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We demonstrate a peculiar mechanism for the formation of bound states of light pulses of sub-
stantially different optical frequencies, in which pulses are strongly bound across a vast frequency
gap. This is enabled by a propagation constant with two separate regions of anomalous dispersion.
The resulting soliton compound exhibits molecule-like binding energy, vibration, and radiation and
can be understood as a mutual trapping providing a striking analogy to quantum mechanics. The
phenomenon constitutes an intriguing case of two light waves mutually affecting and controlling
each other.

Solitons are ubiquitous in nature and play an impor-
tant role in as diverse fields of science as fundamental
physics, mathematics, and applications in optical com-
munications [1–5]. They are important to understand
the physics of Bose-Einstein condensates [6], certain bio-
logical systems [7], and more. The most intriguing prop-
erty of solitons is their particle-like propagation as lo-
calized energy packages, held together by a balance be-
tween linear diffraction or dispersion and nonlinear ef-
fects. This particular wave-particle dualism allows the
investigation of phenomena which are usually attributed
to quantum mechanical principles, insofar as they can
be described by nonlinear theories. The elastic particle-
like collision of waves [3] is an example. In direct ex-
tension of this concept of quantum analogy, the phe-
nomenon of molecule-like soliton states [8] can be treated
in terms of binding energy or vibration, and deeper in-
sight into complex soliton interaction processes like colli-
sions [9], trapping [10], or the pervasive rogue wave phe-
nomenon [11] can be obtained. At the same time soliton
molecules are of tremendous interest for application in
optical technologies, because they may provide alterna-
tive coding schemes for transmitting information with
enhanced data-carrying capacity [12]. As diverse as the
contexts in which solitons appear are the possible real-
izations of soliton molecules. Usually soliton molecules
are associated with double-hump intensity profiles, con-
sisting of two solitons at the same center frequency, co-
propagating unchanged together as a bound state. Due
to a certain phase relationship between the two pulses,
a balance of attractive and repulsive forces between the
constituents of the pulse doublet is established [13]. In
their temporal versions, they appear in nonlinear optical
fibers governed by the generalized nonlinear Schrödinger
equation (NSE) [14], the dissipatively perturbed NSE
[15], coupled NSEs describing twin-core fibers [16], or
the complex Ginzburg-Landau equation [17]. There are

also numerous realizations of further soliton molecules
[18–27].

We present here a previously unreported class of tem-
poral soliton molecules. They consist of two pulses at
widely different frequencies which, however, are bound
by Kerr forces. In contrast to this double-peaked spec-
tral profile, the temporal shape of the compound state
is close to that of an individual soliton, except that it

FIG. 1. Two frequency molecule boundstates. (a) Group-
velocity- , (b) group-velocity-dispersion profile with anoma-
lous dispersion regimes A1, A2 and normal dispersion regime
N (shaded in grey). Dots identify loci of selected group-
velocity matched solitons. (c) Output spectra of selected
molecules M1-M4 for different initial pulse widths. (d) Tem-
poral intensity profile |E|2 (M3). Dashed and dotted lines
show components in A1 and A2, respectively. Solid black line:
adjusted hyperbolic secant governing envelope. (e) Temporal
evolution (M3) (indicated by a red line). Gray surface de-
notes absolute value of E , green line the electric field. Its
evolution as contour plot is projected onto the (t, z)-plane,
and (f) spectral evolution.
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is dressed by interference fringes. Key to understand-
ing these novel structures is a strong attractive potential
between two solitons: each soliton is trapped by a po-
tential well created by another soliton. This leads to a
strong binding energy and robustness against perturba-
tions. This effect is an inversion of the strong repulsive
potential between a quasi co-propagating soliton and dis-
persive wave [28, 29].

