at

the boundary of layers h and k.

On the basis of the kinematics de�ned by Eqs. (4), it is possible to compute all the compo-

nents of the UC average strain. These are determined as:

ε̄11 =
1

V

ˆ

A

`ˆ

0

(e1 + φ1,1d1) dx3dA =
1

`

`ˆ

0

e1 dx3

ε̄22 =
1

V

ˆ

A

`ˆ

0

(e2 + φ2,2d2) dx3dA =
1

`

`ˆ

0

e2 dx3

ε̄33 =
1

V

ˆ

A

`ˆ

0

(w,3 + E33) dx3dA =E33

γ̄13 =
1

V

ˆ

A

`ˆ

0

(x1e1,3 + φ1d1,3) dx3dA = 0

γ̄23 =
1

V

ˆ

A

`ˆ

0

(x2e2,3 + φ2d2,3) dx3dA = 0

(7)

where periodicity of functions e
(i)
1 , e

(i)
2 , d

(i)
1 , d

(i)
2 and w(i) given by the �rst of Eqs. (6) is taken

into account. To be noted that transversal strains have non zero average. Thus, vector E

does not contain overall strains, as only the third component represents an average strain.

The matrices L̄ and L̃ can be written as:

L̄ = L̄p L̄3 L̃ = L̃p L̃3 (8)
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with

L̄p =

 1 φ1,1 0 0 0

0 0 1 φ2,2 0

0 0 0 0 1

 L̄3 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0
∂

∂x3


L̃p =

[
x1 φ1 0 0 0

0 0 x2 φ2 0

]
L̃3 = J

∂

∂x3

,

(9)

and J the 5× 5 identity matrix.

The strain component γ12 is neglected being equal to zero.

2.2 Equilibrium

Equilibrium equations are derived via an integral formulation. The virtual displacement

equation read:

0 =

ˆ
Ω

(
δεTσ + δγTτ

)
dV , (10)

with Ω denoting the UC volume, σ = {σ11 σ22 σ33}T being the axial stress vector and τ =

{τ13 τ23}T the shear stress vector.

Taking into account formulas (8) and setting Ω = A`, with A the area of the column cross-

section, the equilibrium equation (10) becomes:

0 =

ˆ
Ω

[
(L̄3 δη)T (L̄p)Tσ + (L̃3 δη)T (L̃p)Tτ

]
dV

=

ˆ
`

[
(L̄3 δη)T

ˆ
A

(L̄p)Tσ dA+ (L̃3 δη)T
ˆ
A

(L̃p)Tτ dA

]
dx3

=

ˆ
`

[
(L̄3 δη)TN + (L̃3 δη)TT

]
dx3

(11)

where

N =

ˆ
A

(L̄p)Tσ dA =



N11

R11

N22

R22

N33


T =

ˆ
A

(L̃p)Tτ dA =



M13

R13

M23

R23

0


(12)

Vectors N and T collect generalized stress components, with N11/A and N22/A representing

average stresses in the UC cross section, N33 the stress resultant in the axial direction, M13
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and M23 the moments of the shear stresses τ13 and τ23, respectively. The four additional

components, R11, R22, R13 and R23 are work-conjugate to the enhanced strain terms depend-

ing on the functions φi(xi) and their derivatives. Indeed, these represent higher order stress

resultants arising due to proposed kinematics and, accordingly to this, describe stresses in

the UC cross-section. Higher order stress resultants, characterized by not direct mechani-

cal interpretation, can be found in many higher order shell formulations based on enriched

kinematics (e.g. third-order or layerwise shell models).

Integrating by parts and introducing continuity and periodicity conditions (6) into the equi-

librium equation (11), it results:

0 =
4∑
i=1

ˆ
`i

(δη(i))T
(
L̄3FN(i) + L̃3FT(i)

)
dx3

+
(
N

(4)
33 (`)−N (1)

33 (0)
)
δw(4)(1) +

3∑
i=1

(
N

(i)
33 (`i)−N (i+1)

33 (`i)
)
δw(i)(i+1)

+
(
T(4)(`)−T(1)(0)

)
δη(4)(1) +

3∑
i=1

(
T(i)(`i)−T(i+1)(`i)

)
δη(i)(i+1)

(13)

where

L̄3F =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 − ∂

∂x3


L̃3F = −J

∂

∂x3

(14)

From Eq. (13) the equilibrium equations for each layer result as:

0 = L̄3FN(i) + L̃3FT(i) ⇒



0 = N
(i)
11 −M

(i)
13,3

0 = R
(i)
11 −R

(i)
13,3

0 = N
(i)
22 −M

(i)
23,3

0 = R
(i)
22 −R

(i)
23,3

0 = N
(i)
33,3

(15)

with i = 1, .., 4, together with the boundary conditions:

N
(4)
33 (`) = N

(1)
33 (0) N

(i)
33 (`i) = N

(i+1)
33 (`i) i = 1, 2, 3

T(4)(`) = T(1)(0) T(i)(`i) = T(i+1)(`i) i = 1, 2, 3
(16)
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Taking into account the de�nitions (12) and the boundary conditions (16), the average

stresses are computed as:

σ̄11 =
1

V

ˆ

A

`ˆ

0

σ11 dx3dA =
1

V

`ˆ

0

N11 dx3 =
1

V

`ˆ

0

M13,3 dx3 = 0

σ̄22 =
1

V

ˆ

A

`ˆ

0

σ22 dx3dA =
1

V

`ˆ

0

N22 dx3 =
1

V

`ˆ

0

M23,3 dx3 = 0

σ̄33 =
1

V

ˆ

A

`ˆ

0

σ33 dx3dA =
1

V

`ˆ

0

N33 dx3 =
1

A
N33 .

