
DARE-777413

H2020-EINFRA-2017
EINFRA-21-2017 - Platform-driven e-infrastructure innovation

DARE [777413] “Delivering Agile Research Excellence on European
e-Infrastructures”

ID2.2-M25: DARE Architecture

and Technology internal report

Project Reference No 777413 — DARE — H2020-EINFRA-2017 / EINFRA-21-2017

Internal Deliverable ID2.2-M25: DARE Architecture and Technology internal report

Work package WP2: Architecture Specification and Innovation

Tasks involved T2.1: Architecture Specification, Tools and Components

Type R: Internal Document, report

Dissemination Level P = Public

Due Date 17/02/2020

Publication Date 25/02/2020

Status Completed and approved for release

Editor(s) Malcolm Atkinson (UEDIN)

Iraklis Klampanos (NCSRD)

ID2.2-M25 Public release 1

DARE-777413

Contributors Malcolm Atkinson (UEDIN)
Rosa Filgueira (UEDIN)

André Gemünd (FRAUNHOFER)

Vangelis Karkaletsis (NCSRD)

Iraklis Klampanos (NCSRD)

Antonis Koukourikos (NCSRD)

Amélie Levray (UEDIN)

Mike Lindner (KIT)

Federica Magnoni (INGV)

Christian Pagé (CERFACS)

Andreas Rietbrock (KIT)

Alessandro Spinuso (KNMI)

Sissy Themeli (NCSRD)

Xenofon Tsilimparis (GRNET)

Fabian Wolf (FRAUNHOFER)

Reviewers Andreas Rietbrock (KIT)

Vangelis Karkaletsis (NCSRD)

Document description Development of the DARE architecture since D2.1 and innovation
planning to address the requirements of DARE user communities
and to enhance sustainability.

Document Revision History

Version Date Change made Contributor

1 10/12/2019 Initial draft Malcolm Atkinson (UEDIN)

2 13/12/2019 Start of Section 3 Alessandro Spinuso (KNMI)

3 16/12/2019 Section 3.3 Rosa Filgueira (UEDIN)

ID2.2-M25 Public release 2

DARE-777413

4 16/12/2019 Section 2 Malcolm Atkinson (UEDIN)

5 19/12/2019 Start of Section 3.1 Federica Magnoni (INGV)

6 20/12/2019 Start of Section 3.2 Christian Pagé (CERFACS)

7 20/12/2019 Section 3.1 Federica Magnoni (INGV)

8 23/12/2019 Section 3.2 Christian Pagé (CERFACS)

9 02/01/2020 First draft Section 4.1 Sissy Themeli (NCSRD)

10 06/01/2020 Editorial review of Section 4 Malcolm Atkinson (UEDIN)

11 07/01/2020 Additions to Section 4.1.4 Rosa Filgueira (UEDIN)

12 07/01/2020 Started Section 4.2 Malcolm Atkinson (UEDIN)

13 08/01/2020 Section 5.2 André Gemünd (Fraunhofer)

14 09/01/2020 Comments in Section 3.1 Mike Lindner (KIT)

15 14/01/2020 Included in 4.2.4 Data
Semantics Catalogue from F.
Wolf (FRAUNHOFER)

 Malcolm Atkinson (UEDIN)

16 17/01/2020 Section 4.2.4 Registry Amélie Levray (UEDIN)

17 17/01/2020 Comments in Section 4.2.4 Alessandro Spinuso (KNMI)

18 27/01 to
07/02/2020

Extensive revisions responding
to reviewers and Toulouse
discussions

 Malcolm Atkinson (UEDIN)

19 28/01/2020 Section 4.3 - P4 Tools Alessandro Spinuso (KNMI)

20 10-14/02/2020 Polishing and consistency
checking for consideration by
DARE plenary 17/02/2020

Malcolm Atkinson (UEDIN)

21 17-24/02/2020 Adopting suggested corrections. Malcolm Atkinson (UEDIN)

ID2.2-M25 Public release 3

DARE-777413

Executive Summary
DARE is an ambitious project that aims to provide novel approaches for creating and using
data-powered methods at the frontiers of today’s research and innovation. DARE’s central goal
is to support research developers – domain-expert software developers – to transparently make
use of European e-infrastructures, research infrastructures and other platforms and software in
order to create data- and computationally-intensive applications for their domains. DARE aims
to achieve these goals by providing much needed technology and methodology aligned with
EOSC developments.

This internal deliverable presents the progress since D2.1 and the new understanding of what is
required from the DARE architecture, driven by the interplay of user requirements and
technological opportunities. These are constrained and enhanced to yield future utility,
extensibility and sustainability. New requirements for users to directly create and control
complex computational and data challenges are pushing DARE to extend its integration,
automation and optimisation. The initial plans for these are presented. They lead to a strategy
for sustainability.

ID2.2-M25 Public release 4

DARE-777413

Table of Contents

Executive Summary 4

1. Introduction 7

2. Architecture overview 9

3. Use of the Architecture 14
3.1 Use by seismologists 15
3.2 Use by climate-impact modellers 20
3.3 Use for development 24
3.4 Summary and conclusions 28

4. Architecture Implementation 29
4.1 Workflows as a Service (WaaS) 31

4.1.1 Concepts 31
4.1.2 User Instructions 31
4.1.3 Workflow Execution 32
4.1.4 Future Work - Optimisations 32

4.2 The DARE Knowledge Base (DKB) 33
4.2.1 DKB requirements 34
4.2.2 DKB roles 35
4.2.3 DKB contents, structure and functions 39

Entry specifications 40
Persistent Identifiers (PIDs) 41
Context specifications 42
Conceptual library specifications 44

4.2.4 DKB contemporaries 49
Data Catalogue 49
Registry 51
Relationship with P4 52

4.2.5 DKB R&D planning 52
4.3 The P4, tools and interaction interfaces 53
4.4 Analysis, Conclusions & Summary 56

5 Future and Sustainability 58
5.1 User communities and engagement 59

5.1.1 Market Sectors 60
5.1.2 Identifying self-contained DARE outcomes that are exploitable, 60
5.1.3 Distribution plans 61

5.2 Individual and Combined services 63

ID2.2-M25 Public release 5

DARE-777413

Authentication and Authorisation 64

6 Summary, Vision and Impact 66

Acknowledgements 67

References 67

Appendix 1 Abbreviations and Definitions 71

Appendix 2: Summary of DKB functionality 73
A2.1 Entry 74
A2.2 Context 75
A2.3 Concept 78
A2.4 Concept library 84

Method foundations 85
Data handling 88
Collection handling 90
Sundry Concepts 93
Built in types as Concepts 94

A2.5 Coexisting information subsystems 95
A2.6 Planning DKB development 96

ID2.2-M25 Public release 6

DARE-777413

1. Introduction
The DARE architecture has to pursue two goals:

1. Shape the DARE platform and its future versions to meet emerging and anticipated
requirements and thereby improve user communities’ research work, and

2. Identify frameworks and strategies that will be extensively used to improve return on
investment and sustainability.

This requires a practical balance between delivering the required capabilities to the two DARE
user communities and a longer-term vision. The architecture described in D2.1 [Atkinson ​et al.
2018] shaped the first platform release [Klampanos ​et al.​ 2019]. The overall structure
interlinking three major subsystems, as shown in Figure 1.1 has proved successful and has
been retained.

Figure 1.1: ​The three principal subsystems forming the DARE platform.

However, each technological pillar has been further developed, as outlined here and as
reported in more detail in Section (​§​) 4.

1. A lightweight integration of the DARE Knowledge Base (​DKB​) [Atkinson & Levray 2019]
makes it more easily used by the other subsystems and as a standalone service. It
enables incremental introduction into established research environments and provides a
foundation for increased abstraction, automation and stability co-existing with innovation.
It will provide an API and a Python library to enable developers and methods to use it
directly. It has two novel features: (a) research Contexts to manage scope within its
information space, and (b) a Conceptual library to accelerate productive use and help
with organising and interpreting the information. See §4.2 for more details.

2. The Workflows-as-a-Service (​WaaS​) has developed containerisation, orchestration and
dynamic deployment of dispel4py data-streaming workflows to meet demanding user
needs. It has include CWL formalised workflows as part of that work, and to extend the 1

range of methods facilitated. See §4.1 for details.
3. The provision and exploitation of provence via the Protected Pervasive Persistent

Provenance (​P4​) subsystem has extended its scope, configurability and visualisation, as
reported in [Spinuso ​et al.​ 2019]. It aims to deliver Reproducibility-as-a-Service (​RaaS​).

1 W3C Common Workflow Language ​https://www.commonwl.org/

ID2.2-M25 Public release 7

https://www.commonwl.org/

DARE-777413

The adoption of provenance by scientists is being incentivised by more powerful
provenance-driven tools. See §4.3 for details.

The combined and released platform is supporting challenging data-intensive and
computationally demanding scientific methods and making them easy to deploy and use. For
example, the seismic rapid assessment calculation and comparison of ground motion - see
§3.1. The developments planned are motivated by the next stages of the seismological research
and of computational integration for climate-impact modelling. These will then be generalised to
accommodate additional communities.

The current implementation and plans for further developing it are presented in §4.4. The WaaS
will be extended to handle more workflow/scripting languages and to employ optimisation when
mapping dispel4py workflows onto production platforms, to improve scalability. The DKB
functionality will be introduced to provide an extensible and flexible information sharing facility
that should prove easy to use and thereby aid self sufficiency. The provenance handling
provided by P4 will extend its collection capacity, support more complex queries against the
stored usage history, and introduce additional provence-powered tools. This will incentivise
increased adoption of provenance by application communities, a long-term step towards
reproducibility and minable records of scientific procedures and progress. Offering convenient
WaaS and good provenance-driven tools is a critical step in achieving reproducible science and
accessible foundations for the evidence used in making major decisions.

Sustainability is now a key issue. The current progress and plans are presented in §5.
Sustainability depends on establishing value and having that value recognised and on recruiting
sufficient support to meet the costs of support. These should be minimised by careful
engineering and by progressively empowering user communities to be self-sufficient by
reducing the hurdles encountered and by simplifying, automating and eliminating tasks.

Section 6 draws together all these issues and proposes a way forward that continues to extend
the DARE platform’s capabilities, while improving self-sufficiency and sustainability. The
sustainability strategy presented there (and in §5) is well aligned with the sustainability plans
recently reported to the EC project officer.

A substantially revised version of this document will be published as a final deliverable in
December 2020. Work related to this document will be ongoing throughout 2020 (see §6).
Several publications developing aspects of its contents are anticipated. Consequently, we would
very much appreciate criticisms, observations or advice pertinent to this work. Please email:
Malcolm.Atkinson@ed.ac.uk​ or ​iaklampanos@iit.demokritos.gr​ and we will respond, take
account of suggestions and acknowledge contributions.

ID2.2-M25 Public release 8

mailto:Malcolm.Atkinson@ed.ac.uk
mailto:iaklampanos@iit.demokritos.gr

DARE-777413

2. Architecture overview
The DARE architecture should shape a framework that facilitates ambitious research
undertaken by distributed, loosely federated multi-disciplinary communities typified by the
solid-Earth and climate communities DARE works with. This imposes several requirements and
constraints.

1. The work of developers and specialists should retain its value as digital technology
evolves. This requires their work should be expressed precisely and abstractly so that it
can be mapped (as far as possible automatically) to new digital infrastructures. This
should accelerate advances as new power becomes available while minimising
disruption and loss of methods and established practices. As reported in §3 and §4,
DARE has already made significant progress towards this goal. Meeting it also facilitates
deploying the DARE platform on a diversity of institutional computing services.

2. Multiple expert viewpoints co-exist, as illustrated in Figure 2.1. Their collaboration should
be facilitated, e.g., between:

a. Application ​domain experts​ who set goals, pioneer new research methods and
organise teams, resources and campaigns.

b. Research developers​ who draw on RSE products (see below), compose,
package, steer and revise those elements to deliver tested contributions to their
application’s goals.

c. Research Software/Systems Engineers (RSEs)​ who have specialist knowledge in
some aspects of computer science, distributed systems engineering, simulation
systems, data analytics, etc. They draw on theoretical and practical advances
and develop subsystems, libraries, simulation codes, etc. for use by multiple
application communities.

d. Resource providers​ who establish and sustain computation, storage, information
and other resources as services on which research communities depend.

3. The architecture has to be implementable, sustainable and affordable while meeting
today’s goals as rapidly as possible. At the same time, it has to deliver a good foundation
on which to build support for future research goals exploiting emerging and specialised
technologies. Keeping these immediate and longer-term considerations in balance is an
architectural duty with a concomitant obligation to communicate with and gain buy-in
from all of the stakeholders.

ID2.2-M25 Public release 9

DARE-777413

Figure 2.1: ​Diverse roles are shown on the x axis. They may have inherently different viewpoints
which change as their activities move in the other two dimensions. Research success depends
on effective collaboration between these viewpoints while avoiding being slowed by attempting
bring everything into a rigid consistent framework.

The architecture therefore has to lead from the current implementation (§4) towards a
composition of the following goals that matches the stakeholders’ priorities.

1. Delivering power and control to each user community​. Ideally, they should be able to
immediately implement and use new methods exploiting all of the available
computational power and the full richness of available data to address their most
demanding and complex research challenges.

2. Reducing the application communities’ dependence on IT specialists​. A synergy
between computational experts and domain experts will always be necessary to push
some of the frontiers of research or to polish the optimisation of an intensively used
method. However, most of the needed innovation will be achievable by the application
communities themselves.

a. Depending on others requires investment in explaining what is wanted and
introduces delays and sometimes leads to divergence.

b. It means that an application community takes longer to spot new opportunities.
3. Achieving affordable long-term sustainability​. Ultimately, all software on which the

application communities have to depend has to be maintained and supported . As far as 2

possible, the DARE platform should be built using standard components that are widely
used and therefore their maintenance is amortised over an extensive community . The 3

remaining software which tailors and integrates existing software and services has to be

2 Maintenance is approximately 90% of lifetime software costs. Open source doesn’t remove this cost, it
redistributes it.
3 E.g., all environmental science R&D, a global alliance, all geo-spatial R&D, all data-intensive or
computationally challenging R&D.

ID2.2-M25 Public release 10

DARE-777413

engineered with maintenance in mind . This is equivalent to considering the operational 4

and maintenance costs for a building. In the end, each application community has to
meet its share of these costs, either by finding the resources, expert staff time or funds,
or by persuading its funders to top-slice budgets to meet these common requirements.

Significant progress towards the first goal has been made in DARE, see §3 and [Atkinson ​et al.
2019, Klampanos ​et al.​ 2019, Pagé ​et al.​ 2019a, Spinuso ​et al.​ 2019 & Magnoni ​et al.​ 2019a].

Figure 2.2 shows the ideal state when this goal is reached. Application teams incrementally
build and test complex methods. When these are judged ready by the application experts
themselves, they can move their work to production. There it can be repeatedly used, on
specified targets, with steering of diagnostics, provenance collection, data handling and
parameter revision when the practitioners wish. Otherwise these default to community agreed
standards. When improvements are identified the application team can implement them and
deploy the improved version. Work is still required to generically support this goal and to fully
automate and optimise production. This includes tools to make this easier for application teams
and to reduce the need to master technical detail. Both of which will help with system mobility
and address the users’ requirement to be able to instal and run DARE on their local, community
or national computational services.

4 The Software Sustainability Institute, ​https://www.software.ac.uk/​, develops and promotes the required
standards.

ID2.2-M25 Public release 11

https://www.software.ac.uk/

DARE-777413

Figure 2.2: ​Fluent path from an application group’s development of a method to production (see
3.3 for details). The method (in this case for computational seismologists performing rapid
assessment of ground motion) is developed and repeatedly refined and tested by the
application experts. When they judge it ready it is moved to production automatically on the
specified or automatically chosen target computing, data and network services.

The current intense interaction with specialist computer scientists, distributed systems
engineers, data scientists and data architects is highly beneficial and leading to rapid progress.
However, it depends on research-project funding . That level of research funding designed to 5

stimulate innovation cannot be indefinitely sustained or spread to much wider communities
undertaking application domain long-running campaigns and application-led R&D. For these
reasons, and for the reasons given above, it is essential to arrange that the ​majority​ of this work
can proceed effectively and efficiently without sustained specialist input. The need for specialist
input at places where significant innovation is needed will always reappear.

Achieving application-domain control and self-sufficiency depends on three interrelated goals:

5 A succession of eInfrastructure and big-data projects that have built the capabilities and skills we draw
on; they were invaluable and much appreciated.

ID2.2-M25 Public release 12

DARE-777413

1. Improving automation​ so that there are fewer administrative tasks and less need for
users to provide information that could be supplied. This reduces the rate of failures
during development, learning and production.

2. Raising the level of abstraction​ so that their work is mainly achieved using stable and
implementation-independent concepts, terms and data - less to learn and fewer
requirements to re-learn.

3. Intellectual ramps​ facilitating the acquisition of new skills incrementally, without having to
climb over substantial thresholds before you can start to benefit from a new skill.

These improvements need to be delivered for each role in a community’s team; but, in DARE,
we focus on those for ​application specialists​ and ​application developers​. However, if we meet
the requirement to deploy instances of the DARE platform on institutional facilities, then the
systems administrators​ who install and support those instances will also need consideration.
These aspects of the DARE architecture increase in importance as the basic functionality is
delivered. Progress and plans may be found in §3 and §4 respectively.

Sustainability is critical for two reasons.

1. Without it we are ​behaving unethically​, by leading application communities to depend on
a research environment that may disappear, leaving them a difficult recovery path finding
replacements and reformulating their methods and working practices.

2. Without it the ​return on investment​ is lost; the funds put in by our funders, ultimately
European tax payers, and the effort put in by many researchers, developers and
engineers will yield very little.

Sustainability is hard to assess. It can only be measured in retrospect. It depends on the
balance between the cost of sustaining facilities (maintenance and support) and the available
resources. The later depends on two factors:

1. The importance they attach to it, which depends on the quality and power of the system,
and

2. The breadth and scale of the user community.

DARE seeks to minimise costs by building on widely used software components. The Python
and notebook technologies used are very widely adopted and supported , for example. And by 6

adopting professional software and systems engineering practices; e.g., those recommended by
SSI (§4). The development of take up is covered in §5.

6 Notebooks are particularly useful in combining documentation with functionality. They still need to be
used carefully, i.e., avoiding distracting detail that reduces learning success, mobility and longevity.

ID2.2-M25 Public release 13

DARE-777413

3. Use of the Architecture
Architectural components such as WaaS and aspects of P4 have been integrated within the
platform, further extend and used by the communities’ workflows. However, aspects of the
DARE API exposing the WaaS to research developers require to be smoothed out, in order to
improve usability, stability/portability and performance. These concern the management of input
and output files, authentication and adoption within more interactive environments, such as
Notebooks.

For what concerns the provenance information, the communities represented by WP6 and WP7
need to take ownership of the provenance traces, by deciding the granularity and the metadata
to be recorded during the execution of their experiments. The framework allows for configuration
and detailed extraction of customised information. This should be better exploited to gain
effective benefits in terms of results management, discovery of relevant past runs and
reproducibility of the experiments.

DARE supports the execution of different workflow technologies (dispel4py and CWL). While
dispel4py can be explicitly implemented and configured by the user, CWL is used as a backend
engineering solution to organise and execute macro tasks. Thus, research-developers are not
directly exposed to CWL. For instance CWL is used to organise and execute SPECFEM
seismic simulation workflows by a dedicated method exposed via the DARE API. The two
systems, however, present different approaches to provenance generation and description. We
are working on homogenising the representation and management of the provenance data,
which will require substantial effort in the interpretation and conversion of the formats, trying to
achieve better interoperability and usability of the provenance traces produced. To be noted that
while S-PROV extends the ProvONE ontology , CWL follows a different choice, by adopting a 7

different workflow ontology WFPROV . We have pursued an initial technical mapping that would 8

facilitate the re-use of the storage and query API offered by s-ProvFlow.

Other aspects which are relevant to an effective use of the DARE conceptual design and
architecture is the management of user’s identities and how these are handled across all of the
DARE components and microservices.

Both communities of seismologists and climate scientists benefit from the adoption of remote
development environments based on executable notebooks (Jupyter, Jupyter Lab) [Rule, 9

Adam, ​et al.​ 2018] . Notebooks became familiar among computational scientists because they
facilitate the generation and sharing of documentation of methods, source-code and results in a
single de-facto standard format. The successful support of such tools requires us to introduce in

7 ​ProvONE Data Model.​ ​https://purl.dataone.org/provone-v1-dev
8 Wfprov Ontology, ​https://wf4ever.github.io/ro/2016-01-28/wfprov/
9 ​https://jupyter.org/

ID2.2-M25 Public release 14

https://purl.dataone.org/provone-v1-dev
https://purl.dataone.org/provone-v1-dev
https://wf4ever.github.io/ro/2016-01-28/wfprov/
https://jupyter.org/

DARE-777413

the DARE API a set of utilities that allows users to develop, execute and evaluate the results of
a workflow within the same notebook page.

The adoption of advanced and interactive development environments, such as notebooks, in
contexts where reproducibility is a priority, opens challenges concerning the correct use of such
tools and the realisation of mechanisms that facilitate consistent provenance acquisition and
interpretation. This has to capture changes to computational environments, such as software
stacks, configurations and resources. The latter including new algorithms, as well as data.
Concepts concerning system and application domain that are described in the DKB need to be
combined to represent setup and exploitation of the computational spaces in a way that
guarantees the consistent interpretation of the various entities involved in the long term.
Although enactment technologies might change over time, the provenance records should
guarantee that researchers are able to locate and understand failures during attempts to
reproduce a certain result or re-apply a method. DARE in cooperation with the ENVRIFair
project is addressing these challenges. We will discuss these efforts further in section 4.3. 10

3.1 Use by seismologists
Collaborative work of domain specific scientists, data architects and developers produced
significant advances in the design and implementation of the EPOS seismological use case with
its foreseen test cases [Rietbrock ​et al. 2018]. Following the requirements detailed in
Deliverable D2.1 §7.1 [Atkinson ​et al. 2018] and exploiting the main components described
there, we started focusing on the ground motion Rapid Assessment (RA) test case. The aim
was to structure a workflow that could help researchers to ease and speed-up the calculation of
seismic ground motion parameters (such as the peak ground acceleration (pga), peak ground
velocity (pgv) or peak ground displacement (pgd)), especially after large earthquakes,
generating specified outputs useful both scientifically and for communication with public and
emergency authorities. We used the RA test case as a typical example of our working methods
to steer the DARE platform development and build an easy-to-use, customisable framework
made of reusable, abstract and flexible components that can serve multiple purposes and
extend beyond the immediate EPOS seismological community.

The RA workflow has been designed with modular high-level steps that are represented in
Figure 3.1 and described in Deliverables D6.1 [Rietbrock ​et al. 2018] and D6.3 [Magnoni ​et al.
2019b].

10 ENVRIfair EU project ​https://envri.eu/

ID2.2-M25 Public release 15

https://envri.eu/

DARE-777413

Figure 3.1: ​The Rapid Assessment (RA) workflow​. Green dots are the steps in common and
reusable with MT3D test case (Fig. 3.2).

The implementation and execution of RA has been made possible by the development of the
DARE API components forming the first and second releases of the DARE platform (Milestones
MS6 & MS21). In particular, fundamental components meeting this aim are (see §4):

● The ​Execution API to enable distributed and scalable execution of numerical codes and
dispel4py workflows;

● The ​dispel4py Registry (or Processing Elements Library) to provide a workspace
structure for registering workflow entities (as processing elements) supporting reusability
and sharing;

● The ​Provenance components sProv and sProv-viewer to record metadata and
provenance and offer visualisation functionalities.