As we aim to consider widely separated frequency com-
ponents, the standard nonlinear Schrödinger equation is
insufficient because it uses the concept of a center fre-
quency. Therefore we use a non-envelope variant,

i∂zEω + [β(ω)−ω/v0]Eω +
3ω2χ

8c2β(ω)

(
|E|2E

)
ω>0

= 0, (1)

suited for unidirectional propagation in terms of the an-
alytic signal E(z, t) = 2

∫
ω>0

dωEω(z)e−iωt [30]. χ refers
to the Kerr nonlinearity, c to the speed of light, and β(ω)
to the propagation constant. This equation includes the
evolution of the optical field E(z, t) =

∫
dωEω(z)e−iωt

during single mode propagation over distance z in
a nonlinear waveguide. A modified linear coefficient
function β(ω) − ω/v0 is introduced so that we directly
obtain the dynamics in a reference frame moving with
velocity v0. The main prerequisite for our molecule
states is group-velocity matched co-propagation of pulses
at different frequencies in anomalous dispersion regimes.
This can be realized in waveguides with a dispersion
profile exhibiting two anomalous dispersion regimes
separated by a normal one, as given, e.g., in microstruc-
tured fibers [33], silicon slot waveguides [34, 35], or
Kagome-fibers allowing for several adjustable separate
anomalous dispersion regimes [36]. A paradigmatic
profile of the frequency dependent group velocity vg and
dispersion profile β2 are shown in Figs. 1(a,b). Such
a system has already been shown to exhibit peculiar
dynamics, resembling quantum mechanical behavior.
Soliton spectral tunneling between phase-matched
anomalous dispersion regimes has been shown [20, 31].
We will demonstrate that the system exhibits further
intriguing analogies to a quantum mechanical systems.
This is the case when dynamics are not determined by
phase relations. The main underlying mechanism is then
similar to the wave reflection phenomenon originating
from fluid dynamics [37] and known in optics as the
optical push broom effect [38], temporal reflection [39],
or as the concept of an optical event horizon [40],
facilitating strong and highly efficient all-optical inter-
action [28]. However, in contrast to these, interaction
between pulses in separated regimes of anomalous
dispersion is attractive as we will demonstrate below.
To use this strong force we inject as a first example the
superposition of two fundamental solitons

√
χE(0, t) =

Re
[
A1 e

−iω1t/cosh (t/t1) +A2 e
−iω2t/cosh [(t− δ)/t2]

]
with amplitudes A1/2, at center frequencies
ω1/2 = 1.2/2.939 rad/fs (black dots in Figs. 1(a,b)), and
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FIG. 2. Radiating molecule states. (a) Evolution of |E|2 (a
movie is provided in the supplemental material [42]). (b)
Corresponding instantaneous phase ϕp. (c) Evolution of the
center frequencies of the molecule’s frequency components
ω1/2. (d) Velocities v1/2 of the sub-pulse centroid. (e) Emit-
ted photon energy rate wrad (see [42]). (f) Phase-matching
analysis for both subpulses yielding two resonant frequencies
ωRR1/RR2. (g) Parameter study indicating the drift of the
asymptotic sub-pulse center frequency ω′

1 relative to its ini-
tial value ω1 (dashed line) upon variation of ω2. (h) Same for
ω′
2. Shaded areas mark regions where one soliton dominates

the dynamics.

at delay δ = 0 fs into the waveguide. We have deliber-
ately chosen an asymmetric dispersion profile to increase
the manifold of possible compounds due to unequal
soliton combinations. More importantly, the anomalous
dispersion regions are vastly separated so as to avoid
any initial spectral overlap, which clearly distinguishes
our approach from others [19, 41]. As initial conditions
for the soliton parameters we set t1/2 = 20 fs, and A1/2

corresponding to fundamental solitons (see supplemental
material [42]). Figure 1(e) represents the asymptotic
state well after the initial transient phase. The electric
field is shown as a green curve, and its evolution as
a contour plot is projected on the (t, z)-plane. In the
temporal domain the molecule state is a single pulse
with deep interference fringes that propagates without
shape variation. With ∆ω = ω2 − ω1 ≈ 1.74 rad/fs as
stated above, |E(z, t)|2 ∝ cos2(∆ωt/2) so that the fringe
period is ∆t ≈ 3.61 fs.