(17)

The proof that shear stresses have zero averages is given in the following.

3 Constitutive laws

Constitutive equations based on Continuum Damage Mechanics (CDM) are introduced for

mortar and bricks, that account for the typical degradation mechanisms in the two masonry

constituents. The same constitutive formulation is introduced for the two components, as

both are cohesive materials exhibiting a similar mechanical response, but with di�erent values

of the governing parameters.

An isotropic elastic-damage model is considered, written in the form:

σ = (1−D) Cε , τ = (1−D) µγ , (18)

where D is the damage variable, with 0 ≤ D ≤ 1 and Ḋ ≥ 0, C is the 3× 3 isotropic elastic

constitutive matrix:

C =

 λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ

 , (19)

with λ and µ being the Lamè constants.

To be noted that, accounting for the shear constitutive equation in (18), it results that, as the

average shear strains γ̄13 and γ̄23 are zeros, the corresponding overall shear stresses vanish.

The proposed model is based on an isotropic damage model. Indeed, anisotropic damage mod-

els would be more accurate in describing the damaging mechanisms of brittle-like materials

[13, 20], especially when these are characterized by regular arrangement of the microstructure
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[7]. However for irregular and random microstructured materials, such as concrete and mor-

tar, isotropic damage formulations have been suitably adopted to reproduce the degrading

e�ects in the material constitutive response [1, 14, 23, 33]. On the other hand, anisotropic

damage models are governed by many material parameters that, often, are very di�cult

to identify. Moreover, anisotropy of the material behavior is reproduced even by isotropic

damage models by development and subsequent localization of damage. An interesting com-

parative discussion of the implications of isotropic and anisotropic damage modelling can be

found in [16].

Dual frameworks can be adopted for CDM formulations, that is strain- and stress-based

models are derived [29], both consistent with the Clausius-Duhem inequality. Accordingly,

damage criteria can be stated in the strain and stress space, respectively.

Here, damage evolution is assumed to depend on the six-component e�ective stress vector,

de�ned as:

σ̄ =
1

1−D


σ

τ

0

 . (20)

A simpli�ed form of the Willam-Warnke criterion, originally proposed for the tri-axial failure

surface of concrete-like materials [34], is adopted for both masonry constituents, together with

an exponential damage evolution law. As suggested by [8] and following a phenomenological

approach to describe the constitutive response of quasi-brittle materials, such as bricks and

mortar, no distinction is drawn between yield, damage and failure surface. All are based

on the de�nition of a stress space bounded by a limit stress locus. The modi�ed form of

the Willam-Warnke [34] yield criterion is governed by the uni-axial tensile and compressive

elastic limit stresses σt and σc, respectively, usually di�ering from the maximum tensile and

compressive stresses σt max and σc max. The following quantities are introduced:

z =
σt
σc

rc =
z
√

30

15 z + 5
rt =

√
30 z

10
, (21)

ut = 2 rc (r2
c − r2

t ) cos θ

vt = rc (2 rt − rc)
√

4 (r2
c − r2

t ) cos2 θ + 5 r2
t − 4 rt rc

wt = 4 (r2
c − r2

t ) cos2 θ + (rc − 2 rt)
2

. (22)
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Then, the e�ective equivalent stress is de�ned as:

σ̄eq =
1

3
I1 +

√
2 J2

5

z wt
ut + vt

, (23)

where I1 is the �rst invariant of the e�ective stress and J2 the second invariant of the deviatoric

e�ective stress σ̄. Finally, damage activation function, describing the elastic limit domain,

is written as:

F = σ̄eq − σt ≤ 0 . (24)

Damage evolution is governed by a constrained exponential law, expressed as:

D = max
history

{
0,min

{
D̃, 1

}}
, (25)

with

D̃ = 1− exp [α(σt − σ̄eq)] , (26)

where α depends on the material strength and fracture energy.

Although the same damage evolution law governs the material response for tensile and com-

pressive stresses, the non symmetric behavior is accounted for by properly setting mechanical

parameters σt, σc and α. Indeed, di�erent values are introduced for α, when material is mainly

in tension (α = αt) and compression (α = αc), assuming the equivalent stress �rst invariant

as the gauge to check whether the material is subjected to prevailing tensile or compressive

stresses.

Material parameters governing the uni-axial response can be deduced via classical laboratory

tests. In fact, from the experimental stress-strain curves, strength, σ• max, and damage energy,

G•, with • equal to t or c, can be deduced. Therefore, the uni-axial stress-strain law for a

monotonic loading history results as:

σ = exp [α(σt − σ̄eq)]E ε . (27)

Accordingly, the values of σ• and α• can be determined by solving the following two equations:

σ• max = max |σ| ,

G• =

ˆ
|σ| dε , (28)

where the integral is performed in the positive (Gt) or negative (Gc) strain �eld. Eqs. (28)
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brick mortar

b1 b2 b3 m1 m2 m3 m4 m5
E [MPa] 18000 1000
ν 0.10 0.10
σt [MPa] 3.00 0.40
σt max [MPa] 3.00 0.40
αt [MPa]−1 0.50 4.00
Gt [MPa] 8.06× 10−4 2.55× 10−4

σc [MPa] 9.80 25.50 26.00 4.50 4.90 5.00 3.50 7.00
σc max [MPa] 26.00 26.00 26.00 5.00 5.00 5.00 3.54 7.15
αc [MPa]−1 0.05 0.28 0.50 1.50 2.00 2.20 2.00 2.00
Gc [MPa] 0.235 0.112 0.061 0.090 0.076 0.071 0.040 0.136
η 1.00 1.00

Table 1: Material properties for the brick and mortar. Three and �ve di�erent sets of
compressive material properties are introduced for the brick and mortar, respectively.

are nonlinear and can be solved numerically.