Exploitation of DARE API components to execute workflows is realised through the
development environment of a Jupyter Notebook as detailed in §3.3. Specifically, for the RA test
case the notebook allows users to access the API functionalities to:

● Register new dispel4py workflows;
● Upload required input files (as user customised input models, see Fig. 3.1) or download

useful output;
● Launch numerical simulations, specifically with the code SPECFEM3D_Cartesian (Fig.

3.1), with a simple API call that executes on the DARE cluster a dockerized version of
the code containing all the required dependencies:
F.submit_specfem(n_nodes,data_url=[zip_input_file], token=F.auth(), creds=creds)​ ​;

● Execute dispel4py workflows, as those describing the other steps of RA (Fig. 3.1),
through other specific API calls that allow users to specify particular requirements (see
§3.3 for more details):
F.submit_d4p(impl_id=impl_id,pckg=[wp_name],workspace_id=workspace_id,pe_name=[pe_nam
e],token=F.auth(),creds=creds,n_nodes,n_processes,iterations,reqs=[requirements],target=[d4p_
model], inputdata=[input_files])

A refinement phase followed the initial implementation of the RA test case in order to remove
obsolete intermediate, fine-grain steps that produced input files for main steps or that
post-processed outputs from previous main steps. This results in an even more modular

ID2.2-M25 Public release 16

DARE-777413

workflow constituted by proper, self-contained dispel4py sub-workflows that perform specific
tasks and can be executed, parallelised at scale, by themselves (if the required input files are
already available) or in a pipeline. Thus, they can be easily reused for other workflows or can be
customised or updated in the future without the need of modifying the whole procedure.

The next EPOS test case taken into account during the second DARE phase focuses on the
analysis of the parameters that characterise the earthquake source and uncertainties of these
parameters to be able to calculate numerically partial derivatives of the model parameters. For
the present application, the seismic source is approximated as a point source and the studied
parameters are the earthquake location, magnitude and rupture mechanism represented by the
moment tensor, hence up to 9 free parameters (see D2.1 [Atkinson ​et al. 2018] and [Aki &
Richards 1980]). The final goal is to improve an initial model of the earthquake source by
calculating the perturbations to its parameters that minimise the misfit between simulated and
recorded waveforms, a typical inverse problem, and estimating the uncertainties attributed to
the new solution. The workflow structure is represented in Fig. 3.2 and the main steps are:

● Choose an initial model of the earthquake source and a three-dimensional (3D) model to
represent the Earth structure;

● Simulate the synthetic waveforms for the chosen models using a starting model at initial
three-dimensional source location;

● Perturb the source parameters of the initial model and simulate the related synthetic
waveforms (called ‘derivative synthetics’);

● Download the available recorded waveforms (e.g. from EIDA archive) for the chosen
event;

● Pre-process all the synthetics (initial and derivative) and the data in the same way;
● Compare data and initial synthetics on time windows suitable for the inversion;
● Calculate improved source parameters and uncertainties based on a source inversion

procedure.
Since this application specifically considers a 3D model to represent the Earth structure and
invert for moment tensor solutions, we named it ​Moment Tensor in 3D​ (MT3D).

ID2.2-M25 Public release 17

DARE-777413

Figure 3.2: ​The Moment Tensor in 3D (MT3D) workflow​. It calculates improved seismic source
parameters by minimising the misfit between recorded and simulated waveforms. Red dots are
steps in common with RA test case (Fig. 3.1)

To implement and execute the MT3D workflow in the DARE platform we benefit from the
common steps with RA (see the red dots in Fig. 3.2) already implemented as described above
and easily reusable. A new important step is then the simulation of the synthetics for perturbed
source parameters. The basic simulation with SPECFEM3D is the same as RA but now multiple
simulations with different input files should be managed. Moreover, related metadata and
provenance information should be carefully handled in order to combine these simulated
derivative synthetics in the following steps of the procedure. This will also enable reusability for
future seismic events with a similar starting solution thereby progressively and significantly
reducing computation time and costs as the system will have stored more and more
well-described fundamental solutions over time. Finally, our plan is to perform the other two new
steps by using well-established Python codes already cited in D2.1 [Atkinson ​et al. 2018] as
needed seismological components: pyflex for the selection of the time windows suitable for 11

waveform comparison and inversion, and pycmt3d for seismic source inversion in a 12

three-dimensional Earth structure.

Regarding these new steps, DARE architectural and technical task forces will decide:

● whether multiple SPECFEM3D simulations should be managed by launching multiple
dockers or a single docker running multiple simulations; and

● whether the new python codes (pyflex and pycmt3d) should be implemented as dockers
or as dispel4py workflows. Future update/substitution of these codes will be necessary
as the science advances. It is essential that such upgrades should be straightforward.

11 Pyflex, L. Krisher; ​http://krischer.github.io/pyflex

12 pycmt3d, ​https://github.com/wjlei1990/pycmt3d

ID2.2-M25 Public release 18

http://krischer.github.io/pyflex
https://github.com/wjlei1990/pycmt3d

DARE-777413

The simplicity of future upgrades must be taken into account when making
implementation decisions . 13

The development and implementation of the MT3D test case is facilitated by the recent creation
of a playground framework, as described in §3.3. It allows users to directly test and debug their
workflows by launching ‘debug API calls’ in the Notebook getting inline output and logs. Further
exploitation of the Jupyter Notebook framework could become fundamental if used as an
environment where processing elements can be directly developed, registered and executed.

In general, from the point of view of both research developers and domain experts we can
highlight some significant advantages of exploiting the DARE platform for the EPOS use case
but also for more general scientific applications:

● Exploiting the Cloud for execution, this means elasticity in acquiring and using resources
and also possible on-demand computing and storage resources.

● Transparent set up and execution of runs without the need to deal with environment
specificity and details of code/scripts execution. Here a single call is used to do all the
required steps to prepare the environment and run a SPECFEM3D simulation.

● Exploiting Research Infrastructure (RI) services by including them in the whole workflow
procedure, so taking care of the required input, query parameters and gathered output.
Here a simple call allows users to query FDSN web services of European archives to
download recorded waveforms.

● Rapid and transparent data analyses and transfer between co-working environments.
● Automatic description and storage of complete lineage and multiple metadata that allow

us to track runs and data through the whole workflow, to easily search and reuse them
and to also combine numerous outputs from multiple workflows that are in widespread
use in many scientific applications.

● High-level description of workflow steps that are as abstract as possible to increase the
flexibility in reusing them to assemble different workflows.

● Existence of managed knowledge-bases (e.g. the PE registry) that allows users to easily
exchange information about what they deployed and executed.

● Workflow structure and provenance information that can be customised.

The incremental advances in the platform components and structure will favour the
development of more complex test cases that could interest other communities, beyond the
EPOS seismologists, who are looking for a powerful and easy-to-use framework to develop their
applications. An example is the proposed Ensemble Simulation analyses [Rietbrock ​et al. 2018]
that statistically characterises ground motion parameters and their uncertainties. To do this it
analyses ensembles of models representing the variability of the input parameters. Thus, it
combines multiple executions of a seismic source analysis test case using e.g. MT3D (requiring
multiple numerical simulations). The results are used to explore the variability and uncertainty of

13 This simplicity requirement, “​it remains easy to install and use new versions of application-domain
software and services now and after the project ends​”, applies in virtually every aspect of applications
development and platform use. ​It is a critical aspect of sustainability.​ WP6 are exposing it first.

ID2.2-M25 Public release 19

DARE-777413

the ground motion parameters, requiring in turn multiple executions of the RA test case.
Keeping track of the runs and output to reuse and combine them in ensemble statistics and to
spot procedure errors become even more essential.

At the end of the first reporting period a training event has been organised in order to present
the execution of the RA workflow running on the first release of the DARE platform (D6.3,
[Magnoni ​et al. 2019b], and D8.4, [Casarotti ​et al. 2019]). The main advantages of using the
platform have been successfully caught by the trainees, while useful suggestions have been
gathered on lacking or perfectible aspects of the pilot implementation and platform
development.

Based on this and on the planned work for the remaining of the project, main requirements from
the seismological pilot point of view are:

- Ease the handling of a large number of simulations or analyses with slightly different
input by counting on smart, abstract and customisable management of metadata and
lineage;

- Improve control on workflow execution, error tracking, input and output management;
- Minimise the need of expert developers’ help by simplifying and documenting the

creation of new dispel4py workflows to favour work independence of research scientists;
- Allow for easy deployment of the DARE platform into external (e.g. institutional)

resources to facilitate user access to large computational facilities that will help scaling
up the procedures and foster operative seismological applications.

- Provide documentation and training that accelerates the uptake of DARE enabled
methods.

3.2 Use by climate-impact modellers
Exciting developments have taken place towards the implementation of a generic workflow tool
to access and process climate data, aimed at the climate change impact modelling research
communities’ users. The tool supports climate platform developers to provide on-demand data
processing for users using heterogeneous computational platforms, through the deployment of
the DARE Platform. One of the major objectives is to provide transparent access to on-demand
data processing using easy to use front-end for end users, through interaction with tailored
front-ends, such as that provided by climate4impact.eu (Figure 3.3)

ID2.2-M25 Public release 20

DARE-777413

Figure 3.3: climate4impact.eu Platform front-end, providing guidance and on-demand data
processing.

The design of the first and second prototypes are taking into account user requirements that
have been gathered. Those are described in details in Deliverable 7.1. To complement this
approach, User Stories (described in Deliverable 3.1) have been used to provide information on
how to properly design components’ developments and related architecture. The second
prototype of this generic climate data analysis workflow tool, which has been implemented in
October 2019, is shown in Figure 3.4.

ID2.2-M25 Public release 21

DARE-777413

Figure 3.4: Generic climate data analysis workflow second prototype. Implemented in October
2019.

This second prototype has been evaluated during the first training that took place on June 21st,
2019 in Utrecht, Netherlands. The developers who participated in this evaluation have shown a
very significant interest in this generic workflow approach, notably by requesting access to the
DARE Platform API as soon as possible to test it and to begin developing user services using it.
The results of this evaluation is detailed in Deliverable 7.3.

The approach here for this generic workflow is to provide software developers using a platform
such as C4I a faster way to develop and provide on-demand data processing for users. The
goal with those platforms are not to provide an operational climate services like the one
provided by Copernicus C3S. It is rather aimed at researchers in other scientific domains than
climate, as well as at researchers doing impact modelling. Those users, with such a generic
workflow approach, will be able to provide their own processing functions (as Python functions
added to the icclim open source software), as well as to be able to use their own 14

OpenDAP-accessible datasets or use non-standard MIPs from CMIP5 and CMIP6 experiments.

This approach requires an extensive metadata data description, as well as extensive lineage
information. This is because when data processing is automated and delegated, metadata
standards are necessary to be able to correctly process datasets. Furthermore, it is important

14 ​https://github.com/cerfacs-globc/icclim

ID2.2-M25 Public release 22

https://github.com/cerfacs-globc/icclim

DARE-777413

for users to know how to reproduce the calculations as well as to know exactly which methods
and software were used.

During the mid-term review of the DARE project the idea of designing a new climate-related use
case more in line with the seismological use cases emerged. This should attract users as it
would offer significantly different tools from those offered in other platforms such as the
Copernicus C3S Service . We considered the possibility of running climate impact models, but 15

these proved to be too specific and too complex to achieve given the effort available within
WP7. We therefore decided to develop a new use case centered on a method/tool that can
track extra-tropical as well as tropical cyclones in climate simulations. This use case is called 16

the cyclone-tracking climate use case. Currently, no front-end or online platform offers
researchers the opportunity to run on-demand extra-tropical cyclone tracking on climate
simulations selected by users. The idea is to provide researchers and users of climate data the
possibility to have access to this advanced tool and to provide them with the possibility to
generate end-products on-the-fly, such as tracks’ density plots, such as shown in Figure 3.5.
Given the framework of the DARE Platform the workflow will be developed by composing the
following steps:

1. Selection of input file(s) by the user
2. Start of the execution initiated by the user using the C4I front-end
3. The WPS will prepare input parameters using interface user input
4. WPS will upload of the tracking algorithm configuration file using the DARE API
5. WPS will initiate the execution of the algorithm using the DARE API
6. The pre-processing of the input file(s) will take place on the DARE Platform
7. Download of the input file(s) by the DARE Platform
8. Execution of the tracking algorithm (binary executable) on the input file(s)
9. Post-processing of the output files
10. Generation of end-products (tracking density map)
11. Upload of end-products and raw output files to B2DROP
12. Notify user and retrieve files onto the C4I front-end user space

The crucial benefit of DARE is that this can then be easily transferred to a sufficient range of
target eInfrastructures, that the resources for the users using this new facility can be sustained.

15 Copernicus Climate Change Service ​https://climate.copernicus.eu/
16 ​https://github.com/cerfacs-globc/cyclone_tracking

ID2.2-M25 Public release 23

https://climate.copernicus.eu/
https://github.com/cerfacs-globc/cyclone_tracking

DARE-777413

Figure 3.5: Tropical cyclone track density plots. From [Bell ​et al.​ 2013].

3.3 Use for development
There is a continuity between users and developers, in the sense that some application
specialists use DARE workflows developed by others, but still choose them, parameterise them
and want to make adjustments to them. Others focus on developing new research methods,
materialising them as software libraries, simulation and analysis tools and integrated workflows.
There is no boundary between them, rather a continuum. Indeed, individuals move in this
continuum as their research requires. Consequently, that continuum needs consistent support.

The new interfaces that we are building on DARE provide a fluent path from prototyping to
production. Applications are not locked to platforms but can be moved to suitable new platforms
without human intervention and with the encoded method’s semantics unchanged.

The complex development and debugging requirements encountered in the latest steps of
co-design and co-development with the seismologists have provoked refinement of this
development playground and will lead to requirements for self-sufficiency in conducting further
refinements and production use. The quality of this support is being tested by a member of the
KIT team using it for an unanticipated use case. He will develop, exploiting DARE’s framework,
a method for using a computational model of mass transport via ash and other ejecta from a
volcanic eruption. The target is to have this production ready to be used by staff and MSc
students in the summer of 2020 during a field course on Stromboli with its recent volcanic
activity.

ID2.2-M25 Public release 24

DARE-777413

The DARE platform acts as an intermediary between users’ applications and the underlying
computing resources, making use of technologies including:

● Container Orchestration -- Kubernetes
● Distributed Engineering -- MPI cluster
● Workflows’ technologies -- dispel4py, CWL, Registry, S-Prov

The DARe API (see Figure 3.​6​), allows users and developers to register dispel4py workflows
(applications) to the registry, such as the RA seismology use case from WP6. Once a workflow
has been registered, it can be submitted for an execution, and the DARE API will automatically
deploy all the necessary environment on demand. Furthermore, it also allows for monitoring the
execution status of a workflow in the platform.

Figure 3.​6​: ​The executions of a dispel4py workflow using the DARE API. This figure shows all
the underlying steps as well as the entities that are involved​.

We have selected Jupyter Notebooks to act as the interface between users and the DARE
working environment.

In order to facilitate the development and testing of dispel4py workflows, a docker container has
been made available to users, to allow them to develop workflows locally (on their laptops or
local hosts), which mimics the configuration of the DARE platform. The idea is that users and
developers can have a “DARE environment” locally, which has the same libraries, python
versions, and so on that the DARE platform has. In the case that a library is missing, or another
version for a particular library is required for implementing a use case, these could be installed
locally in the docker container, and later they need to be specified to the DARE API at the time
of submitting the workflow by using a requirement file, as shows the following API call:

ID2.2-M25 Public release 25

DARE-777413

F.submit_d4p(impl_id=impl_id, pckg="mysplitmerge_pckg", workspace_id=workspace_id,
pe_name="mySplitMerge",
reqs='https://gitlab.com/project-dare/dare-api/raw/master/examples/jupyter/requirements.txt',
token=F.auth(), creds=creds, n_nodes=6, no_processes=6, iterations=1)

Furthermore, a playground endpoint has been recently provided to users with more facilities for
debugging their applications and workflows inside the DARE platform. The playground
simulates a terminal allowing users to provide a command and see immediately the output
results, giving more direct control to users. Below, we show the previous example submitted in
a “debug” mode:

F.debug_d4p(impl_id=impl_id, pckg="mysplitmerge_pckg", workspace_id=workspace_id,
pe_name="mySplitMerge", token=F.auth(), creds=creds, no_processes=6, iterations=1,
reqs='https://gitlab.com/project-dare/dare-api/raw/master/examples/jupyter/requirements.txt')

The current methodology for users to develop new workflows is to use the local docker
container, and then later test them on the DARE platform using the “playground mode”. When
they are satisfied with their validation they submit them to the platform in the “normal” mode.

It is worth noting that the DARE API allow users not only to register and submit dispel4py
workflows (with or without additional requirements), but also to monitor and download the
results, files and log files associated with a workflow execution.

An example of how the DARE API can be used by users and developers can be found at the
following notebook:
https://gitlab.com/project-dare/dare-api/blob/master/examples/mySplitMerge/mySplitMerge%20workflow.i
pynb​, in which a “mySplitMerge” dispel4py workflow is registered, submitted, executed (with and
without additional requirements) debugged, and monitored using the DARE API.

Finally, we can find here the list of functions that can be used from the DARE API by a user or
developer:

Table 3.1: Functions currently provided via the DARE API.

DARE platform API function Description

login(username, password, hostname) Get dispel4py registry credentials by

logging in

create_folders(hostname, token) Create the working environment

get_auth_header(token) Return the authentication header

get_workspace(name, creds) Get a workspace URL by name

ID2.2-M25 Public release 26

https://gitlab.com/project-dare/dare-api/blob/master/examples/mySplitMerge/mySplitMerge%20workflow.ipynb
https://gitlab.com/project-dare/dare-api/blob/master/examples/mySplitMerge/mySplitMerge%20workflow.ipynb

DARE-777413

create_workspace(clone, name, desc,

creds)

Create a workspace using dispel4py

registry API

create_pe(desc, name, conn, pckg,

workspace, clone, peimpls, creds)

Create ProcessingElement / dispel4py

workflow using d4p registry API

create_peimpl(desc, code, parent_sig,

pckg, name, workspace, clone, creds)

Create ProcessingElement/ Workflow

Implementation using d4p registry API

auth(length=10) Generate user "access token" /

Simulate user login

submit_d4p(impl_id, pckg,

workspace_id, pe_name, n_nodes, token,

creds, reqs=None, **kw)

Spawn MPI cluster and run dispel4py

workflow

debug_d4p(impl_id, pckg,workspace_id,

pe_name, token, creds, reqs=None,

output_filename="output.txt", **kw)

Debug a dispel4py workflow in

“playground mode”

exec_command(hostname, token, command,

output_filename="output.txt")

Allows for running a command in

“playground mode”.

upload(token, path, local_path, creds) Upload data into a working environment

myfiles(token, creds) and

files_pretty_print(_json)

List the uploaded files......

download(path, creds, local_path) Downloads a file using exec-api

filesystem reference.

delete_workspace(name, creds) Deleted a workspace

submit_specfem(n_nodes, data_url,

token, creds)

Spawn an MPI cluster and run a specfem

workflow

my_pods(token, creds) Returns user created pod properties

(name and status)

send2drop(token, path, creds) Uploads a file from the exec-api

shared filesystem to the project-dare

b2drop account in order to get a

shareable link for a single file

pod_pretty_print(_json) Monitoring container status

monitor(creds): Monitor Monitor a dispel4py workflow run

ID2.2-M25 Public release 27

DARE-777413

3.4 Summary and conclusions
The current progress with both user communities has been significant, providing evidence of the
potential value of the DARE platform and approach. The seismic methods are developing in
complexity and computational demands with a prospect of wider use throughout EPOS and
beyond. The climate-impact modelling is beginning to take a similar path. However, issues are
emerging that need attention in the coming year.

1. The application developers retain too great dependence on expert help from DARE
specialists that will not be available after the end of DARE, e.g., in formulating their work
in dispel4py, in configuring the provenance collection and in making methods ready for
production use. The following should be considered:

a. Improved documentation, self-guided tutorials and training
b. Improved tools and automation
c. Direct use of method descriptions they already use, such as Python and Jupyter.

2. The computational and data management resources they have access to, e.g., provided
by institutional and regional services, cannot easily set up and run DARE platform
instances.

3. The PlayGround developments to support advanced developers and innovators are
proving their value already. They need further development, improving flexibility and
usability for those not already embedded in the DARE platform-development team.

All aspects of these emerging requirements influence the architecture implementation reported
in the next section, §4. A broader issue is their link with sustainability considered in §5.
Solutions must use minimal new software and build on widely used software and standards -
see §5.2. However, significant new software technology is developed by DARE. It will need to
be supported beyond DARE as part of DARE’s sustainability plan. That support will include
software maintenance and expert advice. Addressing the extension of user requirements as
summarised above will increase the potential user community thereby expanding the number of
organisations contributing to that support. For example, if more of the workflow systems used by
EPOS are accommodated, if their model of catalogues interworks with the DKB and if
provenance is collected and delivered to P4 tools (§4.3) from all relevant software, the
investment in support will come from the whole EPOS community.

ID2.2-M25 Public release 28

DARE-777413

4. Architecture Implementation
In this section we review the current DARE platform’s architecture, note the progress since D2.1
[Atkinson ​et al.​ 2018] and propose development paths to address the architectural goals in §2
and to meet the users’ requirements in §3. The current implementation is reported in
[Klampanos ​et al.​ 2019] and ​[Spinuso ​et al.​ 2019]. The key points are summarised here;
readers are referred to those papers for more detail.

As introduced with Figure 1.1 the DARE platform has three technological pillars:

1. Workflows-as-a-Service​ (​WaaS​) help communities develop and use formalisations of
their methods. For the supported scripting notations and workflow languages it enables
authoring, debugging, validation and optimised productive use of methods. It selects
appropriate targets for enactment, prepares them, e.g., by installing the required
container, updating its configuration and initiating processing on a network of
interconnected distributed processes. This is significantly more integrated and therefore
easier to use for all stages of method development than the system reported in D2.1 and
the accommodated formalisations now include CWL and Jupyter notebooks. Its technical
details and planned development are presented in §4.1.

2. DARE Knowledge Base ​(​DKB​), has three roles:
a. Human communication​, a place where practitioners in any role can leave any

information they wish for themselves or others.
b. Software communication​, a place where software can leave information for its

own or other systems’ future use.
c. Human-system communication​, a place where humans leave information for

software to use and where software leaves information for humans; this should
improve human-system relationships, improve understanding and enable
responsible control of quality of methods and results.

This was based on two independent catalogues: the Processing-Element (PE) registry
[Klampanos ​et al.​ 2015] for the components workflows are built from and the Data
Catalogue, as D2.1 reported. These have been developed further and used more
extensively in the current release of the platform. The current development brings these
into an integrating, flexible, extensible and incrementally adopted common framework -
see §4.2.

3. Protected Pervasive Persistent Provenance​ (​P4​) and the tools and interactions it
supports. This is intimately connected with the DKB, as it is a major repository of and
source of information about user and system behaviour. However, it warrants separate
identification because of the crucial role it has underpinning the quality of science and
evidence. By delivering ​reproducibility​ it has a stand-alone role that may be utilised by
some research communities. By supporting provenance-driven tools it significantly
improves understanding, addressing the second architectural goal in §2. It is possible to
mine information from the growing persistence repository, for example:

a. The costs and resources used for running processes and complete methods.

ID2.2-M25 Public release 29

DARE-777413

b. The frequency with which each category of data is used.
c. The bottle-necks and common pitfalls encountered when performing established

or required procedures.
d. The parts of data collections or model-parameter spaces that have been

explored; perhaps alerting researchers to critical omissions.
e. The errors users exploiting or authoring methods are making repeatedly; implying

that changes should be made to help those users.