It is remarkable that the governing envelope of this
pulse is of nearly perfect hyperbolic secant shape, just
like a fundamental soliton, as is highlighted by the black
solid lines in Figs. 1(d,e). This can be described by a
meta-envelope [43], introduced to describe the proper-
ties of a general class of solitons in a system similar to
ours. An important point here is that the energy con-
tent of the molecule is lower than the sum of the initial
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solitons. The asymptotic fraction of energy localised in
the molecule-state does not exceed 92%, which makes
it clear that the solution described here is profoundly
different from plain co-propagation of two fundamental
solitons. In the spectral domain the molecule has a peak
in each of the separated regions of anomalous disper-
sion; these two peaks are no longer centered on perfectly
group-velocity matched frequencies, but undergo small
oscillations around the group-velocity of the compound
state.

Stable molecules can be created over a wide range of
initial soliton parameters, with a spectrum consisting ei-
ther of well separated parts in the two anomalous dis-
persion regimes or with overlapping parts extending over
the interjacent normal dispersion regime. We performed
a series of simulations changing the temporal width, but
always starting with amplitudes for fundamental solitons
at the corresponding frequencies. Selected examples of
the spectra with increasing energy content are shown in
Fig. 1(c). Holding an extended fraction of spectral energy
in the region of normal dispersion, the governing envelope
severely deviates from a perfect hyperbolic secant. To in-
vestigate the robustness of the molecules and elucidate a
further analogy to the quantum mechanical molecules, we
now change the frequency relation of the initial solitons
with increasing group-velocity mismatch. An example is
shown in Fig. 2(a), demonstrating the propagation of a
radiating molecule. The strong oscillations at small dis-
tances z involve strong emission of radiation dependent
on the initial group-velocity mismatch. The instanta-
neous phase in the vicinity of the molecule state is illus-
trated in Fig. 2(b) (see supplemental material [42]), show-
ing a regular evolution pattern without strong perturba-
tions. The evolution of the newly adapted ω-centroids
in the two separated anomalous dispersion regimes are
depicted in Fig. 2(c), with dashed lines corresponding to
initial center frequencies. The velocities of the pulse t-
centroids are provided in Fig. 2(d). These quantities are
subject to vigorous variations during the initial transient
phase of molecule formation. The loss of energy due to
radiation is shown in Fig. 2(e), exhibiting an exponen-
tial decay ∝ exp(−z/z0) with z0 = 0.77 cm (indicated
by the dashed line). This behavior shows similarities to
molecular vibration and the generation of dipole-like ra-
diation. Mismatch within certain limits still enables for-
mation of molecules which compensate its destabilizing
effect through frequency shifts. The interaction between
parts located in different anomalous dispersion regions
and generation of radiation is highly complex due to the
mutually induced refractive index changes, yet can in
part be understood by phase-matching conditions. In
this regard we transferred the theoretical approach de-
tailed in Refs. [16, 32, 44] to the present case.

We separated the molecule into two sub-pulses with-
out spectral overlap by filtering in the frequency domain.
Following Ref. [32] we determined the phase-matching
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FIG. 3. Trapped states in a propagating refractive index well.
(a) Effective potential with three eigenstates φ0, φ1, and φ2,
indicated at a depth corresponding to their eigenvalues (hori-
zontal dotted lines). (b) From bottom to top: XFROG-traces
of initial configurations of the soliton and its weak eigenstates
(labeled n = 0, 1, 2). Horizontal dotted lines indicate the
zero-dispersion frequencies. Close up views of eigenstates at
selected propagation distances in multiples of the dispersion
length LD = t2s/|β2(ωs)|. (c) Potential with a single eigen-
state. (d) Fractional contribution eM of the compound pulse
to the total energy (at z = 0.3 m). (e) Normalized values of

self- H
(1)
int , H

(2)
int , and mutual interaction H

(12)
int .