To avoid a sharp variation of the material parameters during computation, a smoothing

regularization law is introduced to switch from αt to αc and vice-versa. Let the quantity

Ī1 = σt − σc be introduced, the variation of α is assumed to be ruled by:

α = αt +
1

1 + exp
[
η (I1 − Ī1)

] (αc − αt) , (29)

where η governs the rate of variation of α.

In �gure 3, the brick stress-strain uni-axial constitutive law is depicted, considering three

di�erent set of material properties. The adopted material data are contained in table 1,

considering three di�erent sets for the brick compressive response, characterized by the same

maximum compression strength, but di�erent compressive damage energy. Tensile behavior

is not in�uenced by the compressive parameters and is the same for the di�erent settings.

Figures 4 and 5 contain the limit domain represented in the e�ective stress and strain spaces

for the full three-dimensional and plane stress case, respectively. These correspond to the set

of brick parameters b2 in table 1.

4 Solution technique

A numerical solution technique is proposed to evaluate the nonlinear response of the ma-

sonry column. In particular, to facilitate the computations and obtain a fast procedure for

13



Figure 3: Stress vs strain response of the cohesive material subjected to independent tensile
and compressive loading histories.

performing parametric analyses, the following main assumptions are introduced:

• damage is considered constant in the whole brick;

• the four bricks composing the masonry UC are subjected to the same damage state Db;

• damage of the bed mortar joint is assumed constant in the whole layer;

• the two mortar layers composing the masonry UC are subjected to the same damage

state Dm;

• damage of the head mortar joint is assumed constant in the whole joint;

• the two mortar joints in the masonry UC are subjected to the same damage state Dh.

The simpli�ed hypotheses introduced gare schematically shown in �gure 6(a).

Taking into account compatibility equations (4), formulas (8) and expressions of the stresses

from constitutive equation (18), stress resultants (12) can be evaluated in each layer as:

N(i) =

ˆ
A(i)

(
1−D(i)

)
(L̄p)T C(i)(L̄p L̄3 η(i) + E) dA = M̄(i) L̄3 η(i) + P̄(i) E (30)

T(i) =

ˆ
A(i)

(
1−D(i)

)
G(i)(L̃p)T L̃p L̃3 η(i) dA = M̃ L̃3 η(i) , (31)

14



(a)

(b)

Figure 4: 3D limit domain depicted in the (a) e�ective stress and (b) strain space.
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(a)

(b)

Figure 5: Limit domain for the plane stress case depicted in the (a) e�ective stress and (b)
strain space.
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Figure 6: (a) Sequence of the four layers composing the UC; (b) areas for the strain compo-
nents quadrature in the UC single layer.
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where the strain vector E = {0 0 E33}T contains the only assigned component E33, as intro-

duced in (4) and:

M̄(i) =
4∑
j=1

(
1−D(i) j

)
M̄(i) j P̄(i) =

4∑
j=1

(
1−D(i) j

)
P̄(i) j M̃(i) =

4∑
j=1

(
1−D(i) j

)
M̃(i) j .

(32)

Sums in formulas (32) are performed on the four areas in which each layer of the UC is

subdivided, A1 = h2
s, A2 = s hs, A3 = hs s and A4 = s2, being hs = h− s, as shown in �gure

6(b). The evaluation of the quantities in formulas (32) is performed according to table 2,

where for each layer the material, mortar (m), brick (b) or head joint (h), composing the four

areas are indicated.

A1 A2 A3 A4

layer 1 m m m m
layer 2 b h b h
layer 3 m m m m
layer 4 b b h h

Table 2: Material composing each area for each layer.

Matrices introduced in Eqs. (32) are de�ned as:

M̄(i) j =

ˆ
Aj

(L̄p)T C(i) j L̄p dA =


c

(i)
1 j Aj c

(i)
1 j I1 j c

(i)
2 j Aj c

(i)
2 j I2 j c

(i)
2 j Aj

c
(i)
1 j I1 j c

(i)
1 j I3 j c

(i)
2 j I1 j c

(i)
2 j I5 j c

(i)
2 j I1 j

c
(i)
2 j Aj c

(i)
2 j I1 j c

(i)
1 j Aj c

(i)
1 j I2 j c

(i)
2 j Aj

c
(i)
2 j I2 j c

(i)
2 j I5 j c

(i)
1 j I2 j c

(i)
1 j I4 j c

(i)
2 j I2 j

c
(i)
2 j Aj c

(i)
2 j I1 j c

(i)
2 j Aj c

(i)
2 j I2 j c

(i)
1 j Aj

 , (33)