These uses of the growing wealth of provenance data have great potential to improve the
science and the methods used pursuing that science. This potential is just becoming available,
but there are also more mundane steps needed. See §4.3 for details and future developments.

These subsystems are considered in more detail below. They need to maintain consistency with
each other as detailed in D2.1 §8.4 [Atkinson ​et al.​ 2018]. Their current implementation is
shown in Figure 4.1.

Figure 4.1: ​The structure and main components of the current DARE platform from [Klampanos

et al. 2019] §A.

ID2.2-M25 Public release 30

DARE-777413

4.1 Workflows as a Service (WaaS)
Workflows-as-a-Service extend the functionality of typical Workflow Management Systems
(WMS) to automate set up and management of the computing facilities the WMS needs for the
requested tasks. A WMS will support all of the phases of workflow development and the
repeated enactment of the resulting workflows. A WaaS identifies the needs of a requested
enactment and locates e-Infrastructure resources to meet those needs. It then prepares them
using software deployment, configuration, interconnection and orchestration mechanisms,
monitors the enactment, organises data movement and storage, and delivers results and
enactment records to the users [Filgueira ​et al.​ 2016, Rodriuez & Buyya 2018]. The DARE
WaaS fully supports the dispel4py WMS and is being extended to include other WMS.

4.1.1 Concepts
The DARE platform provides all the necessary tools to research developers for them to execute
various workflow development, deployment and production-use tasks. Research developers
write code in Python, utilising a workflow language library (dispel4py), which allows them to 17

define fine-grained workflows of arbitrary complexity. Conceptually, a workflow is a graph that
connects well-defined units of processing functionality - processing elements (​PE​s). More
information on dispel4py can be found in [Filgueira ​et al.​ 2017]. Each PE defines a process
Python method that should contain the code to be executed. An experiment is logically divided
into multiple PEs, connected by directional arcs in the aforementioned graph. Data units flow
along these arcs, from outputs on a source PE to inputs on one or more destination PEs; order
is preserved. This enables dispel4py to represent abstractly a number of parallelisation patterns.

The main concepts of dispel4py are managed via a dispel4py Information Registry (​Registry​) , 18

which is part of the DARE platform’s knowledge base (§4.2). The Registry is used in order to
efficiently store and retrieve workflows and enable workflow reusability. Users can create their
own workspaces and register the Processing Elements (PEs) that they intend to execute or
share. The Registry provides an API that enables creating, updating and deleting workspaces
and PEs. Before a workflow can be executed, it needs to be registered in the Registry.

4.1.2 User Instructions
In order to execute a workflow, users need first to create or reuse a workspace and inside it
register the necessary PEs in the Registry. PEs that are stored in the Registry can be reused in
future experiments/executions by providing the PE name. More information on how to use the
Registry API can be found in the respective GitLab repository . 19

17 ​https://gitlab.com/project-dare/dispel4py
18 ​https://zenodo.org/record/3361395#.Xg22gy2Q0Wo
19 ​https://gitlab.com/project-dare/d4py-registry

ID2.2-M25 Public release 31

https://gitlab.com/project-dare/dispel4py
https://zenodo.org/record/3361395#.Xg22gy2Q0Wo
https://gitlab.com/project-dare/d4py-registry

DARE-777413

The DARE platform provides a test environment, as mentioned in §3.3, in order to execute
workflows with immediate diagnostic information and direct control with the DARE platform’s
computational environment accurately emulated. This accelerates development and
substantially improves research developers' powers to investigate issues. The relevant
component (“​playground​”) provides two functionalities. Firstly, a user can simulate a workflow
execution and immediately check the logs and outputs of the execution. The second
functionality provides the environment to execute any command, simulating a terminal. More
details are available in the corresponding GitLab repository. 20

When the workflow is ready for execution, the user can execute it via the official API endpoint 21

of the DARE platform. While a workflow is being executed, the user can monitor the containers
that execute the workflow, through the API endpoint provided for that purpose. Users have 22

their own directory where the files are organised per execution (test and production executions
use different directories). The DARE platform through its API provides functions to list the
folders and files in those directories as well as to download any produced files (see Table 3.1).

4.1.3 Workflow Execution
The DARE platform provides workflow execution as a service via an easy to use RESTful API.
In order to use the provided services, the first step is to register the workflows in the Registry.
Subsequently, users can execute the workflows using the registered name. Users can configure
the execution parameters, for example the number of nodes required for the execution. Based
on the requested number of nodes, the DARE platform generates an appropriate number of MPI
containers to execute the requested workflow.

The DARE platform contains a Shared File System that the MPI containers can access to store
or read files. Each run is stored in a different directory. When a workflow requires additional
Python libraries, a virtual environment is generated inside the respective directory. After the
execution, all the output files are also collected in the run directory.

Through the platform, a user can obtain provenance information in order to track what
experiments have been executed, as well as to obtain the input and output data. The DARE
platform provides a user interface on top of the provenance API and storage, where the user
can view the executions and the data produced in the platform (§4.3).

4.1.4 Future Work - Optimisations
In the preceding sections, we have described the current state of the DARE platform. In the next
phase of the DARE project we will improve the use of the shared file system by separating the
executions of a user based on the respective experiments (see §4.2). Users should not need to

20 ​https://gitlab.com/project-dare/playground
21 ​https://testbed.project-dare.eu/exec-api/run-d4p
22 ​https://testbed.project-dare.eu/exec-api/​my-pods

ID2.2-M25 Public release 32

https://gitlab.com/project-dare/playground
https://testbed.project-dare.eu/exec-api/run-d4p
https://testbed.project-dare.eu/exec-api/run-d4p

DARE-777413

specify platform- or implementation-specific details, such as the number of processes to be
utilised. These matters will be investigated as part of the workflow-optimisation effort. They are
important for method portability and durability. They will also reduce the distractions of
underlying detail, initially for application-domain users and eventually for research developers
when they trust the automation. Additionally, we will investigate the possibility of exposing an
API endpoint for CWL workflow execution as well as plain Python or bash scripts.

Another aspect of our work on optimisations is to enable dynamic deployment of dispel4py
workflows. Currently, during enactment and prior to execution each PE is translated into one or
more PE instances (an executable copy of a PE with the input and output ports running in a
process as a node in the data-streaming graph), depending on the number of nodes to be
utilised, and once assigned a PE instance to a process, it can not be changed during the
execution. The main inconvenience of this static deployment, is that if a PE during its execution
needs to be mapped to more processes (e.g. the data-rate consumed/produced by a PE has
increased more than expected) or to fewer (e.g. a PE is just executed in few occasions)
processes, we can not do anything about it apart from manually intervening to stop the current
execution and re-assign the process to PEs either manually or by applying an assignment
algorithm based on previous executions. This is clearly costly in human effort and computational
resources compared with preemptive adaptation.

By enabling dynamic deployment and enactment of dispel4py workflows, PE instances will not
be locked to specific processes, scheduling PE instances on-the-fly, meaning that if a PE needs
more or less “resources”, it will dynamically up-scale or down-scale, rebalancing automatically
the graph, without stopping the workflow execution. To do so, we are planning to implement the
work-stealing scheduling strategy ​ [Frigo ​et al.​ 1998, ​Mattheis ​et al.​ 2012​]. A mechanism to 23

provide load balancing in case of dynamic workloads, which offers several benefits (e.g. data
locality, scalability) in terms of efficiency and usability. It has been employed in a number of
frameworks for parallel programming, e.g. as Intel Threading Building Blocks (Intel TBB) or 24

GrPPI [Dolz ​et al.​ 2018], and has found a variety of applications, from simple
divide-and-conquer algorithms to more complex stream processing applications [Anselemi &
Gaujal 2009, Navarro ​et al. ​2009]. This work will create a new dispel4py enactment mapping,
based on ZeroMQ message queue , which will implement a runtime work-stealing scheduler to 25

execute the different PEs respecting dependencies and balancing the parallel workload. The
concept of ​affinity​ will be exploited in this new mapping to ensure locality-aware scheduling.

4.2 The DARE Knowledge Base (DKB)
The DARE Knowledge Base (​DKB​) is an integration and packaging of the information
repositories that developers and application domain experts use. Its design, which is still

23 ​https://en.wikipedia.org/wiki/Work_stealing
24 Intel TBB
https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-intel-tbb
25 ZeroMQ ​https://zeromq.org/

ID2.2-M25 Public release 33

https://en.wikipedia.org/wiki/Work_stealing
https://software.intel.com/en-us/blogs/2018/08/16/the-work-isolation-functionality-in-intel-threading-building-blocks-intel-tbb
https://zeromq.org/

DARE-777413

evolving, is described in [Atkinson & Levray 2020]. There will be one instance of the DKB per
DARE platform deployment. The current developments can be found in the GitLab repository for
the DKB and in those for the other information sharing facilities, described in §4.2.4. The 26

current functionalities are summarised in Appendix 2.

4.2.1 DKB requirements
The DKB should deliver the following benefits compared with developing and using individual
information-sharing subsystems directly:

1. Easier for application-focused users to extend and use​ - they should be able to directly
create, change and use their shared information to help them organise their production,
collaboration and innovation work.

2. Provide incremental support for adoption​ so that current developed practices, catalogues
and information-sharing frameworks can sustainably co-exist with DKB use . Users and 27

developers will decide when they use existing information services directly and when
they or their software works via the DKB. In the latter case, they can make local changes
in one place to accommodate changes in the used service or to add functionality.

3. Progressively raising abstraction​ improves understanding, portability and durability. It
protects those who use it from unwanted external changes and distracting technical
detail. This also enables DKB implementers to re-engineer their mapping to services to
accommodate and exploit external changes and to address issues identified by users,
with less disruption to ongoing production and development work.

4. Boundary crossing​, experts from different disciplines need to collaborate to develop
innovations and advances in complex and challenging campaigns. The DKB should
deliver the support for CSCW ​boundary objects​ where their work overlaps, while
delivering as much freedom as possible to experts where it doesn’t.

5. Commonalities​ between and within communities can be discovered and exploited.

The DKB has to comply with the following constraints:

1. It must be ​open ended​ because the paths researchers, developers and communities will
take are unpredictable - this mirrors Linked Open Data (LOD) represented by RDF . 28

However, within the DARE KB we underpin this freedom with a consistent foundation
and accelerate productive use with a conceptual library, intending to get the best of both
worlds.

2. It must be ​directly controllable and manageable​ by application communities as this
makes them more self sufficient, with agility (speed of response to needs and
opportunities) and less dependent on technical experts. This means that the formal
underpinnings and implementations must be well hidden.

26 ​https://gitlab.com/project-dare/dare_kb​.
27 In DARE these include the Registry, the Data Catalogue and the Kubernetes catalogues. The
relationship with P4 is complex and under development. Each user domain also has its established
archival practices and data-exchange standards.
28 Resource Description Framework (RDF) ​https://www.w3.org/RDF/

ID2.2-M25 Public release 34

https://gitlab.com/project-dare/dare_kb
https://www.w3.org/RDF/

DARE-777413

3. It must, nevertheless, facilitate ​sustained productive collaboration​ between application
and technical experts, as identified by Trani for the EPOS RI [Trani ​et al.​ 2018]. This
means that the formal underpinnings and implementations must be understood by
experts in their use and in the aspects of technology they are used to describe.

4. It ​cannot require a ‘green field’ site​; it must operate in conjunction with existing
information stores, operational software and established professional practices.

5. Constraints 2 and 4 imply that it cannot take ​full ​responsibility for correctness and
consistency. It should do this for information entirely assembled via its functions. It may
also support methods for verifying consistency that developers and others may employ.

6. It must ​persistently retain information​ entrusted to it, while respecting the structure and
dynamics of the organisations that contribute to and use the DARE platforms. This
means reflecting the recursive pattern of commonalities and releases while retaining all
local work accomplished in the context of earlier releases. This requires methods for
preserving the work so far, installing the new releases and adapting to any changes as it
restores local work. Discrepancies encountered during these procedures must be
referred to relevant users.

7. It must be ​sufficiently fast​ to meet production and concurrency requirements.
8. It must be ​sufficiently protected​ to prevent tampering, leakage of private or confidential

information, and loss by accidents and user errors.

Within these goals and constraints, the DKB must be co-designed and co-developed with DARE
platform and application developers to establish its immediate relevance and path to adoption.

4.2.2 DKB roles
The term ‘DKB’ in this section refers to the composition of the ​logically ​centralised integrator and
the co-existing other information services. Four ​low-level roles​ are supported:

1. Any user may ​enter​ information into the DKB for their own or other users’ future use. 29

2. Any user may ​enter​ information into the DKB for software’s future use.
3. Software may ​enter​ information into the DKB so that it informs users - with appropriate

adaptations for the target recipients if at all possible.
4. Software may ​enter​ information into the DKB for its own or other software’s future use.

We therefore introduce the generic term “​Entry​” for any item of information considered as a unit
by the agent that enters it. As for other data, we then need to manage the lifetime of each Entry
as shown in Table A2.1. Some of the transitions envisaged during such a lifetime are shown in
Figure 4.2.

29 Acting directly, e.g., using a Python function in an interactive Jupyter session, or interactively via
intermediate software.

ID2.2-M25 Public release 35

DARE-777413

Figure 4.2: State transitions during the life of a DKB Entry. Not all are shown. The external
initiation of an action causing a transition is only shown for the initial creation, but transitions are
normally initiated and controlled by external agents. Research developers perform much of their
work in Git-managed spaces, so many of the imports will be from such spaces.

The implementation of these functions is an appropriate combination of the following
mechanisms.

1. Delegation​, the direct presentation of a function of some information service or a
wrapped request for that service, e.g., to handle simple format changes.

2. Local action​, the representation of the relevant information entirely within the DKB
service with changes to that information required to implement the action. Normally,
actions implemented within the DKB will be ​atomic​, i.e., the state change is complete or
there is no change.

3. Harvesting​, the acquisition of required information from an external source that is then
held locally. This will be a snapshot. The external service may later change the source

ID2.2-M25 Public release 36

DARE-777413

data making the snapshot out of date. This may be semantically significant, only a user 30

can decide which value is now the required one.
4. Querying​, sending queries to one or multiple sources and then combining and

transforming the results returned.
5. Caching​, conducting queries, as in harvesting and querying with a policy for discards

from the cache, to limit local resource use or to reduce the risk using out-of-date results.
6. Proxying​, the DKB represents aspects of an information service as if they are local

based on agreements with that service, ideally supported by digital or human protocols.
It then presents the selected service locally, potentially introducing adaptations when
details of that service change, but otherwise representing it accurately.

In some cases the implementation may combine these using a workflow mechanism.
Consequently, the relationship with the provenance system, P4, needs careful design to avoid
unwanted behaviour. This is revisited in contemporaries (§4.2.4) and in DKB R&D planning,
(§4.2.5).

When fully exploited the methods created by research developers will use the DKB frequently.
The interpretation of user actions, developer actions and the coded methods will all interrogate
the DKB to translate into finer-grained actions, to map to evolving infrastructure and to optimise
based on accumulated information about prior work, about users, about services, about
software and about data. This is illustrated in Figure 4.3.

Figure 4.3: The DKB acting as an intermediary throughout the initiation and enactment of a
sophisticated method steered by and reported to a DARE platform user. The numbered stages
of this process are described below.

30 ​Protocols may be introduced to detect and warn of this divergence, but they are not
standardised or commonly available - they should exist for DKB contemporaries (§4.2.4).

ID2.2-M25 Public release 37

DARE-777413

Figure 4.3 depicts a future DARE platform where the DKB is used intensively.
1. A user, using a tool such as a Jupyter notebook requests an action in a form suitable for

them. Similarly, an action may be requested by some external or internal software.
2. The request with parameters, etc., arrives in an agreed form at the DARE platform API.

Entries in the DKB describing methods and built-in functions automatically populate this
API.

3. The DKB retrieves information about the identified method, parameters, and referenced
data. It passes this to the WaaS, which may use this information, may request more and
may write records for subsequent parts of this enactment or future similar enactments.

4. The WaaS receives the request and may request further information from the DKB in
order to optimise, map to a target technology and to deploy and configure the required
virtual infrastructure . It may consult the DKB for descriptions of potential targets the 31

requestor is authorised to use. It will ask the DKB about past costs to estimate expected
costs. Harvesting-processes may scan provenance data to summarise past costs.

5. During the conduct of the workflow, information gathered by P4 will be transformed using
DKB data about the requestor’s preferences. Similarly, incoming steering actions will be
translated using DKB information. Engaging the DKB in the information flows from the
DARE platform and running software is a crucial innovation. It is during such flows
towards users, particularly when failures are reported, that systems expose technical
detail that was abstracted away in input flows. Mapping these to forms understood by the
interacting user is essential . Otherwise, users have to learn to understand them. They 32

may then exploit them in their future work, locking their methods into a particular
technical context. At the very least it is a distraction. However, developers may want
them. Hence the tailoring to the current user.

6. The final records written in the DKB will link up the run with the provenance records and
with results and if they were specified in the run’s profile, intermediate data sets normally
discarded. If a user chooses to consult the results and diagnostic data at any time in the
future, the DKB will ‘know’ where they can be found, how they can be retrieved and
transformed for that user.

Each deployed instance of the DARE platform will have its own DKB instance as shown in
Figure 4.4.

31 This may require integration with the orchestration technology, currently Kubernetes (see §4.1 & §5.2).
32 By working via P4, the mapping is from one standardised, PROV-O representation that avoids
higher-level tools and platform elements having to work with the vast diversity of system monitoring data.

ID2.2-M25 Public release 38

DARE-777413

Figure 4.4: A typical deployment of a DKB maintains relationships in two forms. New
applications and tools developed using the DKB maintain consistent information in it - solid
arrows. Legacy systems and external systems controlled by others will not have complete
information in the DKB. It will hold only the relevant aspects when last used - dashed arrows.

This incomplete information is an inevitable consequence of supporting research and innovation
that may lead anywhere . The quality and reliability of DKB information therefore depends on 33

the care and precision of its developers and users. To mitigate the risk without constraining
users with an excessively rigid regime we partition the DKB information space into ​research
contexts​, ​Contexts​ for short, that are the analogue of file-system directories and workspaces.

4.2.3 DKB contents, structure and functions
Users are free to record any information in the DKB that they choose. However, that freedom 34

has three problems:
1. It takes far too much effort before the benefits are available to most users.
2. It is hard for anyone else to understand what has been done.
3. Optimisation is limited to the regularity which software can uncover.

33 It is also necessary because the DKB has to be introduced into operational contexts and it will not
‘know’ about everything that is going on.
34 This includes any software that writes to the DKB, as it is implementing decisions to use the DKB made
by its developer.

ID2.2-M25 Public release 39

DARE-777413

These are addressed by the following mechanisms:
1. Built-in regularity in the properties and management of every Entry.
2. Contexts in which users have total control.
3. A specifiable inheritance of information from other Contexts.
4. Local naming within Contexts.
5. Global persistent identification using automatically generated PIDs.
6. A conceptually organised library provided with releases of the DARE platform.

Entry specifications
The Entry as the unit of recording in the DKB was introduced at the start of §4.2.2 and the
operations envisaged for an Entry are in Table A2.1 . It will have a set of built-in attributes 35 36

several of which are set automatically. These are illustrated in Listing 4.1.

concept Entry:

 “​Common attributes of every Entry made in a DKB​”
name: String, # ​name unique in its Context

 prefix: String, # ​its prefix is unique in this DKB instance
 pid: String, # ​persistent exportable identifier
 instanceOf: Concept, # ​every Entry is an instance of something
 timestamp: Instant. # ​when the Entry was created or changed

state: String #​ where it is in it’s life, one of a DKB determined set of states
 … # ​beyond here inserted automatically during an update
 previous: Entry, # ​if an Entry updated, PID of previous state
 subsequent: Entry, # ​PID of the Entry superseding this Entry

Listing 4.1: The built-in properties of every Entry. Their usage is described further below.

Notes on these attributes (properties represented by a literal and relationships represented by a
reference to another Entry) follow.
name a user-chosen identifier, c.f., identifiers in programming languages (PLs).

Extracted from a user’s notation. Context in KBs performing role of scope in PLs.
prefix the Context active when the name was defined - like a scope in programming

or a directory in file systems. Tracked automatically.
pid a unique identifier, PID, that is unlikely to be accidentally duplicated and that

users and systems,e.g., P4, can store and use in the future. Set automatically . 37

instanceOf each Entry is an instance of a ​Concept​ (see ‘Conceptual Library’ below). When a
user doesn’t specify a Concept it defaults to ​Thing
(‘​<DKBinstance>:kb:0:Thing​’).

timestamp A UCT instant of sufficient precision to let investigators and software time travel
in the DKB to any instant and to arbitrate concurrent updates’ precedence.

35 We start Context identifiers with an upper-case letter, hence E begins Entry and C begins Context.
36 Appendix 2 holds further details about the DKB.
37 This is available as a URI by defining prefixes. The storage system may use an additional one and
Concepts may have established conventional PIDs for their instances as well.

ID2.2-M25 Public release 40

DARE-777413

state A String value from a small set of options, yet to be defined.
previous The PID of the Entry that was updated to make this Entry.
subsequent The PID of the Entry formed by updating this Entry . 38

Users may add any other data in an Entry, e.g., via functions that take a JSON file, or a Python
dictionary. This direct use is deprecated because it takes too long to achieve results and
because it often leads to poor structure. However, it is permitted and supported in case the
library of supplied structures and functions isn’t sufficiently extensible.

Instead, the conceptually organised library is provided to start users on a path that meets
common requirements. It may be extended by communities and user groups to help with their
additional recurrent needs or to specify how their information should be organised . To 39

encourage this we establish Conceptual modelling through the conceptual library . 40

The chaining of versions when an Entry is updated, is intended to allow stand alone uses of the
DKB to work without a separate provenance capture system. The DKB will provide simple
functions, called Actions, for which this record keeping is efficient. They will normally be atomic
and affect only local state. They can then be used in methods whether or not those methods are
using the DARE provenance system (§4.3). The required relationships will need to be
formalised.

Persistent Identifiers (PIDs)
The PIDs are manufactured as shown in Figure 4.5.

Figure 4.5: The structure of the PIDs manufactured for each Entry

Precise and persistent identification of anything in a user’s or a software system’s world is
essential to ensure unvarying interpretation of those entities when required, e.g., to ensure that
an established practice is conducted consistently or to achieve reproducibility. The DKB takes
on this responsibility by forging, preserving and interpreting PIDs. As users and software may
copy references to Entries in the DKB, this interpretation cannot depend on local addresses or
current storage arrangements. The first part of the PID identifies the particular instance of the
DARE platform where this instance of the DKB is employed. If this identity, when expanded,
meets PID guidelines, e.g., those espoused by the PID forum , then the Entry identity will also 41

meet those, i.e., both will be URIs. But each user community will choose how formal to make

38 If present the Entry cannot be updated again, so a linear chain of updates is formed, avoiding races.
39 For example, seismology groups might establish a Context holding the FDSN features they use and
another holding the OGC features they use. Groups and individuals would add these to their Context’s
search paths.
40 Of course, the conceptual library provider may build this by using the ​Entry​ functions.
41 ​https://www.pidforum.org/

ID2.2-M25 Public release 41

https://www.pidforum.org/

DARE-777413

their PIDs and how much to invest in ensuring the longevity of their interpretation. The context
prefix is a string guaranteed to be unique in this DKB instance . The uniqueness counter 42

ensures successive updates to an Entry have a different PID . The user’s identifier is the name 43

given by a user, e.g., as an identifier in their Python script. The DKB can act as a proxy for an
external information source or a contemporary service and forge a local Entry with a PID
containing a reference to that external service. It may hold timestamp and signatures of the
referenced entity to detect autonomous mutation. We now have the machinery in place to build
and use research Contexts.