resonance frequencies ωRR by finding the roots η(ωRR)−
β(ωRR) = 0, with η(ω) = γP0/2+β(ω0)+β1(ω0)(ω−ω0),
for both molecule subpulses. The values of P0 and ω0

were obtained by separately characterizing each subpulse
(see supplemental material for details). We find that ra-
diation is generated at two frequencies ωRR1 and ωRR2

phase-matched to the sub-pulse in A2 (Fig. 2(f)), both
lying in the anomalous dispersion regime A1 (in this case
there are no such resonant frequencies in A2 or N). The
possibility of transfer of energy from one anomalous dis-
persion regime to the other due to phase-matching and
the dependence on third- and higher-order dispersion has
been investigated in details in connection with the soliton
spectral tunnelling phenomenon [32]. Here, the mecha-
nism leads to dipole-like radiation. The excitation de-
pends on the periodic evolution of the peak intensity of
the centroid frequency ω2, cf. Fig. 2(c). Even for ini-
tial group-velocity mismatches, the two centroid frequen-
cies can evolve to form a mutually bound state. This is
demonstrated in Figs. 2(g,h) by sweeping ω2 over a range
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of initial frequencies while keeping ω1 fixed. The radia-
tion vanishes asymptotically and plays a minor role for
the energy balance of the compound state, which is dom-
inated by the mutual attraction between the sub-pulses
at the centroid frequencies.

It is an important point that the frequencies of the
two sub-pulses in the molecule are not phase-matched to
each other and energy interchange relies on more global
conservation laws obeyed by Eq. (1). In the following
we will demonstrate a further peculiarity: the molecule
state can be understood as mutually trapped states and
the conservation laws define a binding energy.

For this purpose, we first regard a weak localized
field pulse trapped within a refractive index well cre-
ated by a soliton (see supplemental material for the
derivation and more details). The weak pulse and
the soliton are located in separate anomalous disper-
sion regimes. The group-velocity matching condition al-
lows us to regard a linearised auxiliary problem for the
weak pulse. Our derivation leads to a Schrödinger-type
eigenvalue equation

(
d2/dt2 + 2κn/|β2| − U(t)

)
φn(t) =

0, for the bound eigenstates φn(t) (wavenumber κn <
0). These correspond to trapped states of the cross-
phase modulation induced effective potential U(t) =
−4(γ/γs)(|β2,s|/|β2|)sech2(t/ts)/t

2
s, wherein β2,s and γs

are taken at the soliton center frequency ωs (see gray
line in Figs. 3(a,c)). The potential U(t) results from the
refractive index well of a co-propagating soliton s. The
eigenvalue problem can be solved exactly (the respec-
tive eigenvalues and eigenfunctions specified by the Gaus-
sian hypergeometric function are listed in the supplemen-
tal material). Examples of eigenfunctions lying in the
anomalous dispersion regime A2 for a potential created
by a soliton with center frequency ωs = 1.2319 rad/fs and
temporal duration ts = 20 fs are depicted in Fig. 3(a),
exhibiting three eigenstates. In our system the number
of eigenstates is solely controlled by the center frequen-
cies of both pulses. Numerical simulations summarized
in Fig. 3(b) directly verify that Eq. (1) supports analyti-
cally calculated trapped states by a potential well created
by a soliton.

To come closer to a molecule state, we regard
now an associated effective potential with only a sin-
gle bound-state (Fig. 3(c)) by tuning the center fre-
quency ωs and monitor the change of the solution
by increasing the energy of the bound state. An
important value which entails the degree of mutual
interaction between the two sub-pulses is given by
the interaction term of the conserved momentum flux
[30] Hint[B] = 3

8

∑
12̄34̄| T1234Bω1

B∗ω2
Bω3
B∗ω4

, where the

canonical variable Bω =
√
|β(ω)|/(2µ0ω2)Eω, and

T1234 = µ0χ|ω1ω2ω3ω4|/c2
√
|β(ω1)β(ω2)β(ω3)β(ω4)|.