P̄(i) j =

ˆ
Aj

(L̄p)T C(i) j dA =


c

(i)
1 j Aj c

(i)
2 j Aj c

(i)
2 j Aj

c
(i)
1 j I1 j c

(i)
2 j I1 j c

(i)
2 j I1 j

c
(i)
2 j Aj c

(i)
1 j Aj c

(i)
2 j Aj

c
(i)
2 j I2 j c

(i)
1 j I2 j c

(i)
2 j I2 j

c
(i)
2 j Aj c

(i)
2 j Aj c

(i)
1 j Aj

 , (34)
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M̃(i) j = G(i) j

ˆ
Aj

(L̃p)T L̃p dA = G(i) j



I6 j I7 j 0 0 0

I7 j I8 j 0 0 0

0 0 I9 j I10 j 0

0 0 I10 j I11 j 0

0 0 0 0 0


. (35)

The quantities introduced in matrices (33), (34) and (35) are computed making reference to

�gure 6(b) and are collected in table 3.

j = 1 j = 2 j = 3 j = 4

I1 j =

ˆ
Aj

φ1,1dA = −2hs −2s 2hs 2s

I2 j =

ˆ
Aj

φ2,2dA = −2hs 2hs −2s 2s

I3 j =

ˆ
Aj

φ2
1,1dA = 4

4 s

hs

4hs
s

4

I4 j =

ˆ
Aj

φ2
2,2dA = 4

4hs
s

4 s

hs
4

I5 j =

ˆ
Aj

φ1,1φ2,2dA = 4 −4 −4 4

I6 j =

ˆ
Aj

x2
1dA =

(h2 + h s+ s2)h2
s

12

(h2 + h s+ s2)hss

12

hss
3

12

s4

12

I7 j =

ˆ
Aj

x1φ1dA =
(h+ 2s)h2

s

12

(h+ 2s)hss

12

hss
2

6

s3

6

I8 j =

ˆ
Aj

φ2
1dA =

h2
s

3

hss

3

hss

3

s2

3

I9 j =

ˆ
Aj

x2
2dA =

(h2 + h s+ s2)h2
s

12

hss
3

12

(h2 + h s+ s2)hss

12

s4

12

I10 j =

ˆ
Aj

x2φ2dA =
(h+ 2s)h2

s

12

hss
2

6

(h+ 2s)hss

12

s3

6

I11 j =

ˆ
Aj

φ2
2dA =

h2
s

3

hss

3

hss

3

s2

3

Table 3: Values of the integrals involved in the computation of the stress resultants.

Substituting expressions (30) and (31) into equilibrium equations (15), a set of 20 nonlinear

di�erential equations, 5 for each of the 4 layers, is obtained, depending on the kinematic

unknowns.

An approximated solution is then derived based on the collocation approach. In the i−th
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layer, kinematic vector η(i) is represented in the form:

η(i) = η̂(i)[1] ψ
(i)
1 (x3) + η̂(i)[2] ψ

(i)
2 (x3) + η̂(i)[3] ψ

(i)
3 (x3) + η̂(i)[4] ψ

(i)
4 (x3) , (36)

where η̂(i)[k] =
{
ê

(i)[k]
1 d̂

(i)[k]
1 ê

(i)[k]
2 d̂

(i)[k]
2 ŵ(i)[k]

}
, with k = 1, .., 4, is a �ve component vector.

Moreover, the approximation functions are set as:

ψ
(i)
1 =

`i − x3

`i − `i−1

ψ
(i)
3 =

4 (x3 − `i−1) (`i − x3)

(`i − `i−1)2

ψ
(i)
2 =

x3 − `i−1

`i − `i−1

ψ
(i)
4 =

6
√

3 (2x3 − `i − `i−1)(x3 − `i)(x3 − `i−1)

(`i − `i−1)3

. (37)

Derivatives of the functions ψ
(i)
k with respect to x3 are:

ψ
(i)
1,3 = − 1

`i − `i−1

ψ
(i)
3,3 = −4 (2x3 − `i−1 − `i)

(`i − `i−1)2

ψ
(i)
2,3 =

1

`i − `i−1

ψ
(i)
4,3 =

6
√

3 [6x3(x3 − `i − `i−1) + `2
i + 4 `i`i−1 + `2

i−1]

(`i − `i−1)3

(38)

and

ψ
(i)
1,33 = 0 ψ

(i)
3,33 = − 8

(`i − `i−1)2

ψ
(i)
2,33 = 0 ψ

(i)
4,33 =

36
√

3 (2x3 − `i − `i−1)

(`i − `i−1)3

. (39)

Figure 7 contains the plots of the approximation functions for the i−th layer.

Eq. (36) can be written in the equivalent form:

η(i) = Ψ(i) η̂(i) with Ψ(i) =
[
Ψ(i)[1] Ψ(i)[2] Ψ(i)[3] Ψ(i)[4]

]
η̂(i) =


η̂(i)[1]

η̂(i)[2]

η̂(i)[3]

η̂(i)[4]

 , (40)

being Ψ(i)[k] = ψ
(i)
k J.