Context specifications
The primary role of research Contexts is to gather a set of Entries to provide a work context well
adapted to a particular user working on a particular task. They also represent the common
requirements of multiple users, e.g., members of a group working on a common problem, or of
multiple similar activities, e.g., repeated performances of a standard procedure. This is achieved
by nested Contexts with specified inheritance from outer Contexts, as shown in Figure 4.6,
where we see an additional Context for each user community and an upper-level, ​dare​,
common to all DARE applications, which in turn builds on a universal conceptual library, ​kb​, and
pre-imported bundles from standard sources.

Figure 4.6: The nesting of research contexts, progressively forming work environments that are
highly tuned to an activity, an individual or both.

A Context has a prefix that is unique for the instance of the DKB supporting it. It may have an
initial population of Entries. These may be updated, added to or discarded as the Context is
used. For example, a new Context may be formed by ​cloning​ an existing Context, e.g., to make
a copy of a production Context in order to experiment with a new way of conducting its work, or
by making a new empty one. Each Context has a specified search path of other Contexts, e.g.,

42 It may also have a defined expansion for URIs in ontological representations - behind the scenes.
43 An index from PID to Entry would accelerate DKB operations.

ID2.2-M25 Public release 42

DARE-777413

[‘​seis​’, ‘​dare​’]​ for Context ‘​ann​’, to arrange inheritance, and to specify overlapping interests. The
algorithm for scanning search paths is given in A2.2. If users wish to inherit from a Context ​C​,
with prefix ‘​c​’, adopting all of ​C​’s inherited Entries, they simply specify ​[‘​c​’]​ as the search path.
This is the default, if they are in Context ​C​ when they make a new Context.

The uses of Contexts include:

1. Importing a bundle of terms​ and related entities into a KB, as illustrated by three
Contexts in the second row of Figure 4.6. These may then be used in any search path
and be separately maintained, e.g., to reflect changes issued by the authoritative source.

2. Denoting a set of shared terms​ and resources, as illustrated in the next two rows of
Figure 4.6. Communities may govern how these are maintained. Explicit references
using a full PID delay the impact of changes in such Contexts.

3. Providing a work Context​ for an individual, a group or a procedure, that is progressively
tailored as it is used to better support that work. Illustrated as the bottom two rows of
Figure 4.6.

4. Providing a method enactment Context​ (not shown in Figure 4.6). Methods are
repeatedly run with the same or different parameters. The method needs a new Context
for each run, so that it can use the same set of names each time, differentiated by the
automatically varied prefix.

5. Acting as a boundary for access controls​ and authorisation. The Context can have a
consistent aspect of sharing, privacy, confidentiality, etc., and an owner or governance
body can set that.

6. Supporting a user-controlled transaction​. The updates to all Entries within a Context from
a defined time (denoted by the uniqueness maker’s counter) to a chosen instant can be
considered together, e.g., to be ‘pushed’ to persistence or to be retracted . 44

An Entry in an explicit Context, not necessarily in the search path may be specified as
<prefix>:<name>, e.g., ‘​cath:eqEvent20190723​’ from Ann’s context to refer to the latest update
of the earthquake event Cath is working on . A platform may provide functions, e.g., publish, to 45

reveal such Entries and others to control visibility and mutability. Within such constraints, a user
may specify an explicit version using its PID, e.g., to freeze a method in an authorised form,
while others may be improving it . 46

When a user interacts with a DARE platform they use a specific Context . They may be 47

allocated a clone of a group’s Context when they first start work. Their work will then modify that
Context so that all new things they create and revisions they make appear ​in their Context​. As
searches are by name in the local Context first, and then in each Context along the search path,

44 Uses 5 and 6 will not be attempted in the initial prototype.
45 Future platforms will include DKBs with visability and mutability controls.
46 An index from <prefix>:<name> to the latest Entry will be useful. A cache of names currently only found
further along the search path with their prefix would be an accelerator.
47 Normally the one they were using last time, which involves their identity being obtained via AAI and this
being mapped to their Person PID in the DKB. This needs inclusion in the platform’s login API.

ID2.2-M25 Public release 43

DARE-777413

they start in a rich and productive Context. They can proceed uninhibited to use names and
create Entries as these are local to their Context. ​Innovation is uninhibited​, since they can
redefine things named along the search path and thereby hide them and experiment with new
forms . 48

However, this does not support collaboration. That has to be done, by publishing new things to
‘friends’ and then they explicitly name them using your prefix, e.g., to confirm that what you
have done is valid and useful in their Context, or to conduct the next authoring steps. When
authorised, validated and valuable Entries will be promoted to a higher shared context others in
the group can then use. Authorised users will explicitly visit a Context, e.g., to work directly on a
shared context, to move between production and innovation, to maintain a shared Context or to
help someone solve a problem . 49

The methods for conducting routine repeated processes start by cloning a Context containing
the Entries that differ for each repetition, so that they are grouped under the new Context’s
prefix identifying the repetition with the same local names for every repetition. A user
responsible for a number of these running concurrently will move between them. A summary of
the operations on Contexts may be found in Table A2.2. The Python calls implementing these
will be made available as a standard Python library and described in a separate document
[Levray 2020].

Contexts are ​not​ static snapshots. They continue to change. Users and methods may exploit
this. For example, they group a bundle of changes during an experiment or while a method
runs. If these are to be discarded, the Context holds them. Similarly, if they are to be retained,
the Context may be retained or promoted. There is an opportunity to run Git-like operations to
incorporate changes and to detect conflicts . 50

Conceptual library specifications
Whilst users and software have the option of using the DKB in completely novel ways, there are
compelling reasons for providing an initial library of Entries all in the Context ‘​kb​’, as they span
potential KB platform uses. The commonalities expected in the variety of DARE applications will
then build a Context ‘​dare​’ that exploits ‘​kb​’, see Figure 4.6. These introduce several groups of
Concepts. We focus on ​Concepts​, e.g., Energy, Temperature or Country, as they underpin
thinking and communication in humans. We expect a body of well-established and widely
adopted Concepts to underpin every research community; developed and sharply defined in
their minds by their education and training. This enables them to communicate and think
effectively, as they use words with those precise meanings. In the KB we intend that they should

48 There may be a small subset of names that are marked as “​may not be hidden​”, to enforce consistent
use of those names.
49 This is a common requirement for support staff. It may require permission from the Context’s owner.
50 Oscar Corcho reported doing this for ontologies at the INGV DARE plenary [Corcho 2019].

ID2.2-M25 Public release 44

DARE-777413

use those same terms as easily and precisely; building on Trani’s work with EPOS [Trani 2019,
Trani ​et al.​ 2018].
Contexts enable different groups to use different terms or the same terms differently. In due
course, to enable boundary crossing and novel interworking between disciplines, the DKB will
need an underpinning metadata translation and cross-referencing framework, to enable
collaboration and innovation to co-exist productively. The requirements and a viable approach
are well illustrated for Europe’s museums collections of natural science specimens [Lannon et
al. 2020]. The EU VRE4EIC project demonstrated the automation of metadata translation to
deliver an integrated view of catalogues [Martin ​et al.​ 2019]. We need to build the foundations of
the DKB and establish its initial use before these issues can be explored. Current thinking looks
at immediate needs. The need to have variety and consistency, stability and innovation
co-existing and flourishing together will emerge as soon as sustained use for a research
campaign is attempted [Ramakrishnan 2018] (see page 263).

As research progresses the revision and refinement of the Concepts is inevitable. The DKB
supports and stimulates those Conceptual refinements by enabling application communities and
individuals to directly shape their active repertoire of Concepts.

We provide a Concept library prepopulated with Concepts and a structure relevant to
data-intensive and computationally intensive research campaigns. Building on these, a research
campaign or community will develop a sophisticated and highly tuned set necessary for their
research. We expect this to become a significant intellectual and practical asset. Groups,
organisations and specialists will also build on the initial foundation, on existing and
contemporary developments and on imported bundles of relevant knowledge. The common
starter includes:

1. An initial set of Concepts, some of which have instances, to provide users and
application domains with common information and organisational structure that they will
need.

2. Concepts that are examples to help those developing the use of the DARE platform, for
themselves or for sub-communities.

3. Support for consistent structures, particularly for handling Collections, to provide
optimisation opportunities and to steer users to well supported or efficient methods.

The conceptual library will also present an API with Python methods for ​basic​ Actions to change
the state of the DKB. These include:

1. Actions on Concepts to define them and their relationships, evolving them and managing
their lifetimes.

2. Actions on instances of Concepts, creating them, finding them, interrogating them and
updating them.

As the definitions of refined Concepts and sophisticated Contexts develop new Actions specific
to particular Concepts and methods composing basic Actions will be introduced. It is intended
that user communities will become self sufficient, initially in using the basic Actions and

ID2.2-M25 Public release 45

DARE-777413

eventually in refining them and in maintaining sophisticated Contexts and home grown Python
encoded Methods. To enable this, once ​published​, new Concepts, new Actions and new
Methods automatically become available in the API. Eventually their use may be controlled by
authorisation mechanisms, but initially we will depend on communities collaborating with careful
consideration for their colleagues. This is only feasible while the user community is small.

It will be possible to build more complex and longer running Methods out of these basic Actions
and other Methods, including those in any workflow system that DARE supports. Some of these
may be used to manage aspects of the DKB, e.g.,

1. Promote a set of revised Concepts and instances from an innovation Context to a shared
Context.

2. Import a bundle of information from an authoritative source, such as a curated ontology,
creating a Context to represent it.

3. Build a Collection representing the current Python loaded libraries.
4. Compare two such Collections and report on their differences.
5. Visualise the graph of specialisations of a particular Concept.

Such Methods will be implemented when needed. When they are not simple Actions , they will 51

need to record progress in a provenance service, such as P4.

It is intended that DKB users will be able to do everything that they need to do in this way, i.e.,
by working in Contexts, by building on provided Concepts, and by composing basic Actions and
Methods built ultimately from basic Actions. Direct use of Entries will be deprecated because it
reduces the manageability of the DKB. However, it will be retained to permit work arounds if
unintended limits are encountered in the prefered usage patterns. At the same time, the DKB
should let experts helping the application communities or within those communities develop
applications and workflows in whatever way they choose and then import them into the active
Contexts, so that they may be used straightforwardly. Data architects, data scientists, systems
specialists and software engineers may also work on Entries once they have stabilised and
proved useful, to improve their performance, reduce their costs and improve their provenance
tracking. This depends on supporting multiple views and uses of the Contexts. A future
development that will only be demonstrated as feasible in the DARE project.

Concepts are introduced as they reflect established ways of thinking and communicating in
application and technical fields. They often have agreed names, developed in the application’s
culture and global consortia and corresponding to an authorised terminology . For each 52

viewpoint/use of a Concept they have properties used by practitioners. The DKB supports

51 For example, they may fail after changing some of the persistent state, and provenance records will be
needed to support attempts to complete the work or to undo what cannot be completed.
52 These precise terminologies may draw on and implement LOD ontologies, but it must not be a
requirement to understand ontologies and OWL to use the DKB. However, experts in that approach
should be able to help users using their knowledge. For example, they may develop and use methods to
import authorised ontologies directly into the DKB and ready for production use.

ID2.2-M25 Public release 46

DARE-777413

communities and individuals agreeing and using their Concepts as shown in Figure 4.7. Note
that an application community will have familiar Concepts, with well understood names, that are
understood by them, but not by the systems team that enables their computational and
data-driven work. Similarly, those system experts have their own vocabulary, Concepts and
properties that they understand. The points where these worlds overlap, called “​boundary
objects”​, are vital for effective collaboration, and have to be well supported by the DKB.

In some senses, Concepts are similar to classes in object-oriented programming. Indeed users
may be helped by being able to use Python classes in the programs corresponding to the
Concepts they are using, with instances of each class corresponding to instances of Concepts.
The extent to which the DKB system will automatically support this has yet to be decided​.

Figure 4.7: Showing the CRP methodology to develop and manage concepts shared by a

collaborating research community (taken from Fig. 5.2 [Trani 2019])​.

Having decided what Concepts they need, users choose the properties that they consider
important, and how they would like them to be represented consistently. We envisage three
categories of attributes:

1. Mandatory​, ones that must appear in every instance as well as those already there
because of the common Entry attributes. This has the effect of specifying the name and 53

53 The naming conventions are similar to those for Python, i.e., Concept identifiers begin with a capital
letter and attribute identifiers begin with a lower-case letter.

ID2.2-M25 Public release 47

DARE-777413

the form of each attribute. It will trigger an error if an instance is made which does not
have the attributes in the correct form.

2. Recommended​, are properties that should be present in every instance, this has the
effect of specifying the name and form of the attribute and may have the effect of
prompting users to supply values for these attributes in each instance.

3. Optional​, is a category of attributes that may be included. This specifies the name and
form to be used whenever an attribute appears in this Context with the given name.

Given our philosophy of trusting users and their software, the instances may still include
additional attributes in the same way as Entries do. This permits users to impose required
structure while still facilitating experiments leading to innovations. Each attribute is either a
property denoted by a suitably formatted literal value or a relationship referring to another Entry
denoted by its PID. Listing A2.1 introduces a notation for defining a Concept in terms of its
inheritance and attributes reflecting the style of Python class definitions. Concepts, e.g.,
SpecialWidget​ may inherit from the definition of another Concept, e.g., ​Widget​. In that case,
instances of ​SpecialWidget ​may appear whenever or wherever instances of ​Widget​ are
required.

Listing A2.2 illustrates the introduction of two Concepts using this notation. A possible
representation in the DKB is illustrated in Figures A2.1 and A2.2. Listing A2.3 then creates
instances of those Concepts to produce a structure in the DKB shown in Figure A2.3. Available
operations on Concepts additional to or revising those for Entry are given in Table A2.3, which
is partitioned into 6 parts for the 6 Concept categories and each of those is slit into the functions
currently being implemented and those that may be needed later.

Building all the required Concepts from scratch is laborious. Therefore, DARE offers a rich
library of predefined Concepts shown in Table A2.4.i, partitioned to illustrate six categories:

1. Concept definitions​, which may be extended and refined as users wish.
2. Method definitions​, that include the available built-in methods Table 2.4.ii. Table A2.5.ii

tabulates the currently anticipated actions on Method instances.
3. Data definitions​, that include the Data Catalogue and its semantic extensions Table

A2.4.iii. Table A2.5.iii shows the currently available on Data instances.
4. Collection definitions​, that are critical for supporting a common user and software activity

of building and using collections of things, Table A2.4.iv. Table A2.5.iv outlines
anticipated actions on Collection instances. Virtual and lazy implementations of
Collections are essential to handle the growing size of data and Collections many
application communities now deal with. These increases will continue so these forms of
Collection will become essential. DARE has special facilities for handling these, e.g.,
transmitting and processing them incrementally in data streams. Nevertheless,
application experts and research developers will need to directly control their formation,
content and use. Synergy between data engineering and distributed
workflow/computational systems engineering will be needed. By making Collections

ID2.2-M25 Public release 48

DARE-777413

first-class citizens the DKB will facilitate that synergy. That is, they are a primary
example of boundary objects.

5. Sundry definitions​, that are needed in conjunction with the above, with Contexts and with
organising people, processing and systems Table A2.4.v.

6. Built in types​, The categories of data, such as String, Real and Time that are imported
from underlying systems, such as Python Table 2.4.vi.

There are substantial conceptual, organisational and practical advantages from delivering in the
library a harmonised bundle of Concept, Method, Data and Collection Entries. We anticipate
each platform release will include advances in this bundle. Other categories of Concept may
emerge. Please consult Appendix 2 for details and examples and [Atkinson & Levray 2020] for
developments after the publication of this document.

4.2.4 DKB contemporaries
These include the data catalogue and the Registry. They also include some aspects of the P4
provenance handling framework described in §4.3. These provide two valuable aspects to the
design and development of the DKB:

1. As well-established and populated subsystems they provide a significant part of the
required functionality.

2. They also ensure that the DKB does not require a ‘green field’ operational context, as
cooperating with complex contemporaries is essential for long-term adoption.

Data Catalogue
The DARE data catalogue has been operational throughout the platform’s development and
provides basic services for recording information about the files in use. This is currently being
enhanced and extended as the DARE Semantic Data Discovery Service.

The Semantic Data Discovery Service builds up on the Data catalogue component of the DARE
platform. The Data catalogue stores metadata about datasets in DARE described with the
Resource Description Framework (RDF) model, which conforms to the Data Catalogue
Vocabulary (DCAT). Currently there are only low-level interfaces to these datasets, provided by
the RDF database Openlink Virtuoso (SPARQL, ODBC, JDBC, ADO.NET, OLE DB, etc.). The
complexity and low-level nature of these interfaces inhibits the full use of the Data Catalogue’s
information.

The Semantic Data Discovery service should enable a user to access the data stored in the
Data Catalogue conveniently. To achieve this goal the application scans recursively through the
existing datasets, indexes all known information patterns found and provides an interface to
search this data. The Python code provides functions, such as trigger indexing, deleting the
index and starting a search. These are accessed via a REST API using the Python web

ID2.2-M25 Public release 49

DARE-777413

development framework Flask and are exposed by OpenAPI Swagger . To create, manage 54 55

and use an index, the search engine Apache Solr is used. This offers a wide range of 56

functions including: simple text-based search, a search by date or by geo-location. It is easy to
add vocabularies to meet the need to be open-ended, as a wide range of specialised linked 57

data vocabularies may be used. The implementation architecture is shown in Figure 4.8.

Figure 4.8: The architecture of the Semantic Data Service extension to the Data Catalogue.

In the future, a web GUI should be placed on top of the search, for example comparable to the
European Data Portal . An integration with the provenance database is also planned. A further 58

extension could be the integration of external Data catalogues to meet known requirements for
the climate or seismology communities. This can be done as a change of configuration, as long
as the data exists with the vocabulary DCAT and are provided through a SPARQL endpoint.

54 Flask ​https://www.fullstackpython.com/flask.html
55 Swagger ​https://swagger.io/docs/specification/about/
56 Apache Soir ​https://lucene.apache.org/solr/
57 This is done using a configuration file.
58 ​https://www.europeandataportal.eu/

ID2.2-M25 Public release 50

https://www.fullstackpython.com/flask.html
https://swagger.io/docs/specification/about/
https://lucene.apache.org/solr/
https://www.europeandataportal.eu/

DARE-777413

Registry
The registry is a part of the DARE platform that coexists alongside the DKB. As do the
provenance system and the Data Catalogue. The previous item discussed the relationship
between the Data Catalogue and the DKB. Here we focus on the Registry’s relationship with the
DKB. We then consider the relationship with provenance.

The registry was developed in the VERCE project , where authors of [Klampanos ​et al.​ 2015] 59

prototyped the dispel4py information registry to facilitate consistency and collaboration in
workflow development . Consequently, the current state of the registry is strongly linked to 60

dispel4py. The current version is implemented in Django , a Python-based Web framework and 61

is linked to a relational MySQL database server. The current usage allows for the development
of workspaces, and the storage and production of information regarding workflows.

The registry is currently used in the DARE platform via an API, to register workflows, (i.e.,
register PEs of the workflow). It also can execute and monitor the runs of the workflow, i.e., use
the provenance system to stream provenance traces at run time. The main functions of the API
are given in Section 3.3 and recalled in Table A2.8.

As mentioned, the registry deals with the notion of workspaces. In its design, workspaces refer
to a snapshot of whole sets of components linked to registry (including the registry) to allow for
refined, specific, user-defined context work. In that sense, the idea of workspaces in the registry
is closely related to the definition of contexts in the DKB.

In order to make use of the DKB and registry together, it is critical to link those two definitions. It
is also important to add more specificities either to the registry or to the DKB so that its uses
cover more than dispel4py. Indeed, the idea is for users and developers to be able to register
methods in any format they desire, including: bash script, python script, CWL, dispel4py, etc.

At the present stage, we can integrate the registry in the DKB as a proxy server to access
information of methods (PEs, workflows, runs).

The registry is also mentioned in the following sections:

● In §3.3: the use for development, where we can clearly see that developers and users
make use of the registry API to register dispel4py workflows.

● Which is also expressed by §4.1, that describes how to use the registry for dispel4py
workflows. For example, a method must be registered in the registry before it can be run
on the DARE platform.

59 ​http://www.verce.eu
60 ​More information can be found in​ ​https://zenodo.org/record/3361395#.XfjPVOvgrUZ​.
61 ​https://www.djangoproject.com

ID2.2-M25 Public release 51

http://www.verce.eu/
https://zenodo.org/record/3361395#.XfjPVOvgrUZ
https://www.djangoproject.com/

DARE-777413

Relationship with P4
The provenance system runs a database into which it collects information from many runs and
from different technologies into a standard form [Spinuso 2018]. It also collects metadata
associated with runs specified by users, supports tools for examining and visualising these
records. It can be accessed by a set of web-service functions including specific requests to
export selections of its data in standard formats. Consequently, it is performing the role like that
of the DKB: there are therefore two directions of development to consider:

1. Independence​, each develops independently and users/developers tackle the integration
of their functionalities. Even with this approach they still need to coordinate,
cross-reference and align their treatment of entities that they both handle.

2. Integration​, where they converge through co-design, so that eventually users and
developers see them as one system that they use unaware of the two subsystems.

Integration​ is clearly the desirable long-term goal, but it is so challenging that a period of 62

independence​ but ​convergence​ is needed before it is attempted. The necessary
interdependence​ will need to progressively deliver:

1. Coordination​, e.g.,
a. notification to P4 from DKB when it starts an Action that needs provenance,
b. notification to the DKB and P4 when the WaaS detects completion or failure.

2. Cross-reference​, the following examples indicate what will be needed:
a. References DKB can use to refer to traces in P4, preferably PIDs
b. References (PIDs) P4 can use, to refer to entities identified via the DKB,

preferably with known fixity.
The timing of PIDs being allocated and being used in each subsystem, as well as the
decisions as to which entities require PIDs, will need to be worked out as the alignment
is developed.

3. Alignment of representations, such as:
a. Identification of individuals and representations of attributes both use.
b. Identification of sessions and representations of attributes both use.
c. Ditto for computational environments, containers, deployments, software, data

and services, etc.

This convergence should be achieved incrementally in co-design and co-development closely
aligned with pressing requirements from use cases, e.g., as identified in §3.4.

4.2.5 DKB R&D planning
The current status of the DKB is that there are three mature, operational subsystems: data
catalogue, registry and the provenance system independent from one another and a prototype
general-purpose DKB that has yet to contribute to the DARE platform’s use. It is clear that

62 Almost certainly longer than that remaining in the DARE project.

ID2.2-M25 Public release 52

DARE-777413

users, particularly research developers, would benefit from increased automation and
integration (see §3.4). As explained above, the DKB should help those extending and
developing data-intensive and computationally demanding applications in the context of existing
systems and established practices. This is precisely what DARE provides and we should
therefore use the opportunity to develop the DKB:

1. To help the research developers in our user communities and in successors to DARE,
and

2. To use DARE to progress to the point where the integrated version of the DKB has
proved to be useful and feasible, so that it is both sustainable and a good foundation for
future work.

This requires decisions on:

1. The information needed for the automation priorities.
2. The information needed for optimisation, deployment choices and target flexibility.
3. The best ways of presenting DKB information to research developers as they program.
4. Their preferred was of recording information that interests them.
5. How to fluently combine innovation and production.

This in turn requires development decisions leading to inclusion in platform releases.

1. How best to develop and deploy the semantic extensions of the data catalogue.
2. How to align Contexts in the DKB with workspaces in the registry.
3. How to combine the provenance and DKB systems.
4. How to deliver method authoring to use simply, e.g., for Python scripts.
5. How to roll out the DKB functionality incrementally with good integration.
6. How to deploy the common Concept library and other common resources.

