16th Annual Midsouth Computational Biology & Bioinformatics Society Conference MCBIOS 2019

Single-cell RNA sequencing in Immunology

Christopher Fucile MS Informatics Institute University of Alabama at Birmingham

Objective

- Understand the gene product targeted in VDJ analysis and why a special approach is needed
- Understand initial processing of sequence data to generate gene-X-cell and VDJ clonotype data
 - Be able to run the Cellranger pipeline using the basic command from the terminal
 - Know what output files are needed for additional analysis
 - Identify key QC metrics to check before moving on with further analysis
- Identify reasons to combine gene expression and VDJ clonotype data using single cell platforms
 - Know how to navigate the VDJ & Cell Loupe browser functions
 - Be able to integrate the 5' gene expression data with VDJ clonotype data
 - Export sequence data from Cellranger pipeline for analysis in other software packages

Repertoire Sequencing Applications

- Broad applications in immunology: allergy, autoimmunity, infectious disease, vax
- Establish baseline data of "typical" immune repertoires to understand variability
- Repertoire diversity profile as a readout of immunological status
- Potential readout of antigenic exposure history
- Immune response dynamics
- Lineage questions involving multiple B cell populations
- Identification of potentially convergent Abs in response to vaccine or infection
- Characterizing MRD in B-cell cancers, monitoring toxicity/efficacy of chemo
- Diagnostics e.g. characterization in autoimmune diseases
- Designing vaccine dose schedules
- Identification of sequences related to particular Ab from single-cell Ab screens
- High throughput mAb identification (via paired V_H:V_L sequencing)
- Searching repertoires against databases of sequences with known specificities

B cell Genes	T cell Genes
CD20	LEF1
CD19	CD3G
PAX5	TCF7
SYK	CD2
CD200	CD28
SPIB	STAT4
IRF4	GATA3
HLA-DMA	MAL
CD72	

Palmer, Chana et al. "Cell-type specific gene expression profiles of leukocytes in human peripheral blood" *BMC genomics* vol. 7 115. 16 May. 2006, doi:10.1186/1471-2164-7-115

Knowledge that will change your world

Antigen Receptor Diversity

1. Combinatorial Diversity

somatic recombination during B cell development

2. Junctional Diversity

joining variability during somatic recombination (CDR3)

3. Combinatorial Association of Heavy and Light Chains

4. Somatic Hypermutation (B-cells)

following activation, during affinity maturation

10x Genomics [©] Cellranger [©] & Loupe Browser [©] Overview

Dataset:

PBMCs of healthy donor – 5' gene expression & Ig enrichment from amplified cDNA

https://www.10xgenomics.com/solutions/vdj/#datasets

Software:

Cellranger[©] Loupe Cell Browser[©] Loupe V(D)J Browser[©]

https://support.10xgenomics.com/single-cell-vdj/software/downloads/latest

Cellranger ©

Cellranger © mkfastq

cellranger mkfastq --run=/path/to/bcl/files --csv=sample_layout.csv --qc

sample_layout.csv

outs/qc_summary.json

```
Lane,Sample,Index
1,Sample1,SI-GA-A3
```

```
"sample_qc": {
    "Sample1": {
        "3": {
            "barcode_exact_match_ratio": 0.9336158258904611,
            "barcode_q30_base_ratio": 0.9611993091728814,
            "bc_on_whitelist": 0.9447542078230667,
            "mean_barcode_qscore": 37.770630795934,
            "number_reads": 2748155,
            "read1_q30_base_ratio": 0.8947676653366835,
            "read2_q30_base_ratio": 0.7771883245304577
            "
```


Cellranger © count

cellranger count --id=sample345 \

--transcriptome=/opt/refdata-cellranger-GRCh38-3.0.0 \

--fastqs=/home/jdoe/runs/HAWT7ADXX/outs/fastq_path \

--sample=mysample --expect-cells=1000

File Name	Description
web_summary.html	Run summary metrics and charts in HTML format
metrics_summary.csv	Run summary metrics in CSV format
possorted_genome_bam.bam	Reads aligned to the genome and transcriptome annotated with barcode information
possorted_genome_bam.bam.bai	Index for possorted_genome_bam.bam
filtered_feature_bc_matrix	Filtered feature-barcode matrices containing only cellular barcodes in MEX format
filtered_feature_bc_matrix_h5.h5	Filtered feature-barcode matrices containing only cellular barcodes in HDF5 format
raw_feature_bc_matrices	Unfiltered feature-barcode matrices containing all barcodes in MEX format
raw_feature_bc_matrix_h5.h5	Unfiltered feature-barcode matrices containing all barcodes in HDF5 format
analysis	Secondary analysis data including dimensionality reduction, cell clustering, and differential expression
molecule_info.h5	Molecule-level information used by cellranger aggregate samples into larger datasets.
cloupe.cloupe	Loupe Cell Browser visualization and analysis file

Cellranger © VDJ

cellranger vdj --id=sample345

--transcriptome=/opt/refdata-cellranger-GRCh38-3.0.0

--fastqs=/home/jdoe/runs/HAWT7ADXX/outs/fastq path

--sample=mysample --expect-cells=1000

File Name	Description
concat_ref.fasta	Concatenated reference sequences
concat_ref.fasta.fai	Concatenated reference index
consensus.bam	Contig-consensus alignments
consensus.bam.bai	Contig-consensus alignment index
concat_ref.bam	Contig-reference alignments
concat_ref.bam.bai	Contig-reference alignment index
consensus_annotations.json	Clonotype consensus annotations (JSON)
consensus_annotations.csv	Clonotype consensus annotations (CSV)
clonotypes.csv	Clonotype info
vloupe.vloupe	Loupe V(D)J Browser file

File Name	Description
web_summary.html	Run summary HTML
metrics_summary.csv	Run summary CSV
all_contig.fasta	All-contig FASTA
all_contig.fasta.fai	All-contig FASTA index
all_contig.fastq	All-contig FASTQ
all_contig.bam	Read-contig alignments
all_contig.bam.bai	Read-contig alignment index
all_contig_annotations.json	All contig annotations (JSON)
all_contig_annotations.bed	All contig annotations (BED)
all_contig_annotations.csv	All contig annotations (CSV)
filtered_contig.fasta	Filtered contig sequences FASTA
filtered_contig.fastq	Filtered contig sequences FASTQ
filtered_contig_annotations.cs	Filtered contigs (CSV)
consensus.fasta	Clonotype consensus FASTA
consensus.fasta.fai	Clonotype consensus FASTA index
consensus.fastq	Clonotype consensus FASTQ

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Knowledge that will change your world

©2018 10x Genomics. All Rights Reserved.