To compute stress resultants de�ned by Eqs. (30) and (31), the following terms have to be

evaluated:

L̄3η(i) = B̄(i) η̂(i) L̃3η(i) = B̃(i) η̂(i) , (41)
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Figure 7: Plots of the selected approximation functions.

where it is set B̄(i) = L̄3Ψ(i) and B̃(i) = L̃3Ψ(i), resulting:

B̄(i) =
[
B̄(i)[1] B̄(i)[2] B̄(i)[3] B̄(i)[4]

]
with B̄(i)[k] =


ψ

(i)
k 0 0 0 0

0 ψ
(i)
k 0 0 0

0 0 ψ
(i)
k 0 0

0 0 0 ψ
(i)
k 0

0 0 0 0 ψ
(i)
k,3

 ,

(42)

B̃(i) =
[
B̃(i)[1] B̃(i)[2] B̃(i)[3] B̃(i)[4]

]
with B̃(i)[k] = ψ

(i)
k,3 J . (43)

According to the approximation introduced (36), strain �elds ε and γ in the i−th layer

de�ned by Eqs. (4) are obtained as:

ε(i) = L̄p B̄(i) η̂(i) + E γ(i) = L̃p B̃(i) η̂(i) . (44)

Taking into account expressions (30) and (31) and formulas (41), the equilibrium equations

(15) for the i−th layer take the form:(
L̄3FM̄(i) B̄(i) + L̃3FM̃(i) B̃(i)

)
η̂(i) + L̄3FP̄(i) E = 0 . (45)
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Introducing matrices:

K̄(i) =
[
K̄(i) [1] K̄(i) [2] K̄(i) [3] K̄(i) [4]

]
(46)

K̃(i) =
[
K̃(i) j [1] K̃(i) [2] K̃(i) [3] K̃(i) [4]

]
, (47)

with

K̄(i) [k] = L̄3FM̄(i) B̄(i)[k]

=


M̄

(i)
11 ψ

(i)
k M̄

(i)
12 ψ

(i)
k M̄

(i)
13 ψ

(i)
k M̄

(i)
14 ψ

(i)
k M̄

(i)
15 ψ

(i)
k,3

M̄
(i)
21 ψ

(i)
k M̄

(i)
22 ψ

(i)
k M̄

(i)
23 ψ

(i)
k M̄

(i)
24 ψ

(i)
k M̄

(i)
25 ψ

(i)
k,3

M̄
(i)
31 ψ

(i)
k M̄

(i)
32 ψ

(i)
k M̄

(i)
33 ψ

(i)
k M̄

(i)
34 ψ

(i)
k M̄

(i)
35 ψ

(i)
k,3

M̄
(i)
41 ψ

(i)
k M̄

(i)
42 ψ

(i)
k M̄

(i)
43 ψ

(i)
k M̄

(i)
44 ψ

(i)
k M̄

(i)
45 ψ

(i)
k,3

−M̄ (i)
51 ψ

(i)
k,3 −M̄

(i)
52 ψ

(i)
k,3 −M̄

(i)
53 ψ

(i)
k,3 −M̄

(i)
54 ψ

(i)
k,3 −M̄

(i)
55 ψ

(i)
k,33

 (48)

K̃(i) [k] = L̃3FM̃(i) B̃(i)[k] = ψk,33 M̃(i) (49)

and vector:

p̄(i) = L̄3FP̄(i) E =



P̄
(i)
13

P̄
(i)
23

P̄
(i)
33

P̄
(i)
43

0


E33 , (50)

the equilibrium equation (45) becomes

K(i) η̂(i) + p(i) = 0 with K(i) = K̄(i) j + K̃(i) j . (51)

Writing (51) for each of the four layers, a set of 20 equations result.

Noting that matrices K̄(i) j (46) and K̃(i) j (47) are functions of x3 coordinate as these depend

on ψk(x3) and its derivatives, a collocation method is adopted to solve the micromechanical

problem. Thus, Eqs. (51) are collocated in the typical i-th layer at coordinates:

ξ
(i)
1 = `i−1 + (`i − `i−1)

(
1

2
−
√

3

6

)
ξ

(i)
2 = `i−1 + (`i − `i−1)

(
1

2
+

√
3

6

)
. (52)

Denoting with K(i)|ξs the matrix K(i) evaluated at the collocation point x3 = ξ
(i)
s (s = 1, 2),
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the collocated form of Eq. (51) is:

K(i)
c η̂

(i) + p(i)
c with K(i)

c =

[
K(i)|ξ1
K(i)|ξ2

]
p(i)

c =

{
p(i)

p(i)

}
, (53)

corresponding to 10 algebraic equations per layer and a total of of 40 equations.

Taking into account representation form (36) for the kinematic vector in each layer and the

speci�c choice (37) for the approximation functions ψk, continuity and periodicity equations

for the kinematic variables (6) take the form:

η̂(1)[2] = η̂(2)[1]

η̂(2)[2] = η̂(3)[1]

η̂(3)[2] = η̂(4)[1]

η̂(4)[2] = η̂(1)[1]

⇒

J[2]η̂(1) −J[1]η̂(2) = 0

J[2]η̂(2) −J[1]η̂(3) = 0

J[2]η̂(3) −J[1]η̂(4) = 0

J[2]η̂(4) −J[1]η̂(1) = 0

, (54)

with J[1] = [J 0 0 0 0] and J[2] = [0 J 0 0 0], being 0 the 5×5 null matrix. Relationships

(54) add 20 further equations to the governing set.