Detailed discussions on these topics are developed in §A2.9.

4.3 The P4, tools and interaction interfaces
P4 includes the provenance functionality that enables the acquisition and exploitation of
provenance data. DARE focussed initially on capturing lineage information about the execution
of a method. This is described by the initial inputs, the method’s processing elements, and the
computational resources used. We acquire provenance from different types of systems (CWL
and dispel4py). They are mapped to S-PROV, in order to be interactively explored and
visualised using DARE’s S-ProvFlow tools and lineage API. The lineage information recorded
from the execution of a dispel4py workflow can be tuned adopting a provenance configuration
and contextualisation system developed during the first half of the DARE project [Spinuso ​et al.
2019]. For CWL, we are currently focussing on managing provenance information that is
specifically addressing the execution of ​specfem3d workflows, which for simplicity of use, are
bundled in dedicated calls of the DARE API. These have been implemented according to the
requirements of the use cases defined in WP6. Here, we are interpreting and summarising the

ID2.2-M25 Public release 53

DARE-777413

CWLProv information produced by such API calls in order for it to be integrated and accessible
through S-ProvFlow.

Ultimately, CWL and its provenance component aims at the generation of research-objects . 63

Pursuing this model depends on the implementation and policy of the the DKB in terms of the
storage and description of the results generated through DARE. We foresee provenance data to
be linked from DKB entities describing the final dataset. This will require the proper generation
of the results’ PID and the reference to the endpoint that will extract from P4 (s-ProvFlow) the
full lineage trace associated with the data product. This would comply with the RDA indication
for a pattern enabling the linkage between metadata and provenance (Figure 4.9).

Figure 4.9​: ​Schematic representation for referenced inclusion of provenance information within metadata
document or in structured data files (such as NetCDF). Formal provenance can be linked as external self-contained
documents or provided by external services. The approach fosters decentralised management of lineage
information, which can be queried to extract and combine information about the software dependencies
consistently. We should consider though to include a textual and human readable summary (image extracted from
the RDA provenance pattern database). 64

Once the lineage has been stored we provide three kinds of exploration functionalities. Live
monitoring, Lineage queries, Discovery and comprehensive visual Analytics. These have been
described in DARE literature [Spinuso ​et al. 2019, Atkinson et al. 2019, ​Klampanos ​et al. 2019​]
from the point of view of their conceptual functionalities and integration within the platform. More
technical insights are provided within the DARE deliverable produced by WP3.

63 Research Objects ​http://www.researchobject.org/
64 ​https://patterns.promsns.org/pattern/12

ID2.2-M25 Public release 54

http://www.researchobject.org/
https://patterns.promsns.org/pattern/12

DARE-777413

Current developments are addressing improvements to the lineage query methods. We aim at
providing a more usable and powerful set of methods that will allow users to search over
combinations of terms’ using value-ranges or value lists. These improvements will be reflected
on the s-ProvFlow viewer too. In Figure 4.10 we show the prototypical interface that allows
users to search for workflow executions with a short explanation of the new syntax.

Figure 4.10: Mockup of the improved MVV GUI that allows to search for workflow executions adopting multiple

metadata and parameter value-range and lists. The expressions are explained on the right side of the input box.

The query terms are suggested among the ones present in the user’s collection of runs, as already introduced in

D3.7 [Spinuso & Klampanos 2018].

Recent developments have been largely dedicated to the integration of security mechanisms for
the authorised access and storage of the provenance data (AAI). This is pursued in a way that
meets the GDPR regulations in terms of the separation, “by design”, between the recorded
lineage traces and any deducible information about the users themselves (e.g., username,
email, identity). In this respect P4 relies on the DARE AAI (see §5.2) and the DKB (see §4.2) for
the complete resolution of users’ personal information. Implementation details will be reported in
the official deliverables about the platform deployment in WP5 and the updated lineage services
in WP3.

Aspects of P4 also concerns direct interaction with the setup and incremental customisation of
development environment, for instance based on Notebook services such as Jupyter. The KNMI
is working on a new API, SWIRRL (Software for Interactive and Reproducible Research Labs). 65

This work is conducted in the context of the ENVRIFair project in close collaboration with DARE.
The API automatically manages the deployment of a computational environment offering
integrated notebook, execution of workflows and visualisation services. The provenance
information describing the API actions for the creation and updates of the environment, the
execution of data-staging workflows and the generation of repdocuble snapshots are captured
within formal provenance documents. These are stored within a dedicated database and made
accessible through the SWIRRL API. Ultimately, the provenance data will allow users to trace

65 ​https://b2drop.eudat.eu/s/ENLJZmxxt2q2MNL

ID2.2-M25 Public release 55

https://b2drop.eudat.eu/s/ENLJZmxxt2q2MNL

DARE-777413

the evolution of changes within the environment itself and to restore past setups. The latter
action may include data and notebook pages, according to user’s needs, fostering
reproducibility and sharing of research progress among peers. Aiming DARE at being fully
controllable through such interactive notebooks, we foresee great potential for the integration of
the services offered by the two projects, with a particular focus over reproducibility and
traceability of the research progress. This will extend the period of support and amortise support
over a much wider community, as required for sustainability - see §5.

4.4 Analysis, Conclusions & Summary
As reported in §3 the DARE platform delivers significant new power to our user communities.
However, DARE does not have the resources to run these at scale as frequently as users
require. As the DARE-enabled methods are polished ready for productive use and as courses
are run to expand DARE’s user community, this becomes ever more pressing. It is therefore
urgent to facilitate DARE platform deployment on eInfrastructures user communities can gain
access to, such as institutional facilities. This requires enabling relatively inexperienced
operational teams to set up, run and help DARE users with a local instance of the DARE
platform. This priority is revisited in §5.2.

Currently the three subsystems on which DARE depends are not interworking as effectively as
they need to. A protocol for using a message handling system, e.g., ZeroMQ , and agreements 66

on what events warrant messages and what those messages should contain is urgently needed.

Reviewing the individual subsystems, the following developments are necessary.

The ​WaaS​ has a powerful system but exclusively for dispel4py.

1. It needs to accommodate others, at least plain Python scripts, and perhaps CWL or
other notations.

2. It currently requires too much input from workflow and system experts along the path
from method creation to method deployment. This needs to be overcome by automation
and good defaults.

3. DARE is meant to push scalability limits in three dimensions, yet the optimisation of
mappings, and the informed choice of targets for enactment has still to be implemented.

4. Adaptation to different to different target architectures, different data handling services,
different distributions of data, and different communication channels is needed.

All of these will help users and help with sustainability.

The ​DKB​ is currently fragmented and much of it is in prototype form only. The following priorities
need to be addressed with improved alignment and coordination.

1. Alignment with the registry including reconciling workspaces with Contexts.
2. Synergy with the data catalogue.

66 ZeroMQ ​https://zeromq.org/

ID2.2-M25 Public release 56

https://zeromq.org/

DARE-777413

3. Delivery of Contexts or their equivalent.
4. Enabling convenient update by a wide range of researchers and software for their own

purposes.
5. Releases of the conceptual library.

The ​provenance system, P4​, is fully operational, however it needs to consider the following
issues:

1. Making provenance configuration easy, flexible and well supported.
2. Stimulating the use of the integrated metadata and provenance by improving query

support and the tools that exploit it.
3. Widening the range of resources from which provenance is collected.
4. Enabling technically capable users to add more provenance collectors.
5. Establishing agreed cross-reference models with PIDs with other systems, including the

WaaS and DKB.

There is also an ethical challenge we face. The purpose of the platform is to help individuals,
teams and wider federations pursue complex research campaigns by pooling their ideas and
efforts, i.e., we must support their collaboration, i.e., the DARE platform should have a CSCW
role. But that depends on individuals recognising each other in the system, acknowledging each
others contribution and respecting each others wishes. This cannot be done if identities are
hidden. The following is a suggestion. We should either adopt this or propose an alternative.

Trivial initial use, e.g., by a citizen scientist testing whether an instance of the DARE platform
would help them, should be anonymised as currently implemented to comply with personal data
regulations. Extensive and long running use would require that a user has gone through a
process that gives them a personal PID, e.g., on ORCID . Any such personal PID allocation 67

procedure would suffice. As allocation of the PID will have included establishing informed
consent to their identity being public in an ethically and legally acceptable way. We can then use
their PID and reference and use information from that information source. I cannot imagine the
powerful visualisations of provenance being useful if the person(s) behind all that work is
anonymised. At least, not when we reach larger scale consortia.

67 ORCID ​https://orcid.org/about/what-is-orcid/mission

ID2.2-M25 Public release 57

https://orcid.org/about/what-is-orcid/mission

DARE-777413

5 Future and Sustainability
Sustainability is crucial for our partners using the DARE platform. They are developing new
methods and working practices that depend on the platform. They would suffer severe
disruption if the sophisticated software and integrated systems were not supported after the
DARE project concludes. There are three aspects to achieving such sustainability:

1. Minimising the cost and effort​ required by using shared systems, standard software and
careful engineering; but the cost can never be made vanishingly small - this is addressed
in §5.2.

2. Building the commitment to invest​ in the required maintenance by developing expertise
and advocates across the user communities - this is addressed in §5.1.

3. Amortising the costs​ widely by expanding the user communities and the number of
application areas, organisations and funders who contribute. This depends on and
contributes to an improved ​return on investment​ (RoI); a bootstrap challenge - see §5.1.

The drive for sustainability influences every aspect of DARE’s work. Sustainability has long
been understood as a pressing issue for software, e.g., quoting an ENVRI report accepted by
DARE’s two RI communities, EPOS and IS-ENES.

“​Software sustainability​: ... The decision to depend on software is as important as the
decision to depend on an instrument and it should be taken equally carefully. This will
lead to an identified list of mission-critical software. Each RI ... should establish
mechanisms for determining that critical list. The list should be minimised by careful use
of commercial and ​well-supported​ open-source software. The members of the residual
list of software must be maintained or replaced throughout each RI’s lifetime. This
requires appropriate resources, particularly software engineering staff and processes
with appropriate quality controls. Wherever possible these should be met through
alliances.” (From Section 5.2 “Impact on Stakeholders” p193 [Atkinson ​et al.​ 2016])

One source of underfunding for sustaining critical research software is the lack of realisation of
the costs involved, as most people do not have experience of software going into production
and being used by multiple users, for many purposes, some not originally envisaged, running in
many different and changing computational contexts. The support needed is software
maintenance and provision of help to installers and users. Maintenance includes: bug fixes
(~10%), accommodation of computational context changes (~50%) and enhancements (~40%).

The lack of research-software sustainability, led to the establishment of the Software
Sustainability Institute (SSI) . Its mission is to change the culture so that the Research Software 68

Engineers (RSEs) making and sustaining well-engineered software are respected and
resourced. SSI now delivers global leadership for this cause.

68 Software Sustainability Institute (SSI) ​https://www.software.ac.uk/

ID2.2-M25 Public release 58

https://www.software.ac.uk/

DARE-777413

Taking these viewpoints into account, we identify the critical sustainability steps. We combine
the viewpoint of RIs and their user communities with the viewpoint of research developers and
platform engineering teams.

Research Infrastructures , represented by WP6 and WP7 in DARE, need to: 69

1. Establish an agreed process by which they ​decide on which software they will depend
on​. This has to balance two factors:

a. Research agility enabling them to explore new ideas which may depend on and
develop new software, and

b. Dependability from using established software and limiting new software to that
which they know they or others can maintain.

This requires continuous governance and operational procedures. Allowing experiments
and exploration, but filtering which are carried through to production with the
concomitant obligation for long-term support.

2. Develop a ​mutual-respect ​ethos when interacting with RSEs, expecting professionalism
to develop in software and systems engineering as it does in their own discipline.

3. Share the responsibility​ of finding resources in the short, medium and longer term.
4. Actively develop broad adoption​ of the software they choose to depend on.

The builders of the DARE platform and the research developers pioneering new uses take on
the following responsibilities as they proceed:

1. Minimise the use of bespoke software​ so as to reduce the sustainability burden.
a. This requires re-engineering once requirements and solutions are understood to

eliminate the effects of agile processes delivering quick solutions.
b. This requires broadening the functionality of key elements to avoid additional

elements, to take over from bespoke software and to extend amortisation.
2. Use ​existing well-maintained software​ whenever possible, and build any new software

with well-disciplined professionalism.
3. Deliver self-sufficiency​ through intellectual ramps; users start by using your provided

solutions with their anticipated variations, but can, with modest effort move to more
radical variations when they need to.

4. Reduce to a minimum​ the elements in a platform, subsystem or software stack that is
included in its sustainability phase.

5. Document​ with guidelines, patterns, technical information and tutorials the minimum from
step 4 for each role that will be involved in use or maintenance.

5.1 User communities and engagement
DARE Sustainability pillars:

69 Both EPOS and IS-ENES, in conjunction with their related global and long-running campaigns,
recognise the importance of software for their research and have relevant resources.

ID2.2-M25 Public release 59

DARE-777413

1. analysing the market sectors where the results may be applied,
2. identifying self-contained DARE outcomes that are exploitable, and
3. identifying the appropriate distribution channels to promote and sustain the different

results of the project.

5.1.1 Market Sectors
DARE seeks to address needs concerning:

1. the ​European domain specific eInfrastructures​ (such as EPOS, IS-ENES2, ICOS65,
SKA66, etc.) which can exploit DARE in order to create new data-driven services more
easily.

2. science and technology professionals​ that can use DARE-powered infrastructures
more easily, without being concerned with technicalities, enabling them to focus on how
to improve their methods, results, synergies and innovation potential, and

3. the ​“long tail of science”​, including research institutes, research teams, individual
researchers, SMEs, etc., who due to lack of tools, methodology or resources, are unable
to make the most of even today’s wealth of data, scientific advances and the power of
the e-infrastructures Commons.

DARE will support this last category of users by enabling them to design and implement
experiments, services and products that can still be supported by the same local, small-scale
infrastructures but have the inherent ability to scale up to exascale resources, when such a
need arises. A crucial element of this sustainability is increasing DARE users’ self-sufficiency by
reducing technical hurdles, establishing intellectual ramps based on adaptable examples, and
delivering self-education aids, such as online courses.

Especially for SMEs, we will initiate activities fostering SME engagement through targeted focus
groups, workshops and other events aiming to increase awareness, enabling SMEs to access
the knowledge they require.

5.1.2 Identifying self-contained DARE outcomes that are exploitable,
Asset 1: dispel4py​ A high-level data-streaming dataflow specification API, reusable
components and Python library.
Asset 2: S-ProvFlow​ A set of tools and components in support of Reproducibility as a Service
(RaaS) based on and delivering W3C provenance standards.
Asset 3: Exareme A system for large-scale dataflow processing on the cloud​.
Exareme provides SQL and Python interfaces, that can readily federate queries over relational
DBs. It supports data streaming and on-line compression.
Asset 4: Semagrow​ A linked-data query federator over remote sources, enabling complex
querying in a transparent and seamless way.

ID2.2-M25 Public release 60

DARE-777413

Asset 5: BDE​ platform A Docker-based, cloud-ready and modular integrator platform, bringing
together commercial and research, production-ready components for big-data analytics.
Asset 6: DARE Hyper Platform​ An integrated operation-ready, Cloud-based platform to
advance data-driven agile innovation at the extremes of modern science.
Asset 7: DARE Registry​ An automatically populated semantic registry covering DARE
methods, reusable method fragments and patterns, tools, data, context and e-infrastructures
information.
Asset 8: DARE Methodology​ A set of principles, guidelines and best practices that enable
innovators to create exascale products and services using the DARE approach.
Asset 9: DARE EPOS pilot​ An operational EPOS-IP use-case pilot meeting societal
requirements for producing innovative earthquake risk assessment and response.
Asset 10: DARE IS-ENES pilot​ An operational IS-ENES use-case pilot meeting societal
requirements for producing innovative climate-change risk assessment via the Climate4Impact
portal.

5.1.3 Distribution plans
Initial analysis reveals appropriate distribution channels to promote and sustain results from the
DARE project.

1. Structural engagement with EOSC
Services offered via EOSC portal, EOSC public project, EOSC channels to publish on-line
deliverables and various kits of information, EOSC project in the EOSC Landscape Analysis
Report.

2. Partner Assets Exploitation Intentions

● ​NCSRD #4, #5, #6, #7, #8
Creation of opportunities for internal, national and international collaborations across
neighboring scientific fields and promoting technologies that have been developed, such
as the big data management infrastructure technologies and the Semagrow engine.

● INGV #6, #7, #8, #9
The EPOS Use Case aims at exploiting the powerful services and tools of the DARE
platform to agilely handle big data HPC simulations and analytics in the solid-Earth field
with a strong impact also for societal emergency contexts.

● UEDIN #1, #6, #7, #8
Supporting technology in many other contexts, including research contexts with
environmental, Life, and Astronomical sciences. This will include grant-funded work and
commercial work through EPCC and the Data Technology Institute.

● CERFACS #6, #7, #8, #10
Promoting the use of the tools and the DARE platform within the climate research
domain.

● KIT #6, #7, #8, #9

ID2.2-M25 Public release 61

DARE-777413

The technologies developed will be essential to many other areas in solid-Earth
research. Especially in the area of seismic hazard better quantification of uncertainties
are needed to be able to use advanced decision support systems that are heavily relying
on robust and quantifiable information uncertainty.

● KNMI #2, #6, #7, #8, #9, #10
Repurposing of basic services within an advanced computational platform to foster the
realisation of innovative and sustainable products in line with the KNMI duties and R&D
activities, supporting experimental data-driven research in the context of the newly
established KNMI-DataLab. Extending RaaS in the ENVRIfair and Copernicus
communities. Continuing the curation of Concepts in the EPOS context.

● GRNET #6, #7, #8
Exploitation of the outcomes by deploying them into production, thereby expanding the
company's portfolio of offered cloud and HPC services to its end-users: research and
academic community including Earth Sciences, Life Sciences and Engineering.

● FRAUNHOFER #6, #7, #8
Knowledge gained through the project and parts of the solution, especially on service
integration, Cloud services and automatic deployment methods, will be utilized for
in-house solutions that are provided to scientists and developers; newly gained expertise
will flow into further research projects and to let other scientific disciplines benefit from
the results.

● ATHENA #3, #6, #7, #8
Transfer of results towards further development of the infrastructures it participates in:
OpenAIRE, CLARIN, META-SHARE, ELIXIR-EXCELERATE and HELIX.

Specific Priorities and actions

● Training Kit:
○ Best Practice guidelines for DARE in high tech industry and in particular for

SMEs
○ Handbook for ​Getting Started
○ Methods, tools and techniques for working with target groups

● Packaging and releasing software

○ offer each of WaaS, the persistent provenance system RaaS and the DKB as
separate services

○ offer the framework for composing them as a Software framework that others can
adopt and adapt, optionally replacing some of the DARE components

○ offer the abstracted general purpose DARE platform with one or both of two
tailorings for user communities developed within DARE

○ DARE platform​ ​https://gitlab.com/project-dare
○ Design and implementation of the components of the DARE toolkit following a

Microservices approach and Virtualization techniques on multiple levels, ​i.e.
Kubernetes Container Orchestration​ see §5.2.

ID2.2-M25 Public release 62

https://gitlab.com/project-dare
https://gitlab.com/project-dare

DARE-777413

● Promoting DARE assets
○ Social media including: blogging, tweeting and ResearchGate
○ free promotion and recruitment and training of active advocates
○ developers events (webinars, hackathons)
○ standard software engineering documents and code commenting tools: ​doxygen​,

class diagrams​,
ü Ambassador Programme (chance to build adoption in other communities,

networking opportunities, etc.)

5.2 Individual and Combined services

Deployment and operations effort required can often present an obstacle for the adoption of
new platforms like the DARE toolkit. Therefore, care has been taken to design and implement
the components of the DARE toolkit from the start in a way that eases the burden on
IT-administrators and self-empowers and non-expert users to be able to run and manage a
DARE deployment without the help of IT-operations experts. Using microservices facilitates
deployment of the DARE platform when a community wishes to select some of them. In these
cases and for the complete platform virtualisation on multiple levels assists with deployment.

The components, as presented in the preceding sections, are designed as loosely coupled,
concise​ ​services. Communication / Interworking is realised through APIs, mostly based on
REST interfaces using JSON responses, allowing for distribution and horizontal scaling of the
services (e.g. through the automatic functionalities of Kubernetes). DARE is undogmatic when 70

it comes to the microservices philosophy, though. Where it was required to directly address user
needs, for example, deviations from this approach are made. For example, to support some
simulation codes that use the Message Passing Interface (MPI), more tightly coupled
interdependencies are required, e.g. a shared POSIX filesystem between the Kubernetes pods
that take part in the computational job. However, care has been taken to address these cases
with native Kubernetes functionality, e.g. in this case with a Kubernetes Operator.

To avoid duplication of effort and sustainability challenges after the project’s end, well
established components have been used wherever possible. Where multiple implementations
where available, well-known and widely used community-supported solutions have been
preferred. Such components include MySQL, nginx, Virtuoso, Keycloak and Kubernetes.

APIs of the DARE components are designed to be as simple as possible, preferably as REST
APIs using JSON for communication. API documentation is available in the form of
OpenAPI/Swagger descriptions. Where available, (pseudo-)standards have been used, such as
W3C-Prov, DCAT-AP and CWL.

As has been described before, the DARE components make use of operating-system level
virtualisation. They are distributed as Containers, and their deployment is managed using the
Kubernetes Container Orchestration system. Where possible, existing community-maintained
container images are used to avoid replication of work. For custom containers, care has been
taken to follow best-practices such as relying on community-maintained base images, carrying

70 Kubernetes ​https://kubernetes.io/

ID2.2-M25 Public release 63

http://www.doxygen.org/
http://www.softeng-support.ac.uk/documents/2013/06/05/fortran-callgraph-doxygen.html
http://www.softeng-support.ac.uk/documents/2013/06/05/fortran-callgraph-doxygen.html
https://kubernetes.io/

DARE-777413

only necessary software in small containers running only single applications, using APIs
between different applications instead of interweaving, etc, which reduces the effort for
maintenance and operations. For deployment, Kubernetes descriptors have been prepared that
allow selective as well as collective deployment of the DARE components.

The above described containers and descriptors allow easy deployment on existing container
infrastructures, such as managed Kubernetes Clouds (e.g. Google Kubernetes Engine). On top
of that, the DARE project provides tools to ease the deployment on IaaS-Clouds such as
Amazon and the EOSC-provided IaaS Clouds (e.g. EGI FedCloud). By using the Terraform 71

tool, DARE can provide Infrastructure-as-code level configuration files that allow automation of
deployment on various Cloud technologies, both managed and on-premise, e.g., locally installed
OpenStack Clouds. For this approach, DARE relies on the work of the Kubernetes project
Kubespray to automate the deployment of Kubernetes on Cloud infrastructures and then 72

deploying the DARE components on top.

Most of the DARE components can be used separately as well as in combination as a part of its
design philosophy. The components should be as independent as possible, but allow for strong
synergy effects when used in combination. For example, the provenance system can be run
independently from the rest of DARE as an autonomous system. However, there are many
advantages when it is used with other components. As described in §4, when used with
dispel4py for example, a lot of provenance information is collected and recorded automatically.
Another such case is the Search & Discovery service, which can but does not need to make use
of the information collected from the Provenance service. In this way, DARE encourages further
use of its components to improve long-term sustainability.