Equations (16), expressing stress continuity between layers composing the UC, have also to

be enforced. Taking into account formulas (41), the stress resultants given in (30) and (31),

become:

N(i) = M̄(i) B̄(i) η̂(i) + P̄(i) E (55)

T(i) = M̃(i) B̃(i) η̂(i) (56)

Note that Eqs. (16) involve the �rst four components of vectors T(i) and the �fth component

of vectors N(i). Further 20 equations are, then, written.
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Finally, the set of governing equations can be schematically organized as:

J[2] −J[1] 0 0

0 J[2] −J[1] 0

0 0 J[2] −J[1]

−J[1] 0 0 J[2]

K(1)|ξ1 0 0 0

K(1)|ξ2 0 0 0

0 K(2)|ξ1 0 0

0 K(2)|ξ2 0 0

0 0 K(3)|ξ1 0

0 0 K(3)|ξ2 0

0 0 0 K(4)|ξ1
0 0 0 K(4)|ξ2

F(1)|`1 −F(2)|`1 0 0

0 F(2)|`2 −F(3)|`2 0

0 0 F(3)|`3 −F(4)|`3
−F(1)|`0 0 0 F(4)|`4




η̂(1)

η̂(2)

η̂(3)

η̂(4)

 = −



0

0

0

0

p(1)

p(1)

p(2)

p(2)

p(3)

p(3)

p(4)

p(4)

q(1) − q(2)

q(2) − q(3)

q(3) − q(4)

q(4) − q(1)



(57)

where

F(i) =


[
M̃(i) B̃(i)(`i)

]
(1..4,:)[

M̄(i) B̄(i)(`i) η̂
(i)
]

(5,:)


q(i) =

{
0 0 0 0 P̄

(i)
53

}T
E33 , (58)

obtaining an algebraic system of 80 equations in 80 unknowns (i.e. 20 components of each

vector η̂(i) with i = 1, ..., 4). To eliminate rigid body translation along x3 direction, a further

constraint equation is introduced as:

ŵ(4)[2] = 0 (59)

At the same time, the stress continuity equation N
(4)
33 (`) = N

(1)
33 (0), is cut out.

The three damage variables Db, Dm and Dh are evaluated on the basis of stresses computed

at the following points in the UC:

• Qb at x1 = 0, x2 = (s+ b)/2, x3 = s+ t/2;
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• Qm at x1 = 0, x2 = 0, x3 = s/2;

• Qj at x1 = 0, x2 = 0, x3 = x+ t/2 ;

respectively.

Once unknown vector η̂ is computed, the kinematic quantities arranged in vector η(i) can be

evaluated for each layer at points Qb, Qm, Qj, using formula (36). Thus, axial and shear

strains are determined by Eqs. (44) and, using Eqs. (18) and (20), the e�ective stress σ̄ is

computed. Damage evolution at points Qb, Qm, Qj is evaluated through Eqs. (21)-(26). The

presented numerical procedure has been implemented in MATLAB.

5 Numerical applications

This section presents some numerical applications to validate the proposed model on the

basis of the results of FE analyses and experimental outcomes. First, numerical testings on

masonry columns characterized by di�erent geometrical textures are performed, comparing

the results with those obtained by nonlinear nonlocal FE analyses. A parametric investigation

on the overall response of the masonry column is then conducted, varying the mechanical

properties of the components. Finally, an experimental compressive test on a masonry prism

is simulated.

5.1 Comparison with FE analyses

To numerically validate the model presented, the compressive response of the masonry column

UC is studied. Di�erent arrangements are considered as shown in �gure 8, denoted in the

following with (a) UC1, (b) UC2, (c) UC3 and (d) UC4. Head joints are not included in

UC1, while in UC2 and UC3 these have a di�erent arrangement. Moreover, UC4 is equal to

UC2, but mortar is eliminated by head joints.

The following geometrical parameters are adopted: h = 240mm, b = 115mm, t = 55mm,

s = 10mm. Brick and mortar constitutive response is ruled by the damage model presented in

Section 3, assuming mechanical parameters in Table 1 and selecting data b2 for bricks and m2

for mortar joints. The UC response is also evaluated by FE procedure for comparison, using

3D 8-node solid elements for modeling bricks and mortar and a 2× 2× 2 Gauss integration

rule. The 3D solid element, formulated on the basis of the constitutive model in Section 3,

has been implemented in the FE code FEAP [31]. To overcome mesh-dependency problems

and regularize the FE numerical solution, a nonlocal integral procedure is used, introducing
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(a) (b)

(c) (d)

Figure 8: Masonry UC arrangements: (a) UC1, (b) UC2, (c) UC3 and (d) UC4.

in Eq. (24) the integral de�nition of the e�ective equivalent stress (23). To compare the FE

results with those evaluated through the procedure presented here, which assumes constant

damage in bricks and mortar joints, a high value for the nonlocal radius, that is 500mm,

is adopted. Figures 9 and 10 contain the compressive response of the four UCs, in terms

of homogenized stress component Σ33 versus applied average axial strain E33, evaluated via

the proposed model (solid black line) and the FE procedure (red line with stars). A very

satisfactory agreement between the two solution procedures is observed. All the analyzed

cases show a very similar response, denoting that the presence of head mortar joints does not

signi�cantly in�uence overall UC response, as clearly emerges in �gure 11(b), where responses

of the four UCs are compared. Moreover, �gure 11(a) shows the comparison between UC1

compressive response (solid black line) and that of a �ctitious homogeneous UC only made of

brick (solid red line), or mortar (solid green line). As expected, the strength and sti�ness of

the heterogeneous UC are average values of brick and mortar properties. As for the post-peak

behavior of UC1, this is more brittle. Figure 12 shows the damage evolution in brick and bed

mortar joints, evaluated with the proposed procedure (solid lines) and the FE technique (line

with stars). Damage �rst starts in the bricks with a very steep growth, then it proceeds in

the mortar bed joints. Coinciding damage evolution trends are obtained with the proposed

procedure and the FE technique.
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Figure 9: Overall compressive stress-strain response of (a) UC1 and (b) UC2.