Authentication and Authorisation

Including support for Authentication and Authorisation in the DARE platform is a particular
challenge due to the dual objectives described above, as they result in partly contradicting
requirements. To give just one example: while on the one hand, local deployments (on-premise)
should be independent of external services and separate components should be usable without
too many dependencies, typical requirements of community-driven hosted services go in the
opposite direction. Users would like to be able to use their existing accounts to log-in and want
to benefit from Single-Sign-On solutions instead of entering their credentials multiple times. For
this purpose, community-driven infrastructures like the ESFRIs often employ or are on their way
to implementing the strategy depicted in the AARC Blueprint Architecture . Examples include 73

DARIAH , EPOS , LifeWatch and many others. This is also the model that the EOSC-portal 74 75 76 77

is currently using and the proposal for the EOSC AAI from EOSC-Hub , project. 78 79

71 ​https://www.terraform.io/
72 ​https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
73 ​https://aarc-project.eu/architecture
74 ​https://wiki.de.dariah.eu/display/publicde/DARIAH+AAI+Documentation
75 ​https://aarc-project.eu/aarc-in-action/epos/
76 ​https://wiki.geant.org/display/AARC/LifeWatch+-+Pilot+Overview
77 ​https://eosc-portal.eu/
78 ​https://www.eosc-hub.eu/
79 ​https://confluence.egi.eu/display/EOSC/Authentication+and+Authorization+Infrastructure+-+AAI

ID2.2-M25 Public release 64

https://www.terraform.io/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://aarc-project.eu/architecture
https://wiki.de.dariah.eu/display/publicde/DARIAH+AAI+Documentation
https://aarc-project.eu/aarc-in-action/epos/
https://wiki.geant.org/display/AARC/LifeWatch+-+Pilot+Overview
https://eosc-portal.eu/
https://www.eosc-hub.eu/
https://confluence.egi.eu/display/EOSC/Authentication+and+Authorization+Infrastructure+-+AAI

DARE-777413

To strike a balanced compromise, WP5 has evaluated multiple standards (OpenID Connect , 80

SAML2) and available implementations (among them Keycloak, Unity IDM, Perun, Shibboleth) 81

and has finally decided to implement a solution based on the Keycloak Open Source Identity
and Access Management solution . Keycloak is a widely supported Open Source solution with 82

backing from Red Hat, as it forms the upstream project of their commercial Red Hat Single
Sign-On solution. It allows Identity Brokering, acting as an AAI Proxy, Single-Sign On, as well as
local user databases. With SAML, OAuth2.0 and OpenID Connect, it supports the most 83

important Standards, allowing easy integration and wide compatibility with standards-compliant
software and infrastructures (such as EOSC). Additionally, client adapters for multiple
programming languages and application servers are available to facilitate integration. For the
use with microservices in particular, an authenticating (reverse) proxy called Gatekeeper is
available, that can be used to outsource the protocol implementation from the application to this
---proxy. Due to its popularity, a curated helm chart for Kubernetes is available and upgraded
regularly on which DARE can easily rely.

On this foundation, DARE uses the OpenID Connect/OAuth 2.0 Standard with access tokens.
Even though this meets the requirements nicely, there are still challenges to solve which are
currently under investigation. These include pure API access (OAuth2.0 is browser-focused)
and secure delegation for long-running batch jobs (OAuth 2.0 Token Exchange is under
investigation). 84

80 ​https://openid.net/developers/specs/
81 ​https://tools.ietf.org/html/rfc7522
82 ​https://www.keycloak.org/
83 ​https://tools.ietf.org/html/rfc6749
84 ​https://tools.ietf.org/html/rfc8693

ID2.2-M25 Public release 65

https://openid.net/developers/specs/
https://tools.ietf.org/html/rfc7522
https://www.keycloak.org/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc8693

DARE-777413

6 Summary, Vision and Impact
The power and usability of the DARE platform and its supported applications is already
significant (§3) and is going to be extended substantially during the project’s final year (§4.4).
Work is already underway in each work package of DARE and for each subsystem contributing
to the platform’s power (§4.1, §4.2, §4.3 & §5.2). There is no doubt that this will deliver more of
what our user communities need. However, there is a ​critical issue that must be taken into
account​ as this work is planned and progresses, namely ​sustainability​. It recurs repeatedly in
every planning discussion with users, developers and funders. Without it being achieved our
user communities will suffer and the DARE advances will be lost. Current DARE investment in
and planning for sustainability was presented in §5.

With due regard for sustainability principles, engineering practices and constraints needed for
sustainability the following steps will be undertaken in the DARE project’s final year.

1. Enable easy deployment​ onto a wider range of hosting infrastructures so that user
communities can find and sustain their required operational resources. This is needed
almost ​immediately​ to sustain DARE availability during and after courses and to let
researchers run DARE-enabled methods ​repeatedly​ to build statistical evidence.

2. Introduce AAI controls​ compatible with user practice and organisational requirements
and use these to meet personal data privacy requirements and tailored research
contexts supporting CSCW in conjunction with DARE.

3. Increase automation and optimisation​ to extend the range and durability of
DARE-supported methods, to increase portability and to aid self-sufficiency.

4. Pioneer an integrated and flexible DARE KB to encourage self-sufficiency among
research developers and application experts and to deliver easily sustained abstract
wrapping of methods.

5. Deliver provence-powered tools​, easily controlled by users, to incentivise the
configuration and use of provenance and to improve research and operational practices.

6. Develop new and ​challenging applications​ for each collaborating domain and ensure that
these are made accessible to a wide community with similar interests to assess their
value and utility. This will provide evidence of which DARE functionalities are worth
sustaining.

7. Run training sessions to stimulate the use of these methods and to conduct the initial
assessment of worth, usability and cost-effectiveness.

8. Conduct a trial of self-sufficiency (the volcanic-ash modelling example - §3.3) to discover
the extent to which application communities can conduct their own pioneering R&D
within DARE, observing the rate of progress and the nature of the help needed.

9. In preparation for future ​minimum cost sustainability​ and ​maximum self-sufficiency
conduct three finalisation procedures in parallel:

a. Limit as precisely as possible the functionality the application communities need
to continue after DARE and make a strong case for retaining those.

ID2.2-M25 Public release 66

DARE-777413

b. Reduce to the smallest set of elements possible the platform and software stacks
to be maintained ​for those functionalities​; including if possible reducing the
technologies used.

c. Maximise self-sufficiency by delivering all aspects of documentation as well as
tools and defaults.

10. Application researchers and system providers jointly form a committed consortium to
deliver a sustained five-year future with the governance described above.

This will pioneer a new approach to supporting demanding collaborative research well.

Acknowledgements
The DARE project is a Horizon2020 project, 777413, funded by the European Union. It builds on
a succession of prior EU projects, including: ADMIRE, VERCE, ENVRI, ENVRIplus, and on
nationally funded projects. It depends on the coordination of e-Infrastructures by EOSC. The
authors thank the research software engineers and systems teams that have delivered and
tested a succession of releases of the platform, and the research developers and
application-domain scientists who have worked with them to shape and demonstrate the power
of DARE’s approach and products.

References

[Aki & Richards 1980] K. Aki & P. G. Richards, ​Quantitative Seismology, Theory and Methods. Volume I and II, ​1980.

[Anselemi & Gaujai 2009] Anselmi, J., Gaujal, B.: ​Performance evaluation of work stealing for streaming applications​.
In: Abdelzher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 18–32.Springer, 2009.

[Atkinson ​et al.​ 2019] M.P. Atkinson, R. Filueira, I. KLampanos, A. Kourkourikos, A. Krause, F. Magnoni, C. Pagé, A.
Rietbrock and A. Spinuso, ​Comprehensible control for researchers and developers facing data challenges​, proc.
IEEE eScience conf. 2019.

[Atkinson ​et al.​ 2018] M.P. Atkinson, E. Casaroti, Ewering, R. Filgueira, A. Gemünd, I. Klampanos, A. Koukourikos, A.
Krause, F. Magnoni, Pagani, C. Pagé, A. Rietbrock, A. Spinuso and C. Wood, ​DARE Architecture & Technical
Positioning​, Deliverable D2.1 DARE project. URL ​https://zenodo.org/record/2613550#.Xe-l5r_grUb

[Atkinson ​et al.​ 2016] M.P. Atkinson, Alex Hardisty, Rosa Filgueira, Cristina Alexandru, Alex Vermulen, Keith Jeffery,
Thomas Loubrieu, Leonardo Candela, Barbara Mangagna, Paul Martin, Yin Chen, Margareta Helström, ​A consistent
characterisation of existing and planned RIs​. Deliverable 5.1 of the ENVRIplus project URL
http://www.envriplus.eu/wp-content/uploads/2016/06/A-consistent-characterisation-of-RIs.pdf

[Atkinson & Filgueira 2020] ​Planning dispel4py developments​, in preparation, 2020. URL
https://drive.google.com/open?id=1N6UGU8J47FHpnWaLTNpRLCAFguGIQYmanmO4pyB8ixM

[Atkinson & Levray 2020] Malcolm Atkinson and Amélie Levray, ​DKB Design​, in preparation, 2020. URL
https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit?usp=sharing

ID2.2-M25 Public release 67

https://zenodo.org/record/2613550#.Xe-l5r_grUb
http://www.envriplus.eu/wp-content/uploads/2016/06/A-consistent-characterisation-of-RIs.pdf
https://drive.google.com/open?id=1N6UGU8J47FHpnWaLTNpRLCAFguGIQYmanmO4pyB8ixM
https://docs.google.com/document/d/1hCyoqeB8R0Ov5ZcBZVxyCOAiOST7QEP90n37PnghxGs/edit?usp=sharing

DARE-777413

[Bell ​et al.​ 2013] Bell, Ray & Strachan, Jane & Vidale, P.L. & Hodges, Kevin & Roberts, Malcolm. (2013). Response
of Tropical Cyclones to Idealized Climate Change Experiments in a Global High-Resolution Coupled General
Circulation Model. ​Journal of Climate​. ​26​. 10.1175/JCLI-D-12-00749.1.

[Casarotti ​et al.​ 2019] Casarotti E., Magnoni F., Pagé C., Filgueira R.,, Klampanos I., ​D8.4​ ​Training and Consulting
Report I​, DARE D8.4, July 2019.

[Corcho 2019] Oscar Corcho, ​Management of versions of ontologies​. Personal communication, 2019

[Doltz ​et al.​ 2018] Dolz M.F., Del Rio Astorga, D., Fernández J., Garcia, J.D. and Carretero, J., ​Towards automatic
Parallelization of stream processing applications​, IEEE Access, Vol. 6, pp 39944-39961, 2018. DOI
10.1109/ACCESS.2018.2855064. URL ​https://doi.org/10.1109/ACCESS.2018.2855064​.

[DXWG 2020] W3C Data Exchange Working Group, ​Data Catalog Vocabulary (DCAT) - Version 2 W3C
Recommendation​ 04 February 2020, URL ​https://www.w3.org/TR/vocab-dcat-2/

[Filgueira ​et al.​ 2017] Rosa Filguiera, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos and Alexander Moreno,
dispel4py: ​A Python framework for data-intensive scientific computing​, The International Journal of High Performance
Computing Applications 2017, Vol. 31(4) 316–334. DOI: 10.1177/1094342016649766. URL
https://journals.sagepub.com/doi/pdf/10.1177/1094342016649766

[Filgueira ​et al,​ 2016] R. Filgueira, R. Ferreira da Silva, A. Krause, E. Deelman, and M. Atkinson, ​Asterism: Pegasus
and dispel4py hybrid workflows for data-intensive science​, in 7th International Workshop on Data-Intensive
Computing in the Clouds (DataCloud’16), 2016, p. 1–8.

[Frigo ​et al.​ 1998] M. Frigo, C. E. Leiserson, and K. H. Randall. ​The implementation of the cilk-5 multithreaded
language​. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’98, pages 212–223, ACM 1998

[Garijo ​et al.​ 2019] Daniel Garijo, Maximiliano Osorio, Deborah Khider, Varun Ratnakar and Yolanda Gil, ​OKG-Soft:
An Open Knowledge Graph for Describing, Composing and Reusing Software​, IEEE eScience Conf., 2019

[Klampanos ​et al.​ 2019] Iraklis Angelos Klampanos, Athanasios Davvetas, André Gemünd, Malcolm Atkinson,
Antonis Koukourikos, Rosa Filgueira, Amrey Krause, Alessandro Spinuso, Angelos Charalambidis, Federica
Magnoni, Emanuelé Casarotti, Christian Pagé, Mike Lindner and Vangelis Karkaletsis, ​DARE: A Reflective Platform
Designed to Enable Agile Data-Driven Research on the Cloud​, in BC2DC workshop proc. IEEE eScience conf.,
578-585, 2019. DOI 10.1109/eScience.2019.00079

[Klampanos ​et al.​ 2015] Klampanos, Iraklis Angelos, Martin, Paul, & Atkinson, Malcolm. ​Consistency and
Collaboration for Fine-Grained Scientific Workflow Development: The dispel4py Information Registry​. Zenodo.
http://doi.org/10.5281/zenodo.3361395​.

[Lannon ​et al.​ 2020] Larry Lannom, Dimitris Koureas, and Alex R. Hardisty, ​FAIR Data and Services in Biodiversity
Science and Geoscience​. Data Intelligence 2 (2020), 122–130. doi: 10.1162/dint_a_00034

[Levray 2020] Amélie Levray, ​DKB Requirement Specification Document,​ In preparation. 2020.

ID2.2-M25 Public release 68

https://doi.org/10.1109/ACCESS.2018.2855064
https://www.w3.org/TR/vocab-dcat-2/
https://journals.sagepub.com/doi/pdf/10.1177/1094342016649766
http://doi.org/10.5281/zenodo.3361395

DARE-777413

[Magnoni ​et al.​ 2019a] Magnoni F., Casarotti E., Artale P., Lindner M., Rietbrock A., Klampanos I., Davvetas A.,
Spinuso A., Filgueira R., Krause A., Atkinson M., Gemund A., Karkaletsis V., ​DARE to Perform Seismological
Workflows​, IN13C-0726, American Geophysical Union, Fall Meeting 2019.

[Magnoni ​et al.​ 2019b] Magnoni F., Casarotti E., Davvetas A., Klampanos I., ​D6.3​ ​Pilot Tools and Services, Execution
and Evaluation Report I​, DARE D6.3, July 2019.

[Martin ​et al.​ 2019] Paul Martin, Laurent Remy, Maria Theodoridou, Keith Jeffery, and Zhiming Zhao, ​Mapping
heterogeneous research infrastructure metadata into a unified catalogue for use in a generic virtual research
environment​. Future Generation Computer System, 101, 1–13. http://doi.org/10.1016/j.future.2019.05.076

[Mattheis ​et al.​ 2012] Sebastian Mattheis, Tobias Schuele, Andreas Raabe, Thomas Henties and Urs Gleim, ​Work
Stealing Strategies for Parallel Stream Processing in Soft Real-Time Systems​, in proc. Architecture of Computing
Systems -- ARCS 2012, 172-183, Springer 2012

[Myers ​et al.​ 2015] James Myers, Margaret Hedstrom, Dharma Akmon, Sandy Payette, Beth A Plale, Inna Kouper,
Scott McCaulay, Robert McDonald, Isuru Suriarachchi, Aravindh Varadharaju, Praveen Kumar, Mostafa Elag, Jong
Lee, Rob Kooper and Luigi Marini, ​Towards sustainable curation and preservation: The SEAD project’s data services
approach​, in: e-Science, IEEE pp. 485-494, 2015.

[Navarro ​et al.​ 2009] Navarro, A., Asenjo, R., Tabik, S., Cascaval, C. ​Analytical modeling of pipeline parallelism​. In:
International Conference on Parallel Architectures and Compilation Techniques (PACT).IEEE (2009)

[Pagé ​et al.​ 2019a] Pagé, Christian; Plieger, Maarten; Som De Cerff, Wim; De Vreede, Ernst; Drost, Niels;
Klampanos, Iraklis Angelos; Karkaletsis, Vangelis; Atkinson, Malcolm and Pivan, Xavier. ​Climate Data Access:
Re-thinking our Data Analysis Workflows​, poster, in Proc. Scientific Gateways Conference (2019), DOI:
10.17605/OSF.IO/T8Y3H URL: ​https://zenodo.org/record/3546232#.Xfeh4S2ZOUk

[Pagé ​et al.​ 2019b] Pagé, Christian; Som de Cerff, Wim; Plieger, Maarten; Spinuso, Alessandro; Pivan, Xavier,
Enabling Transparent Access to Heterogeneous Architectures for IS-ENES climate4impact using the DARE Platform​,
in Proc. IEEE eScience Conf. (2019) DOI: 10.17605/OSF.IO/WKM93, URL:
https://zenodo.org/record/3546219#.XfelrS2ZOUk

[Python IDEs 2019] The Python IDEs, ​The Python Language Reference​ URL ​https://docs.python.org/3/reference/

[Ramakrishnan 2018] V. Ramakrishnan, Gene Machine, Oneworld Publications, 2018.

[Rietbrock ​et al. ​2018] Andreas Rietbrock, Federica Magnoni and Emanuele Casorotti, Alessandro Spinuso and
André Gemünd, D6.1​ ​Requirements and Test Cases I​, DARE D6.1, July 2018. URL
https://drive.google.com/open?id=1ZISbDjphDR7gYNiQ24TQOM-npKxx169A​.

[Rodriuez & Buyya 2018] Maria A. Rodriguez and Rajkumar Buyya, ​Scheduling dynamic workloads in multi-tenant
scientific workflow as a service platforms​, Future Generation Computer Systems, ​79​, 2018, 739-750

[Rule, Adam, ​et al​. 2018] "T​en simple rules for reproducible research in Jupyter notebooks.​" ​arXiv preprint
arXiv:1810.08055​ (2018).

[Spinuso ​et al.​ 2019] Alessandro Spinuso, Malcolm Atkinson and Federica Magnoni, ​Active provenance for
Data-Intensive workflows: engaging users and developers​, Proceedings of the BC2DC workshop IEEE eScience
conf. 2019. URL ​https://bc2dc.github.io/presentations/ActiveProvenanceASpinuso.pdf​ ​Replace with DOI

ID2.2-M25 Public release 69

https://zenodo.org/record/3546232#.Xfeh4S2ZOUk
https://zenodo.org/record/3546219#.XfelrS2ZOUk
https://docs.python.org/3/reference/
https://drive.google.com/open?id=1ZISbDjphDR7gYNiQ24TQOM-npKxx169A
https://bc2dc.github.io/presentations/ActiveProvenanceASpinuso.pdf

DARE-777413

[Spinuso & Klampanos 2018] Alessandro Spinuson and Iraklis Klampanos, ​Integrated Monitoring and Management
Tools​, D3.7 DARE project deliverable URL
https://drive.google.com/open?id=1QRDAQOoyPX13Uue_L3c_WnLNhapQlD3z

[Trani 2019] Trani L. ​A methodology to sustain common information spaces for research collaborations​, PhD thesis,
University of Edinburgh, 2019.

[Trani ​et al.​ 2018] L. Trani, R. Paciello, M. Sbarra, D. Ulbricht and the EPOS IT Team, ​Representing Core Concepts
for solid-Earth sciences with DCAT – the EPOS-DCAT Application Profile​, Geophysical Research Abstracts 2018.

[Trani ​et al.​ 2018] Trani L., Atkinson M.P., D. Bailo, R. Paciello, Filgueira, R., ​Establishing core concepts for
information-powered collaborations​, Future Generation Computer Systems 89, 421–437, 2018.

[Trani ​et al.​ 2018] Trani, L., Paciello, R., Bailo, D., and Vinciarelli, V. (2018). EPOS-DCAT-AP: a DCAT Application
Profile for solid-Earth sciences. In 2018 Fall Meeting AGU. Abstract IN31B-33.

ID2.2-M25 Public release 70

https://drive.google.com/open?id=1QRDAQOoyPX13Uue_L3c_WnLNhapQlD3z

DARE-777413

Appendix 1 Abbreviations and Definitions
Table A1.1: ​Abbreviations used in this document

Abbreviation Meaning

§ Section or paragraph

AAI Authentication Authorisation and Identity

API Application Programming Interface. the means by which software and developers use
the capabilities a software subsystem or services offers

C3S Copernicus Climate Change Service a service run by Copernicus

C4I Climate for Impact a service run by IS-ENES

CMIP

CSCW Computer-Supported Collaborative Working

CWL Common Workflow Language a W3C standard ​https://www.commonwl.org/

DCAT Data Catalogue, a W3C standard describing the content of data catalogues

DKB DARE Knowledge Base an open-ended place to leave and access information

DXWG Data eXchange Working Group a W3C group developing a vocabulary to describe
data, DCAT

EPOS European Plate Observing System

FDSN Federation of Digital Seismometer Networks that deploy seismometers on a long-term
basis to collect and make available their wave-form observation time series

KB Knowledge Base an organised repository of information used by people and software

LOD Linked Open Data used to represent the semantic web

MIP

MPI Message Passing Interface used in HPC systems for parallelisation

MS Mile Stone that marks project or research campaign progress

MT3D Moment Tensor in 3D, a seismological method

P4 Protected Pervasive Persistent Provenance a means of recording what has been done

PE Processing Element, a computational process or processes forming part of a
data-streaming workflow

ID2.2-M25 Public release 71

https://www.commonwl.org/

DARE-777413

RaaS Reproducability-as-a-Service the collection and use of provenance to facilitate
repeating a computational experiment or analysis

RA Rapid Assessment a seismological method estimating ground motion

RDF Resource Description Framework (RDF) a W3C standard for the semantic web

Registry The dispel4py Information Registry that manages information about dispel4py
workflows and their component PEs

RI Research Infrastructure computational, storage and networking facilities to support
research or domain specific facilities to support research

RoI Return on Investment the value obtained compared with the effort or cost needed

RSE Research Software Engineer a designation of competence awarded by SSI

SSI Software Sustainability Institute ​https://www.software.ac.uk/

SWIRRL Software for Interactive and Reproducible Research Labs (ENVRIfair project)

UTC Coordinated Universal Time ​https://en.wikipedia.org/wiki/Coordinated_Universal_Time

WaaS Workflows-as-a-Service an automated support for authoring and using formalised
methods

WMS Workflow Management System that supports developing and running workflows

WPS Web Processing Service an OGC developed standard for geospatial data

URI Universal Resource Indicator a W3C standard

URL Universal Resource Locator a W3C RDF-related standard

ID2.2-M25 Public release 72

https://www.software.ac.uk/
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

DARE-777413

Appendix 2: Summary of DKB functionality
We present here tables, listings and figures summarising the functionality of the DKB
subsystem, including the Registry and the Data Catalogue, presented in §4.2. In the context of
DARE there will be one instance of the DKB per instance of the DARE platform. All users of that
platform will share this instance of the DKB. New releases of the platform may include new
releases of the DKB, its Python library and the Conceptual library. Procedures, human and
computational, will be needed to install releases without losing information accumulated in the
DKB by users of the previous version of the platform and DKB.

Table A2.0a: Functions applicable to instances of the DKB. Python call details will be in [Levray
2020] . 85

Function Description

newDKB Make a new instance of the DKB with the supplied instance name (the first part
of every PID in this DKB instance) and populate it ​only​ with the standard
conceptual library as Context ​kb​. ​NB​ if this is a re-use of an existing instance
name it will throw away all of the existing state in this instance. Therefore, if the
DKB finds it is re-use of a previous identity, it will do nothing, unless the optional
parameter ​reset​ has been set to ​True​. The new instance will have had the ​kb
Context set up. Most users will want many other things set up for them. As there
is one instance of the DKB per instance of the DARE platform, this platform/DKB
identity setting and initialisation using newDKB is performed as part of the
installation of a DARE platform.

login Start using an existing instance of the DKB specified by name, with the supplied
user name, currently as ​preferredName​, and ​sessionId​, a ​String​ meaningful
externally, e.g., issued by the AAI service. This resumes use of the DKB
instance, potentially concurrently. It will set up the DKB’s ​internal​ operational
state, such as current ​Context​ and ​User​, for this ​Session​ or ​run​.

close Terminate the session or run. Attempts to continue use result in errors. Make
any new or revised state persistent, where this hasn’t already happened.
Release resources and discard the session or run internal state.

status Return a dictionary, which is a snapshot of aspects of the DKB it is prepared to
reveal, e.g., for diagnostic purposes, as name: value pairs. Minimal until
evidence extra things are needed emerges.

deprecate Change the state, so that attempts to log in to this DKB get a warning.

delete Throw away this instance of the DKB, releasing all associated resources. NB
have you made alternative arrangements for PID resolution or are they
unnecessary?

85 Tables in this Appendix are in two parts: the (a) part: things that are being or have been implemented,
the (b) part: things that ​might​ one day be implemented.

ID2.2-M25 Public release 73

DARE-777413

Table A2.0b: Possible future developments for managing DKB instances.

Function Description

backup Preserve the state of the DKB in a suitable independent reliable storage system.
There may be controls, e.g., for selectivity or incrementality.

restore Recover the state. There may be similar controls. Where partial restoration is
used, there may be checks on the impacts on the other DKB state.

A2.1 Entry
The underpinning role of Entries in the DKB was presented in §4.2.3 as a generic term for any
Entry in the DKB, including Concept definitions and instances of Concepts. They also include
Entries that do not comply with these additional structures in order not to overconstrain users.
However, we would prefer them not to use Entry functions directly.

Table A2.1a: Functions applicable to all Entries in a DKB. They may not all be implemented in a
DKB instance. The category of Entry may determine their interpretation and whether they are
available. They are based on the data-lifecycle developed as the ENVI reference model . The 86

use of direct Actions on Entries is ​deprecated​. We recommend that users work via the
Conceptual library features - see §4.2.3 and §A2.4. Python call details will be in [Levray 2020].

Function Description

newEntry Introduce a new Entry with its initial values, relationships or attributes. Some
values will be added automatically. The values are supplied as a Python
dictionary, They must include a value for ​name​ not already used in the current
Context and may not specify the value for any automatically set attribute.

get Obtain the current state of an Entry identified by ​name​, ​prefix​:​name​ or ​PID​ as a
Python dictionary, including the automatically set attributes.

update Change, add or delete some of values in an Entry identified as in ​get​ iff updates
are permitted for this Entry in its Context by the current user or run. The values
to change are supplied as a Python dictionary. They may not change any of the
standard attributes. Existing additional attributes may be changed and new ones
may be added. The attributes to delete are identified by an optional list. A new
uniqueness counter value will be used in the ​pid​ and the ​subsequent​ attribute in
the updated Entry will be set to this ​pid​ and the ​previous​ attribute will be set in
the new Entry to the old ​pid​.

86 ENVRI Reference Model ​https://confluence.egi.eu/display/EC/ENVRI+Reference+Model

ID2.2-M25 Public release 74

https://confluence.egi.eu/display/EC/ENVRI+Reference+Model

DARE-777413

A2.2 Context 87

A Context is not represented as a DKB Entry because it is managed differently from Entries,
e.g., mutation does not generate new versions. The set of Entries defined in a particular Context
is inferred from their prefix attribute in their Entry and PID. The other attributes of a Context are:

 prefix: String, # ​the prefix that identifies this Context
 owner: Person, # ​the individual who created and controls this Context
 user: Person[], # ​the current individual working in this Context, empty if no one 88

 searchPath: String[], # ​when a name not found locally ordered Contexts to search next
 state: String, # ​one of a small list of DKB-determined states
 … # ​attributes below here may be needed later
 readers: Person[], # ​a possible privacy/authorisation control feature
 writers: Person[], # ​a possible mutation and authorisation control system
 history: Session[], # ​the current and previous sessions, current first then order by age

For each user session or method run using the DKB, the DKB keeps track of the current
Context, in ​private​ variables. We give examples:

 _home: Context, # ​the current Context; first place to look
 _contexts: Context{}, # ​a dictionary mapping prefix to Context for all contexts available
 _stateKB: String, # ​current status of this DKB instance

When the DKB wants to get an Entry by quoting its ​name​, this initiates a search with the
following algorithm, which determines the nature of inheritance.

def​ get(name): #​ try to find an Entry with the supplied name 89

 pr = _home.prefix # ​look first using the current prefix
 res = lookup(pr + ‘​:​’ + name) # ​use prefix<standard separator>name for existing Entries
 ​If​ res: # ​lookup returns ​None​ if not found
 ​return​ res # ​it was found => return result
 path = _home.searchPath # ​not found - prepare to search using search paths
 ​for​ pr ​in​ path: # ​look first using the current prefix
 res = lookup(pr + ‘​:​’ + name) # ​use prefix<standard separator>name for existing Entries
 ​if​ res: # ​lookup returns ​None​ if not found
 ​return​ res # ​it was found, return result
 path = setAppend(path, _contexts[pr].searchPath) # ​append to path any prefixes not in it
 ​raise​ EntryNotFoundError(name + ‘ ​not found starting from​ ‘ + _home.prefix)

87 Consider recording owner Person, who can manage authorisation lists.
88 Normally an additional user would not be permitted, but if they are, the list holds the most recently
joined first.
89 Need to sort out explicit prefix and explicit PID first in real code.

ID2.2-M25 Public release 75

DARE-777413

This algorithm ensures that the search path of the current Context dominates, and if a user just
wants to work by extending a Context, however it is built, they only need to put it in their search
path. Putting the current Context as the search path is a sensible default, when a user creates a
new Context.

Table A2.2a: Functions operating on Contexts that are implemented or being implemented. See
[Levray 2020] for specifications.

Function Description

newContext Introduce a new Context with a specified prefix (check unique) and specified
search path/ The search path defaults to the Context in which this Action is
performed. Set counter to zero for local Entry discrimination. Do not
automatically enter the new Context.

update Add, update or discontinue Entries, changing the set available. This is done by
modifying Entries with the relevant ​prefix​. ​No explicit function is needed!

getSearchpath Return a list of Strings corresponding to the current, locally held search path,
i.e., perform ​return​ _home.searchpath

setSearchpath Set the search path of the current Context, i.e., perform
_home.searchpath = searchpath

clone Generate a new Context with a copy of the supplied Context . Auto-discriminate 90

prefix by appending an integer when the caller does not supply one.

enter(r|w) Move into the Context with the intention of ​r​eading or ​w​riting. It becomes the
new start of name searches. Re-entry on next login if this was the last Context. If
there was a previous Context that has been left. The Context administration
code is not required to remember previous Contexts visited.

leave Explicitly leave the operational Context. Move into limbo. Methods may need this
to minimise the risk of propagating information unintentionally.

discard Explicitly stop this Context from being used further. The extent to which its
resources and Entry can be discarded is an open question, but a sufficient RIP
is needed. It is a research question, what this needs to contain.

Table A2.2b: Functions operating on Contexts that may be implemented when needed and
resources are available.

Function Description

branch As for clone form a copy, but retain a relationship with the origin as master . 91

90 May implement using copy-on-write and accelerate using Bloom filters.
91 May use Git algorithms.

ID2.2-M25 Public release 76

DARE-777413

pull Obtain updates from the master.

push Send updates to the master - may need other Git commands.

The interaction between a platform’s login procedures, for users and for their delegated
methods, will need to link in with the Context management initialisation, and Context owner
identification. This may need to be co-developed in each new deployment Context, and comply
with the privacy and collaboration regulations prevailing in that community. See §5.2 for our
immediate plans for AAI implementation. This will deliver an identifiable ​Session​ instance
associated with a known ​Person​ instance.

The ​Session​ instance will be automatically created and uniquely identified by the platform. The
DKB will capture information that is needed by others or that needs to persist in this instance.
See §5.2.

There are several issues here, for example that the token delivered by an AAI procedure may
be very short-lived and could expire before ​Method run​ finishes. The standard also describes
that the token should be per audience and per client, but doesn't offer a ready-to-use solution
for "batch" kind of jobs that run in the background on distributed resources. There is the
possibility of getting a second type of token ("Refresh token") to retrieve new access tokens, 92

but some entity would have to manage this and redistribute it to the distributed processes that
want to use it (e.g. during a dispel4py workflow running on multiple servers), which then
connects with the a ​Session​. We are currently leaning towards a solution where the DARE API
would "hold" the original user token (short-lived JWT) and would, upon job execution, exchange
this for a delegated token for backend processing which is valid for a longer period of time but is
scoped, i.e. only allows for limited actions such as insertion but not retrieval of provenance data.
This could be combined with ​Session​ information to make it even more secure.

The ​Person​ instance will contain a consistent, persistent but pseudonymised to be normally
uninterpretable in human terms identity by default to comply with GDPR and local
data-protection regulations . If, during some Session, when identified in this way, a user 93

performs an act supplying a public person PID, e.g., their ORCID identity, then their Person
instance will be updated to include this information. When it has been so supplied the DKB will
keep and reveal their human-interpretable identity, since it now stores a mapping from their
pseudonym used by the platform to the identity they have just supplied. For this revelation to be
permitted the naming service used must have a compliant informed consent procedure. A

92 ​https://openid.net/specs/openid-connect-core-1_0.html#RefreshTokens
93 The individuals need a consistent pseudonymised identity, so that all their work and actions can be
appropriately attributed and gathered. Often, there is an authority, capable of reversing the mapping from
human identity to hard-to-interpret pseudonym, e.g., in medical contexts, in case a research subject is
found to have a serious condition through the research. Some communities may require this in case the
person’s behaviour is posing a problem. That mechanism and decision is external to DARE and the DKB.

ID2.2-M25 Public release 77

https://openid.net/specs/openid-connect-core-1_0.html#RefreshTokens

DARE-777413

simpler initial option, is to allow users, when they create a ​Person​ instance to specify a
preferredName​ that they wish to be known by, leaving this empty would imply anonymity.

A2.3 Concept
The requirement for creating, managing and using Concepts is described in §4.2.3. Here we
begin to outline how those Concepts are supported and their use is facilitated. In the listings
using a mocked up language, the keyword ​concept​ introduces a Concept definition. It may be a
new Concept as shown in Listing A2.2 . 94

The representation of a Concept instance is defined by the ‘Concept’ instance itself, as shown in
Listing A2.1. Readers not concerned with these representational issues are advised to skip to
Listing A2.2.

The Concept definitions are all Entries and so they have the attributes of every Entry. The
attributes are then defined by a list of statements each introducing one attribute with the
identifier given at the start of the statement, followed by a colon, followed by a description of the
values that attribute may take. That description is constructed using an expression that yields a
built-in Python type, a named Concept, or the name or literal for an ​AttrDescr​ instance. The
expression may also show Collections of these or alternatives. Universally, None is an
alternative, so that unknowns may be represented, possibly to be filled later. Any permits
unconstrained values to be associated with the attribute in instances.

Attribute names may not repeat within a Concept. The list is partitioned. Attributes before ​---​ are
required, every instance must have them. Attributes after ​---​ and before … are recommended,
and those after … are optional. The fact we are defining Concept makes this recursive. It is
easier to understand Concept definition by looking at Listing A2.2 below.
concept​ Concept: # ​define a Concept, start with text for its description

 “​The means of conceptually organising using named Concepts with attributes specified​”
​these attributes are inherited from Entry and would not appear
​we show the values that would be automatically supplied

name: ‘​Concept​’, # ​name is Context unique in dare
 prefix: ‘​dare​’, # ​its Context is the shared library in every DKB instance
 pid: ‘​ex:dare:1:Concept​’, # ​persistent exportable identifier for Concept
 instanceOf: ‘​ex:dare:1:Concept​’, # ​Concept is an instance of Concept
 timestamp: ​xxx​, # ​when Concept was defined at the start of the DARE epoc

#​ there are two required attributes for every Concept definition
 extra: {String: Any}, # ​a free form dictionary of any extra attributes a user adds
 mutability: String, # ​a term, e.g., “​mutable​”, “​immutable​”, “​no hiding​” => immutable

--- #​ after 3 minus signs, we get the recommended attributes
description: String, #​ every concept should have a description saying what it is for

 … # ​beyond here optional attributes have their form defined

94 These listings are illustrative. In fact, this notation is not yet supported. At present, everything is done
using the supplied Python library calls.

ID2.2-M25 Public release 78

DARE-777413

 required: {String, AttrDescr} # ​Dictionary of attribute names and their specification
 recommended: {String, AttrDescr}, # ​Dictionary of attribute names and their spec.

optional:​ ​{String, AttrDescr}, # ​Dictionary of attribute names and their spec.
translation:​ ​{String, String[]}, # ​External equivalents, e.g., ontology terms, for any

 # ​of the attribute names in the previous 3 dictionaries
 # ​so that experts can specify a mapping to RDF
 # ​The value mapping may be in an ​AttrDescr​ instance

Listing A2.1: The notation for defining a ​Concept​: i) What does it specialise and ii) What are its
required, recommended and optional specified attributes in addition to those required by Entry
in each of its instances. Instances may have additional attributes in ​extra​.

A ​Concept​ may be a specialisation of another ​Concept​. This is indicated by the following
notation.

concept​ SpecialC(C): # ​define ​SpecialC​ as a specialisation of ​C

The ​SpecialC​ instances may be used anywhere an instance of ​C​ is required. In addition, the
specialisation inherits the specification of attributes from the ​Concept​ it specialises. It may add
more or modify existing ones using the same notation for ​required​, ​recommended​ and ​optional
attributes. Attribute names may not be duplicated, so if one in the ​Concept​ being specialised
appears in the specialisation specification, it redefines the original.

concept​ Widget: # ​a small example ​Concept​ definition
 “​An example​” # ​the description c.f. _doc
 shape: String # ​a required attribute

concept​ SpecialWidget(Widget): # ​define its specialisation
 “​A specialisation of Widget​” # ​and its description
 --- # ​no more required attributes
 length: Real, # ​recommend specify length
 weight: Real # ​and weight

Listing A2.2: Examples defining a ​Concept Widget​ and a ​Concept SpecialWidget​.

ID2.2-M25 Public release 79

DARE-777413

Figure A2.1: The corresponding DKB Entry for the ​Concept Widget​. Interpretation on platform
instance ​DKB1​ in the context with prefix ​ex​.

Figure A2.2: The corresponding DKB Entry for the Concept SpecialWidget. Note the
relationships, e.g., with a Concept that was specialised, is stored as a PID.

ID2.2-M25 Public release 80

DARE-777413

aWidg = Widget{ # ​construct an instance of Widget
 ​shape: ‘​cube​’ } #​ with one attribute in a dictionary

aSWidg = SpecialWidget{ # ​and an instance of SpecialWidget
 shape: ‘​sphere​’, # ​with required shape attribute
 length: 12.37, # ​and one of the recommended attributes
 value: 100 } # ​and an additional attribute the user wants

Listing A2.3: An example constructing instances of Widget and SpecialWidget. In the second
case not all of the recommended attributes are supplied but an extra one is.

Figure A2.3: The two Entries in the DKB corresponding to aWidg and aSWidg. These show the
user using the Concepts they have introduced to inform interpretation and to organise
information. However, they can still use their own judgement and not be over-constrained.

Table A2.3a: Functions applicable to Concepts in a DKB. See [Levray 2020] for implementation
details and Python function calls.

Function Description

newConcept Create a new Concept. If the Concept being specialised parameter is omitted, it
defaults to ​Concept​. The three dictionaries, defining ​required​, ​recommended
and ​optional​ attributes, have the attribute identifier followed by an expression
that may restrict the values the attribute may have, as described below. The
Concept ​Concept​ may not be modified, redefined or hidden as it forms the key
to the rest of the organised DKB information. The rules for attributes and
inheritance are defined below.

newInstance Create a new instance of the specified Concept supplying the attributes for this
instance of that Concept as a dictionary. Any attribute not mentioned is omitted
or gets its default value. There will be checks as to whether this complies with

ID2.2-M25 Public release 81

DARE-777413

the Concept’s definition.

get The identifier for an instance in the DKB is supplied as a ​name​, a ​prefix:name 95

or ​pid​. Some KB implementations may also allow a Python object pointer. The
result returned is a dictionary of name: value pairs in the same form as used for
newInstance​ or ​newConcept​. If a non-empty list is supplied as the ​onlyThese
parameter, then only the intersection of the attribute names that would be
returned and names as Strings in this list are returned. See §A2.2 for the search
algorithm if just a ​name​ is supplied.

find Return an enumerable ​Collection​ (for the moment a materialised Python list of
PIDs) of all of the entries that match the supplied ​query​. The ​query​ development
plan is described below.

update The instance to be updated (this includes a Concept definition) is identified in
the same way as it is for ​get​. The new values are supplied in the same way as
they are for ​newConcept​ and ​newINstance​, i.e., as a dictionary of
attribute-name, value pairs. If any checks are necessary, they are all performed
before any change occurs. If a problem is found, an appropriate ​exception​ is
raised, with the DKB state unchanged. Otherwise, all of the changes are made.

instances Return an enumerable Collection (currently a materialised Python list) of all the
instances of exactly this Concept.

Attribute specification​ can be partitioned into attribute naming and specification of the
permitted values that attribute may take.

1. The ​attribute names​ / identifiers normally start with a lower-case letter and follow
Python identifier lexical analysis rules (§2.3 in [Python IDEs 2019]) as far as possible.
They must be unique within the Concept being defined, including those present by
default and those inherited.

2. The specification of permitted values is given by an expression that:
a. names (under the get rules) of a specific Concept, instances of which supply this

attribute’s values, taking into account specialisations.
b. names (under the get rules) of a specific instance of ​AttrDescr​ which contains a

description of the permitted values and optionally mutation rules.
c. Any​ to imply that the permitted values are unconstrained.
d. In due course, there may be expressions to indicate compositions, collections or

choices between these, but they fall within ​AttrDescr​ instantiation at present.

Inheritance​ during the creation of a Concept ​CS​ that is a specialisation of Concept ​C​, is as
follows:

1. All of the attributes of ​C​ become attributes of ​CS​ unless otherwise specified by an
attribute name in ​C​ appearing in one of the three supplied dictionaries.

95 NB this retrieves a Concept, as that is an instance of ​Concept​. It may also be used to retrieve an Entry
that is an instance of ​Thing​.

ID2.2-M25 Public release 82

DARE-777413

2. All attribute definitions given for ​CS​ that do not appear in ​C​ are included
straightforwardly.

3. Where a name in ​CS​ already appears in ​C​ the following actions are taken in the given
order.

a. If the name now maps to ​None​, the attribute is dropped.
b. If the name now appears in a different inclusion group, e.g., moves from

recommended​ to ​required​, it is removed from the old inclusion group and added
to the new inclusion group in the form specified in the ​CS​ creation call.

c. Otherwise, the new specification overrides the old specification if it is different.

The formulation and interpretation of ​queries​ used in ​find​ calls will consider the following and
incrementally introduce the capabilities, not necessarily in the order given:

1. The possibility of using a Python library that helps with the relevant query evaluation.
2. The need to perform comparators on scalar values:

a. == and !=
b. >, >=, =< and <
c. range tests, e.g., 0 < ​x​ <= 100
d. inclusion tests, e.g., ​x ​in​ [1, 2, 3, 5, 8, 13, 21, 34]​ or ​x ​in​ “​the lazy brown dog​”
e. Approximate matches, e.g.,​ x ~= “​DARE​”

3. The need to support ​isa​ on Concept values and hierarchies.
4. The need to support time comparisons, e.g., ​timestamp ​after​ 2020:02:02.
5. The need to support string matching, potentially including contains, regular expressions,

approximate matching, etc.
6. The need to permit composition with ​and​, ​or​ and ​not . 96

7. The need to handle subqueries, but see Collection expressions.
8. The need to support expressions combining attribute values and literals.
9. The need to provide users with a notation and/or tool that helps form queries over the

DKB.
10. Ditto for the DKB plus contemporary services.

Update rules​ that ​may be checked include the following: 97

1. That the instance is mutable.
2. That the actor (user or software) is permitted to update in this Context.
3. That this attribute is mutable.
4. That all the required attributes will be given a value.
5. That the values given match the rules for each attribute.

Supporting ​extra attributes​ to deliver open-endedness and the ensuant flexibility.

96 This is the probable limit of implementation achievable in DARE.
97 Early versions will only check a few of these.

ID2.2-M25 Public release 83

DARE-777413

Table A2.3b: Functions considered but they will be implemented only when required and if
resources are available.

Function Description

validate Record that this instance (including a Concept) has passed quality controls.

publish Arrange that this instance (including any Concept) is publicly usable.

freeze Cocoon this instance (Concept) so that it can no-longer be changed.

deprecate Arrange that attempts to use this instance (Concept) trigger warnings.

discard Prevent further use of this instance (Concept).

promote Copy the definition of an instance (Concept) into a specified Context, dealing
with or warning about any consequences for current uses of this Entry.

export Provide an externally usable translation of this Entry. There may be options to
choose the external representation.

preserve Make a back-up copy in a preservation service.

restore Recover a backed-up copy.

archive Make a preserved copy with appropriate metadata and quality controls.

The functionality given in A2.3 is directly usable. However, a KB is prepopulated with a library of
Concepts that help in its use and administration. The initial library is described in the next
section. It is envisaged that communities will build on this with further tailoring work to facilitate
their work, normally as additional Contexts. This tailored prepared libraries can continue to
prepare for specialisations and groups within the community, concurrently with the KBs other
uses.

A2.4 Concept library
We present here the initial library that is made available in Context ​kb​ when an instance of the
KB is created. The Tables below are partition in the usual way, with the (a) parts, presenting the
currently available and developing features, and the (b) parts presenting the features under
consideration for future development. Each of these is partitioned by the category of Concepts
being presented, numbered with a Roman numeral. A category partition may be followed with a
Table of functions additional to those presented in Table 2.3 that apply to Concepts in this
category. Empty Tables are omitted.

ID2.2-M25 Public release 84

DARE-777413

Table A2.4a.i: Library of Concepts provided as common organising foundations in every KB.

Concept name Description

kb:Entry The unstructured Entry into the DKB, with no defined user attributes. ​Its direct
use is deprecated.

kb:Concept The basis for all other Concepts with zero or more mandatory, recommended or
optional attributes of specified form - see A2.3.

kb:AttrDescr A description of the permitted values of an attribute may take; a relationship to
an instance of this specifies the form and optionally the use of an attribute - see
notes below.

The creation of ​AttrDescr​ may be automatically arranged in future developments based on a
Python expression or a parsable String, for the moment it needs to be explicitly created as an
instance using the functions in Table A2.3a. There are however a set of instances, in ​kb​ with a
standard definition corresponding to each of the Concepts in Table A2.4a, or ​Any​, with the
names given by strings of the same name, e.g., ‘​Concept​’, ‘​String​’ and ‘​Any​’. These specify that
the value must be an instance or literal corresponding to that Concept, that is mutable. The
AttrDescr​ should eventually be able to specify:

1. Collections of such Concepts, i.e., initially at least list ​String[]​ and set ​Method{}​.
2. Compositions of such Concepts, e.g., tuples ​(String, Number)​.
3. Choices between value options, e.g., ​[Real, Integer, Number, Complex, Time]​.
4. Enumerated options, e.g., ​Bool: ‘True’, ‘False’

AttrDescr​ will also specify constraints on mutability and ​may​ specify constraints on visibility,
default values and preferred toString or visualisation methods. The details and representation of
AttrDescr​ will be developed incrementally, when they are needed.

Method foundations
Table A2.4a.ii: Library of Concepts provided as foundations for Method authoring, management
and use in every DKB instance.