0 1 2 3 4 5 6 7 8

-E
33 × 10

-3

0

5

10

15

20

25

-Σ
3

3
[M

P
a

]

Proposed model
FE solution

(a)

0 1 2 3 4 5 6 7 8

-E
33 × 10

-3

0

5

10

15

20

25

-Σ
3

3
[M

P
a

]

Proposed model
FE solution

(b)

Figure 10: Overall compressive stress-strain response of (c) UC3 and (d) UC4.
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Figure 11: Overall compressive stress-strain response: (a) comparison between UC1 (black),
brick UC (red) and mortar UC (green); (b) comparison between the di�erent UCs in �gure
8.
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Figure 12: Damage evolution in UC1 and UC2: comparison between the damage evaluated
in (a) UC1 and (b) UC2 with the proposed model (solid lines) and the FE procedure (line
with stars) in the brick (black) and mortar bed joint (red).
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Figure 13: UC3 overall response considering di�erent values of mechanical properties for
brick and mortar: response of the masonry prism composed of (a) bricks b1 and mortar m1,
m2 and m3, (b) bricks b2 and mortar m1, m2 and m3, (c) bricks b3 and mortar m1, m2 and
m3.

5.2 E�ects of mechanical properties on UC overall response

A parametric investigation is performed considering UC3 (�gure 8) with geometrical param-

eters given in the previous section. Axes bounds are the same in Figures 13, 14, 15, that is

the strain −E33 ranges from 0 to 0.016 and the stress −S33 from 0 to 25 MPa.

Di�erent mechanical properties are considered for brick and mortar, as contained in table 1,

where b1, b2 and b3 correspond to bricks characterized by the same maximum compressive

strength but di�erent fracture energies. As for the mortar, m1, m2, m3, m4 and m5 refer to

materials di�ering both for maximum compressive strength and fracture energy. Figure 13

contains the overall response of UC3 made of the three di�erent bricks (a) b1, (b) b2 and (c)

b3. In each �gure, the response is plotted for the three mortar materials m1, m2 and m3,

having the same maximum compressive strength and di�erent values of fracture energy. It

clearly emerges that the variation of the mortar compressive fracture energy has a negligible

in�uence on the masonry UC overall behavior. It is not possible to distinguish the curves

obtained changing the mortar properties. Instead, the reduction of brick compressive fracture

energy causes a lower UC strength with the peak moved backwards and an increasingly

steeper softening branch. To be noted in the case of brick b3, the most brittle, a sudden post-

peak drop occurs after the linear elastic response. The jump of the overall stress occurring

at the strain value E33 = 0.04 is due to the performed displacement control of the analysis.

Of course, following the load path via an arc-length technique, a snap back branch would be

recovered.

A further investigation on the in�uence of the mortar mechanical properties on the masonry

overall response is performed, considering mortar joints characterized by di�erent compressive
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Figure 14: UC3 overall response for the di�erent mortar materials m2, m4 and m4, and brick
b2.

strengths. Mortar m2, m4 and m5 in table 1 are considered with brick b2. Note that the

mortar materials are characterized by signi�cantly di�erent strengths, going from 3.54 to

7.15MPa. In �gure 14 overall stress versus overall strain for UC3 with the three di�erent

mortar materials is plotted. It can be noted that, although very di�erent values of mortar

strength are considered, the overall strength of the masonry prism does not change, whereas

the softening branches show a slight discrepancy.

In �gure 15 the response of UC3 made of bricks b1, b2 and b3 and mortar m2 is plotted. It is

again con�rmed that the brick mechanical properties strongly in�uence the overall masonry

prism response. In particular, only modifying brick fracture energy a signi�cantly di�erent

UC overall response is obtained. Indeed, in the example reported in �gure 15 the use of

brick b1 yields a maximum compressive strength for UC3 equal to 22.18MPa and a fracture

energy of 0.176MPa; brick b2 a maximum compressive strength equal to 20.04MPa with a

fracture energy of 0.075MPa; brick b3 a maximum compressive strength equal to 19.92MPa

with a fracture energy of 0.044MPa. Note that the fracture energy is computed for an overall

residual stress of about 2.5MPa. Moreover, fracture energy is overestimated for brick b3, as

no snap back is accounted for in the displacement-controlled analysis. It can be concluded

that brick fracture energy strongly in�uences the UC strength and fracture energy .

To show the orthotropic behavior of the UC3, the plots of the lateral strains and displacements

along the axis of the unit cell are reported. In particular, the lateral strain contributions e1

and e2 vs x3 and d1 and d2 vs x3 are reported in �gures 16(a) and 16(b), respectively. From
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Figure 15: UC3 overall response for the di�erent brick properties b1, b2 and b3, and mortar
m2.

�gure 16, the di�erent response of the UC along the lateral directions can be noted. It can

also be noted that the response of layers 1 and 2 along the x1−direction is the same as that

obtained for layers 3 and 4 along the x2−direction, as could be expected due to the speci�c

geometry considered for the computations. Figure 16(b) illustrates the in�uence of terms d1

and d2 in the head mortar joints. In fact, d1 assumes signi�cant values in correspondence to

layer 4 in the head joint. Analogously, d2 is not negligible in layer 2, again in the head joint.

Figures 17 illustrates the pro�les of the displacement component u1 and u2 along the axis of

the UC. In particular, �gure 17(a) reports the lateral displacement component u1 evaluated

at x1 = s/2 and at x1 = h/2 Analogously, �gure17(b) reports the lateral displacement

component u2 evaluated at x2 = s/2 and at x2 = h/2.

5.3 Comparison with an experimental test

The simulation of a compressive test for a masonry prism is performed. The analyzed column

is obtained as staking sequence of four clay brick units joined by three mortar layers; two

more mortar layers are present at the top and bottom of the prism, according to �gure 18(a).

In �gure 18(b) the UC adopted for the computations is illustrated.

This structural scheme was studied both experimentally and numerically in [9], considering

axial and eccentric loading conditions. A numerical investigation is also reported in [3]. The

vertical load is applied to the masonry prism by means of two steel plates located in direct
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(a) (b)

Figure 16: Lateral strain contributions along the axis of the UC at E33 = −0.0035; (a) e1

and e2 vs x3, (b) d1 and d2 vs x3

(a) (b)

Figure 17: Lateral displacements along the axis of the UC at E33 = −0.0035; (a) u1 evaluated
at x1 = s/ and at x1 = h/2 vs x3, (b) u2 evaluated at x2 = s/ and at x2 = h/2 vs x3
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Figure 18: Axially loaded column: (a) schematic of the masonry prism, (b) UC adopted for
the computations.

contact with the lower and upper mortar joints. The size of the bricks is 240×55×110mm3,

while the mortar joints are 10mm thick. The resulting eight of the prism is H = 270

mm. Note that mortar joints have smaller sizes than brick units; in fact, a recess of 7 mm

is considered in the computations. The material mechanical parameters adopted here and

derived from those reported in [9] are reported in Table 4. The brick tensile and compressive

strengths are equal to 2.7MPa and 22.6MPa, respectively. In the experimental campaign,

two series of specimens were tested, characterized by di�erent composition of the mortar.

Here, results obtained for series 2 are considered. As the proposed model discussed in the

previous section accounts only for a perfect axial loading condition for the masonry prism,

the e�ect of the load eccentricity investigated in [9] is not studied here.

Figure 19(a) illustrates the load-displacement curve in terms of the total base vertical reaction

versus the applied displacement on the top of the masonry prism. The curve obtained by

adopting the presented simpli�ed model (continuous line) is compared with the corresponding

experimental data (circle symbols). It can be noted that the numerical curve satisfactorily

matches experimental outcomes. Figure 19(b) reports the evolution of the damages evaluated

averaging the strain in the whole brick, computed in the centerline of the brick and in the

mortar joints. As expected, damage grows more rapidly in the center of the brick as maximum

tensile strain occurs in the middle of the brick.
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brick mortar

E [MPa] 2600 335
ν 0.05 0.20
σt [MPa] 1.53 0.49
σt max [MPa] 2.7 0.74
αt [MPa]−1 0.20 0.70
Gt [MPa] 0.0125 0.0085
σc [MPa] 20.00 7.40
σc max [MPa] 22.00 9.00
αc [MPa]−1 0.50 1.00
Gc [MPa] 0.58 1.05
η 1.00 1.00

Table 4: Axially loaded column: material parameters adopted for bricks and mortar.

(a) (b)

Figure 19: Mechanical response of a masonry prism subjected to axial load; (a) total base
reaction versus top applied displacement, (b) damage evolution in the brick, in the centerline
of the brick and in the mortar.
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6 Conclusions

A numerical procedure to investigate the nonlinear compressive response of masonry columns,

separately modeling bricks and mortar, has been presented. To describe the masonry degrad-

ing mechanisms under compression loads, an isotropic damage model based on a simpli�ed

form of the Willam-Warnke criterion and an exponential evolution law has been adopted

both for brick and mortar. Thanks to the adoption of some assumptions concerning the

kinematic description of the 3D problem and the damage considered as constant in proper

de�ned subsets of the analyzed masonry UCs, the governing equations are notably simpli�ed.

Moreover, the collocation technique has been used to solve the nonlinear problem of the UC

subjected to axial compressive loads.

The proposed approach has been implemented in MATLAB and used to perform numerical

tests on masonry prisms, characterized by di�erent geometries and mechanical properties of

the components (i.e. brick and mortar), giving reliable results in perfect agreement with

those evaluated via a nonlocal 3D FE solution technique, introduced in FEAP. Moreover,

the developed numerical applications have shown that the proposed numerical procedure is

accurate, e�cient and very fast in determining the overall response of the masonry prisms.

The numerical outcomes show that the increase of the brick compressive strength signi�cantly

increases the masonry overall compressive strength, although the latter is always lower than

that of the bricks. Simultaneously, the reduction of the brick fracture energy makes the overall

softening more severe. On the other hand, as expected, both the mortar compressive strength

and fracture energy have an almost negligible in�uence on the masonry overall compressive

response.

The developed model, properly modi�ed, can be adopted to study the improvement in the

mechanical response of a masonry column retro�tted by the FRP or FRCM jacketing systems.

Moreover, it represents a valid tool to be extended to study the response of masonry columns

subjected to combined axial and bending forces. Hence, the proposed kinematics has to be

properly modi�ed to account for the bending of the structural elements. Another interesting

development is the extension of the proposed formulation to analyze the e�ects of the evolving

damaging mechanisms on structural stability and buckling of the masonry column. Indeed,

pioneer works have investigated these aspects for cracked column cross-section in presence

of no- or low tensile strength material [17]. More recently, a 2D homogenized non-linear

model was proposed including second order e�ects to analyze post-cracking and post-buckling

behavior of slender URM walls [25].
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