Concept name Description

kb:Method The highest level and most general description of a method, giving at least its
name, a description and normally its inputs and outputs.

kb:Action A specialisation of ​Method​ that is simple and locally enacted, so that it ​may​ be
treated as atomic and instantaneous, e.g., its runs ​do not need to be explicitly
recorded​, only its effects. All of the Python functions in the tables in Appendix 2
are instances of ​Action​, unless otherwise specified.

kb:PythonMethod Specialisation of a ​Method​ encoded in Python, e.g., as a function or class
method. The ​kb​ will be populated with published instances of ​PythonMethod
with the name of the function the same as that given in the Tables in §A2.

ID2.2-M25 Public release 85

DARE-777413

dare:D4pMethod Specialisation of ​Method​ encoded in dispel4py that will generate a graph of
interconnected processors, PEs, via arcs of data streams. It includes
stand-alone PEs. These are currently described in the Registry and the
implementation ​may ​cross-reference​ ​ Registry entries. ​NB​, this Concept is in the
Context ​dare​ because not all KB uses will use dispel4py.

kb:InputDescr Description of one input to a ​Method​ - see below.

kb:OutputDescr Description of one output from a ​Method​ - see below.

kb:Run The records of an active or completed enactment of a Method instance.

Table A2.4b.ii: Library of additional Concepts that may in the future be provided as foundations
for Method authoring, management and use in every DKB instance. This will depend on
requirements and resources.

Concept name Description

dare:CWLMethod Specialisation of ​Method​ encoded in CWL.

dare:CompReq A computational requirement, normally of a ​Method

The design of ​Method​ and its specialisations and related Concepts is underway. It will place
most of its attributes in the ​recommended​ category to facilitate an initial idea being incrementally
developed and refined. These attributes will cover:

1. Input specification for each input that eventually defines parameters, data requirements,
and defaults. This may specify the semantics (meanings) of each input, as well as
formats and explanations in a fully developed method.

2. Output specification for each output, eventually specifying semantics, format and usage.
3. An implementation or list of implementations, e.g., as ​Method​ Python codes or calls,

dispel4py programs or compositions of other ​Methods​.
4. Version and/or PID to identify precisely the ​Method​. The available implementations may

be independently varied and identified, i.e., precisely defining what a ​Method​ does is
separate from defining how it does it, the former may be focused on human perception
for collaborating experts, the latter on software interpretation optimised and mapped
onto currently available platforms.

5. Instructions (computer interpretable) for a human interacting with a ​Run​ of the ​Method​,
or more often, for the software preparing, deploying and monitoring the chosen
implementation for this ​Run​.

6. Possible failures.
7. Data to help with optimisation.

The definition and representation of the Concept ​Method​ is currently under development, and
the specialisations may be restricted to particular forms of ​Method​ and may contain additional
details in their attributes. We plan co-design and co-development in conjunction with the

ID2.2-M25 Public release 86

DARE-777413

development of dispel4py optimisations. Hence the early inclusion of ​dare:D4pMethod​ and
related Concepts.

The ​Run​ Concept will record whatever is needed for developers and users to discover what has
been done and how it was done. For example, it will refer to the ​Method​ instance being ​run​,
note at least the start and end times, the authorised identity requesting the ​run​, and the ​Session
within which that occurs. For submitted ​run​ requests that do not originate from a current
interactive ​Session​, the ​run​ implementation may create a ​Session​ instance. Further
performance of ​Action​s and ​Method​s within the same ​Method​ enactment, do not create more
Run​ and ​Session​ instances, instead these are accumulated at a level of detail that may be
changed as the ​run​ request is configured . In DARE this is done by the provenance service P4. 98

The ​Run​ instance, refers to that P4 enactment trace, which itself may refer to the ​Run​ instance,
or to some of the key aspects of the enactment context.

Interleaved with Table A2.4 partitions are partitions of Table A2.5 showing corresponding
additional functions, beyond those shown in Table A2.3, or refining the meaning of those
functions when applied to instances of Concepts in the category that has just been described.

Table A2.5a.ii: Additional functions applicable to ​Method​ instances in a DKB. See [Levray 2020].

Function Description

newInstance Introduce a new ​Method​ or ​Method​ specialisation instance that may be refined
until ready to ​run​ by a series of updates to complete or correct it. It may be
imported from a reliable external source. ​Import has yet to be supported.

run Start the enactment of the ​Method​ instance, generating a ​Run​ instance that may
link to traces in P4.

publish Make the ​Method​ instance available for use via the API.

Table A2.5b.ii: Yet to be implemented functions applicable to ​Method​ instances in a DKB. These
will only be implemented if required and resources are available.

Function Description

test Run the set of tests associated with this ​Method​.

validate Record that this ​Method​ has passed its tests and is approved for use.

deprecate Arrange that a specified warning / reason, e.g., replacement available
remedying an identified fault, is given to anyone attempting to use this ​Method
from now on. Those who have expressed interest in this ​Method​ or built
composite methods using this Method, should be sent the warning message.

98 This will need to align with arrangements for provenance configuration.

ID2.2-M25 Public release 87

DARE-777413

Data handling
The Concepts denoting data, cover many kinds of files, databases and ​may​ include literal
representations stored directly in the DKB. The varieties of data that may usefully be
distinguished are unbounded as every discipline may want to discriminate different semantic
content and different representations/formats to refine and guide the use of data they import or
produce. This discrimination extends all the way to individuals developing new science.

A well-developed notation has been developed for describing such data by the W3C Data
Exchange Working Group as the “​Data Catalog Vocabulary​” [DXWG 2020]. These powerful
descriptive ontologies need to underpin our description of data in order that interworking with
other systems and catalogues is facilitated. However, the users require vocabularies that match
their own community’s handling of Concepts. In the context of EPOS, this has already been well
developed [Trani 2019] and this should influence our choice of specialisations of the ​Data
Concept​ for the geoscientists associated with EPOS . The climate community almost certainly 99

has similar work underway under the aegis of IPCC or NetCDF. DARE already has a substantial
investment in its Data Catalogue - see §4.2.4. The development of the ​Data Concept ​therefore
needs to navigate a complex pre-existing and co-evolving space. Initially we will focus on the
high-level notion of ​Data​ and expect a substantial family of specialisations to emerge.

There is a significant difference between the DKB treatment and other treatments:

● Other treatments bundle together Data instances and Collections of Data instances, e.g.,
a directory of files may be viewed as a single dataset.

● We treat Collections separately, as we believe this has conceptual and engineering
advantages - see below.

The current ​Data​ development is a first step that may be revised significantly, as the practical
use provokes change. That practical use will include developing an alignment with the existing
Data Catalogue, and exploring with WP6 and WP7 the extent to which they benefit from
describing the data they use. The Data Concept will include the following aspects of a Data
entity:

1. Its ​name​ (often repeatedly the same, as a bundle of ​Data​ instances will be collected in a
manufactured ​Context​, e.g., as the data input to a ​Method run​ or the results produced).

2. Its PID or DOI, either imported from its definitive source or locally constructed.
3. Its source, including originators, if made locally.
4. Its creation date/time (this may be very similar to the Entry time if made locally).
5. Its semantics/meaning/intended use in a form understood by humans.
6. Its format in a form understood by software.
7. Its volatility and preservation/discard plan.

99 The formalisation of this work as EPOS-DCAT-AP provides the definitive source
https://github.com/epos-eu/EPOS-DCAT-AP/​.

ID2.2-M25 Public release 88

https://github.com/epos-eu/EPOS-DCAT-AP/

DARE-777413

8. Usage controls.
9. Locations where a copy of this data can be found if it is not a local literal, otherwise the

local literal value. This will allow the DKB to act as a proxy for data held elsewhere.

Table A2.4a.iii: Library of Concepts that will be provided as foundations for Data production,
management and use in every DKB instance. See [Levray 2020] for further details.

Concept name Description

kb:Data Any data item may be described by an instance of this ​Concept​ or its
specialisations.

is:Document A specialisation of ​Data​ meant for reading and printing. There may be
specialisations of this for each way of structuring and formatting. It may have
additional attributes, such as language, page size and number of pages, etc.

dare:Dataset A DCAT compliant ​Data​ specialisation, e.g., as a proxy for an entry in the Data
Catalogue

Table A2.4b.iii: Library of additional Concepts that may be provided in the future as foundations
for Data production, management and use in every DKB instance.

Concept name Description

is:JSON A JSON document, e.g., as used in seismology methods

is:Code Any code text. This may often be a proxy for code stored in a Git.

is:PythonCode A specialisation of ​Code​ referring to or containing a Python script

There may be a need for ancillary Concepts, e.g., to represent data use rules or mappings to
formats.

Table A2.5a.iii: Additional functions applicable to ​Data​ instances in a DKB. See [Levray 2020].

Function Description

newInstance Introduce a new ​Data​ or ​Data​ specialisation instance that may be refined until
ready to ​be used by​ updates. It may be imported from a reliable external source
and exported for external use, but see ​import​ and ​export​ below.

publish Make the ​Data​ instance available for download.

ID2.2-M25 Public release 89

DARE-777413

Table A2.5b.iii: Yet to be implemented functions applicable to ​Data​ instances in a DKB. These
will only be implemented if required and resources are available.

Function Description

proxy Virtually import a Data instance, so that it may be used as if held locally, but
without paying the cost of moving the data and without losing access to
subsequent updates.

import Import a snapshot of an external data item as a local copy.

export Deliver a copy, e.g., as a result of an http request, or as a result of an internal
imperative in the form specified to the destination specified,

preserve Place a copy in reliable storage and add this to the places where this data item
can be found.

archive Place a copy with required metadata in the specified archival service. This may
be performed on bundles of items, assembled as a ​Collection​ or in a ​Context​.

test Run the set of tests associated with this ​Data​.

validate Record that this ​Data​ has passed its tests and is approved for use.

deprecate Arrange that a specified warning / reason, e.g., replacement available
remedying an identified fault, is given to anyone attempting to use this ​Data​ from
now on. Those who have expressed interest in this ​Data​ or use it repeatedly
should be sent a warning message.

discard Arrange that this ​Data​ is no longer available, and release storage resources
where it is appropriate to do so.

expunge Remove all copies of this ​Data​ and eliminate the chance of reconstruction and
access. .NB this is very hard and possibly impossible to do for all cases.

Collection handling
The use of Collections is so prevalent in human behaviour and in computational practice that
significant gains can be made by making them a feature in Conceptual space - ​digitally using
the tray or trolly when clearing the table instead of making many trips to the kitchen​. Precisely
which forms of Collection scientists want is an open question. We start by supporting those
commonly used in programming and in databases we will then explore the exact forms these
should take and which other specialisations of ​Collection​ are needed. We observe three uses of
Collection ​instances:

1. Marshalling their members​: incrementally collecting or excluding members sometimes
using queries over other Collections, databases or external sources, and sometimes
excluding members that fail to meet specified criteria. This may be assembling samples

ID2.2-M25 Public release 90

DARE-777413

or representatives as input to processes and Methods. It may be accumulating evidence
to reach a statistical threshold or to support a compelling visualisation.

2. Representing logical and mathematical structures​: the assembly into representative
Collections, e.g., set, array, table or time series, that matches the required structure.

3. Bundelling to reduce work​: saying ​do m for every member of Y​ is a lot easier and less error
prone than trying to manually organise each application ​m​ applied to ​y​ where ​y ∈ Y​.
This also provides more optimisation and systems-engineering opportunities.

Researchers want to deal effectively and efficiently with two categories of ​Collection​:

1. Their own​, where they directly design and control them, deciding what they should
contain, and adding and removing members until they are satisfied they contain the
required population. Myers ​et al.​ [2015] showed the benefits and improvements of
providing researchers with their own easy to instal and use catalogues to facilitate this in
the early stages of research. It proved an adoption incentive and it improved the quality
of results archived, because it accelerated progress and reduced labour.

2. External reference sources​, these include the catalogues offered by their community’s
archival services, repositories of simulation results, and results of other researchers.

By delivering a usable abstraction of Collections that gives users the direct control they want
and that maps well to the underlying ​Collection​ representations we expect to deliver benefits to
researchers and to those undertaking the engineering necessary as the number, population and
size of the individuals increases. The next round of the IPCC analyses, clearly takes us into that
territory. Higher-resolution seismic-wave propagation simulations would also require such
engineering. We hope that these abstractions will help us address the boundary between
databases and scientific workflows as they both accommodate user-defined functions (UDF)
and exploit parallelisation and data streaming.

The information needed to describe a ​Collection​ is still work-in-progress. The aspects being
considered include:

1. Constraints on the members, e.g., they are all instances of particular Concept.
2. The structure, e.g., set, list, array, table/relation, dictionary.
3. Is the order significant and implicit?
4. The location(s) and representation(s) of an instance.
5. Population statistics, current numbers, growth rate, distribution of members’ sizes.
6. Enumeration mechanism.
7. Parallelisation patterns.
8. Anticipated forms of change, e.g., a curated archive normally only adds to its catalogue.
9. Mutability.

ID2.2-M25 Public release 91

DARE-777413

Table A2.4a.iv: Library of Concepts that will be provided for Collection production, management
and use in every DKB instance. See {Levray 2020] for details.

Concept name Description

kb:Collection A number of entities that may be treated together as well as individually. A
minimum requirement is to be able to enumerate the members.

kb:Directory A specialisation of ​Collection​ corresponding to files in a storage system. This is
necessary to support incremental introduction of Collections, as many
Collections are currently assembled using directories.

kb:List A specialisation of ​Collection​ as a sequence.

Table A2.4b.iv: Library of Concepts that may eventually be provided for Collection production,
management and use in every DKB instance. Need and resources will determine which ones.

Concept name Description

kb:Set A specialisation of ​Collection​ that excludes duplicates and may be parallel
processed.

kb:Dictionary A set of ​String​, ​Any​ pairs, looked up by supplying ​String​ values.

kb:Catalogue An (often autonomously updated) Collection of items. It may be curated and
managed, e.g., as part of a curation and archival service. It may be local and
temporary.

The functions that are useful for Collections are many and varied. Exploring precisely what is
useful and necessary is a research topic that cannot be fully explored in the context of DARE,
i.e., they include:

1. Bulk operations​, such as set ​union​, ​intersection​ and ​difference​, list ​concatenation​ and
loss-less compression to a ​Data​ instance, and the inverse. These may lead to a
complete algebra, e.g., the relational, in the long term.

2. Membership operations​, e.g., ​insert​, ​remove​, ​exclude fc1​, ​include fc2​, the latter two
include or exclude those that satisfy the boolean criterion supplied.

3. Repetition​, as in ​do​ f(m) ​for all​ m ​in​ M​, or ​do all​ f(m) ​for all​ f ​in​ F ​and all​ m ​in​ M​, the latter
being a significant saving, when bringing each ​m​ to a place for computation is
expensive.

The provisional initial plan is a small sample of the potential space and it will be co-developed
with applications and should need to design patterns aiding self-sufficiency. Implementations
may be virtual and lazy to achieve optimisations.

ID2.2-M25 Public release 92

DARE-777413

Table A2.5a.iv: Additional functions applicable to ​Collection​ instances in a DKB. See [Levray
2020].

Function Description

newInstance Introduce a new ​Collection​ or ​Collection​ specialisation instance. By default it
starts empty, but if supplied with an initial expression yielding a Python collection
it will populate the instance from that collection, subject to any prevailing criteria.

insert Insert the supplied member (collection of members) into the instance subject to
criteria and ordering if specified.

remove Remove the identified member (collection of members) from the instance.

apply Apply the supplied function or ​Method​ to every member of the instance. This
may produce a map as a result, or a reduce as a result or ...

supply Given a ​Method​ with n inputs, supply the members from n Collections so that
the members from the ith ​Collection​ are fed to the ith input and gather the
result(s). ​NB​ This parameter-space exhaustive exploration or cross-product
correlation can generate a very large volume of work and output.

doall Apply a ​Collection​ of Methods, e.g., a set of validation checks, to an instance.

The above are an extensive body of work and may only be undertaken gradually. There, the
speculative Table of possible extras is omitted.

Sundry Concepts
These are Concepts that have proved necessary when working on other Concepts.

Table A2.4a.v: Library of Concepts that will be provided as sundries that have emerged as
necessary for use in every DKB instance. See [Levray 2020] for details

Concept name Description

kb:Person A representation of an individual. Instances of ​Person​ will hold what the KB
needs to know about a user in order to support that user and their ​modus
operandi ​. It may also accommodate standard attributes needed by external
administrations or recommended by DCAT or a relevant DCAT-AP. These
instances will be persistent for at least as long as the KB needs to recognise an
individual over repeated visits and serve that individual taking into account prior
visits. Eventually, these may be used in a KB authorisation system, but not
during DARE. A ​Person​ instance may contain formal AAI-related information, a
preferred public name and an official PID, see the end of A2.2.

kb:Session A period during which an individual interacts with the system via one interface or
during which a ​Method​ enactment interacts with the system via one protocol.
Each instance of ​Session​ will represent one user logging in, working an arbitrary
period of time and then ending the session. Similarly, an instance may be
constructed when a queued ​Method​ runs, to record the AAI information

ID2.2-M25 Public release 93

DARE-777413

governing that enactment, as the ​Session​ where the enactment was initiated
may no longer be active, or it may submit a series of run requests, potentially
using different AAI credentials.

Table A2.4b.v: Library of Concepts that may be provided as sundries. This depends on need
and resources.

Concept name Description

kb:Group A set of individuals and groups, e.g., those authorised to do something

kb:Software A body of code treated as an entity [Garijo ​et al.​ 2019].

kb:Service A (web) service running for a period to deliver some functionality.

kb:Rule A rule that specifies what should be done - generated Obligation instances
(normally by a human) when something else is done (normally by software
steered by a human).

kb:CompReq Computational requirements, normally of a ​Method​ (see above).

kb:CompCap The ​CompReq​-meeting capabilities of a particular service.

dare:Container A Docker container normally managed and described by Kubernetes (§5.2)

dare:Deployment A graph of interconnected Container instances placed on instances of a Hosting
Service (§5.2).

There are, as yet, no specific functions for these Concepts that differ from those generally
available.

Built in types as Concepts
As always, these are provisional lists. They need to include all of the primitive types in use for
which the attribute values are stored as a literal. They are all immutable.

Table A2.4a.vi: Library of Concepts that will be provided to incorporate standard types in every
DKB instance. See [Levray 2020]. Others will be added as needed for attribute values.

Concept name Description

kb:Integer The mathematical concept’s representation as a ​Concept​.

kb:Real The mathematical concept’s representation usually using floating point

kb:String A standardised sequence of standardised characters.

kb:Time A standardised representation of UTC time (as users are geographically

ID2.2-M25 Public release 94

DARE-777413

distributed). Communities may have different ones. Users will normally have
local time and may prefer to see local times. The KB does not deal with that;
user facing code will, but the KB may hold user’s preferences.

A2.5 Coexisting information subsystems
Table A2.8: Functions in the registry API. A description of some of the data required for each
function can be found in the GitLab link: ​https://gitlab.com/project-dare/dare-api

Function Description

login Get dispel4py registry credentials by logging.

create_folders Create the working environment

get_auth_header Return the authentication header

get_workspace Get a workspace URL by name

create_workspace Create a workspace using dispel4py registry api

create_pe Create ProcessingElement / dispel4py workflow using d4p registry api

create_peimpl Create ProcessingElement/ Workflow Implementation using d4p registry api

auth Generate user "access token" / Simulate user login

submit_d4p Spawn mpi cluster and run dispel4py workflow

debug_d4p Debug a dispel4py workflow in “playground mode”

exec_command Allow for running a command in “playground mode”.

upload Upload data into a working environment

myfiles List the uploaded files......

download Download a file using exec-api filesystem reference.

delete_workspace Delete a workspace

submit_specfem Spawn mpi cluster and run specfem workflow)

my_pods Return user created pod properties (name and status)

send2drop Upload a file from the exec-api shared filesystem to the project-dare b2drop
account in order to get a shareable link for a single file

pod_pretty_print Monitor the container status

ID2.2-M25 Public release 95

https://gitlab.com/project-dare/dare-api

DARE-777413

monitor Monitor a dispel4py workflow run

A2.6 Planning DKB development
Our challenge is to find the best steps to develop and deploy an effective, easily used and
integrated DKB as described in §4.2. We need to take an agile approach to deciding on the
functional priorities while choosing implementation paths, while retaining a direction that leads
towards a powerful and complete DKB. Initial suggestions follow and are depicted with some
scheduling and interdependency suggestions in Figure A2.4:

These will be radically revised during the Toulouse plenary. The order is significant.

1. Develop a releasable version of the semantic data catalogue. {FRAUNHOFER +
NCSRD} [M26]

2. Align the registry workspace and DKB Context designs and implementations and then
deploy a version of the platform that supports that alignment for evaluation.
{UEDIN+NCSR} [M26]

3. Compose registry and DKB, perhaps by proxying the registry in the DKB and add to the
release. {UEDIN+NCSR} [M27]

4. Develop a strategy for harmonising with the data catalogue. Possibly via partial
delegation, e.g., query and existing metadata functionality in the data catalogue and
easy additional data in DKB. {NCSR + UEDIN} [M27]

5. Agree the model for Python programmers to interact with the DKB, the criteria for
automatic additions to the conceptual library & API. Whether to go directly to a REST
web service wrapping the DKB engine & storage. Used via a Python library
programmers instal and use in the normal way. {UEDIN + KIT + CERFACS + KNMI}
[M28]

6. Develop the Concept and Method support and test it in with WaaS WP4 developers to
support:

a. Descriptions of methods using simple Python scripts, i.e., a text-based system.
b. User support for authoring, testing and moving into production such methods.
c. Application-expert use of these to parameterise and control such methods

(application developers and experts should get all the way from idea to
production-ready release into the available API without help from IT experts.)
{UEDIN + ?} [M28]

7. Release second version of the Concept library emerging from the above and supporting
operations on Concepts that can be used in the above methods. {UEDIN + NCSR} [M28]

8. Evolve the above to describe and handle PEs working in conjunction with the dispel4py
optimisation effort. This will include:

a. All necessary properties of input and output streams that limit or open-up
optimisation.

ID2.2-M25 Public release 96

DARE-777413

b. All necessary properties of the encapsulated algorithms, e.g., whether they
accumulate state.

c. Optimisation-costs input data mined from the provenance data from previous
runs.

d. Platform and subsystem performance and capability data - hand crafted.
e. Plans for incremental deployment and decision making. {UEDIN + ? +

FRAUNHOFER + KIT} [M30]
9. Combine the above with selective implementation of virtualised and lazy Collections of

data:
a. Include operations to create, manage and use those collections
b. Include at least one lazy mapping strategy
c. Integrate the above optimisation to co-optimise the data handling and workflow

enactment in a way that is scalable with data unit size and with the number of
data units. {UEDIN + CERFACS + NCSR + ?} [​M32​]

10. Third release of the conceptual library and associated API.

ID2.2-M25 Public release 97

DARE-777413

Figure A2.4: Possible plan for developing the DKB to provide key functionality and be well
integrated. Timing and order needs discussion and clarification. Groups engaging in the work
need to be identified.

This poses a number of substantial and critical questions:

1. Should the DKB support a SPARQL endpoint?
2. Can we use the prototype before we have wrapped it as a web service with co-located

Python?
3. Can we provide a Python library that research developers understand and use?
4. Will there be a useful part of that understandable ​and used​ by application experts?
5. Do we operate as a proxy for the registry?
6. How do we collaborate with the data catalogue?
7. How do we progress alignment with provenance?
8. What is the message queuing system we use to coordinate the pillars? (and

contemporaries?) ZeroMQ?
9. What are the events we send between pillars? (and contemporaries?)

ID2.2-M25 Public release 98