The sum-index token 12̄34̄| abbreviates the condition
ω1 − ω2 + ω3 − ω4 = 0. From this, the self-interaction

parts of the pulses H
(1)
int and H

(2)
int , as well as their mu-

FIG. 4. Soliton molecule generation by collision. (a) Time-
domain propagation of two colliding solitons leading to three
molecule states and non-solitonic radiation (a movie MOV2 of
the evolution is provided as supplemental material, see [42]).
(b) Sequence of XFROG-traces at selected propagation dis-
tances (see supplemental material [42] for details). (c) Propa-
gation of the bound states (top panel) and separate propaga-
tion of their isolated constituents in only A1 (middle panel)
and A2 (bottom panel).

tual interaction H
(12)
int can be derived by filtering in the

frequency domain (see supplemental material). As the
energy of the bound state increases, the crossover from
trapping to molecule formation is signaled by the mutual
interaction dominating the self-interaction contribution
to Hint (Fig. 3(e)), although the composite pulse loses a
small amount of energy to free radiation (Fig. 3(d)).

In the next step we will address the more intriguing
analogy to molecules related to a binding force. First we
demonstrate how to induce molecule formation by soli-
ton collision, in the spirit of formation of bound entities
in a particle collider. Two solitons with temporal widths
t1/2 = 25/15 fs and frequencies ω1/2 = 1.2/2.97 rad/fs are
injected into the waveguide at time delay δ = 800 fs and
energies, defined by their velocities. After the collision,
we observe three localized states (Fig. 4(a)), propagating
with different velocities. The collision process is accom-
panied by generation of strong non-solitonic radiation.
The XFROG traces in Fig. 4(b) provide deeper insight
into the complex propagation dynamics. The three gen-
erated localized structures fulfil the criteria of compound
states described above. Each of these states has a sig-
nificant energy content in the two separated dispersion
regimes, propagating in the time domain as one object.
To demonstrate that these compounds only exist as an
unit, we spectrally divide them into their separate parts
in A1 and A2, and let these parts propagate indepen-
dently from each other along the waveguide. As is evi-
dent from Fig. 4(c), the independent propagation of the
isolated spectral components leads to nothing but lin-
ear dispersion of the pulses. This underlines again an
analogy to a binding energy and especially the fact that
this molecule state is not simply a co-propagation of two
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solitons.

In conclusion we presented the existence of previously
unknown highly robust bound states of light providing a
rich manifold of propagation dynamics and analogies to
quantum mechanical molecules. In addition, we demon-
strated that our optical system, which is fully classical,
can mimic truly quantum-mechanical trapped states in
an attractive potential well. This fact is of fundamental
interest by itself. But the new states described here also
hold promise for applications, e.g., communication sys-
tems as information can be decoded in the frequency do-
main, or for spectroscopy requiring coherent high-density
spectra. In the presented study we focused on an exem-
plary photonic crystal fiber, but the scheme can easily
be transferred to other fibers or waveguides, such as sili-
con slot waveguides or gas-filled Kagome fibers, allowing
to address a wide range of pulse parameters. Moreover,
the underlying main conditions, given by the quasi group-
velocity matched co-propagation of two solitons at vastly
different frequencies, open up new perspectives for study-
ing further novel phenomena, concerning soliton physics
and analogies to other fields of physics.

The authors acknowledge financial support from
Deutsche Forschungsgemeinschaft (DFG) (projects
BA4156/4-2, MO 850-20/1), Germanys Excellence
Strategy within the Cluster of Excellence PhoenixD
(Photonics, Optics, and Engineering Innovation Across
Disciplines) (EXC 2122, projectID 390833453), the
Government of the Russian Federation (Grant 074-U01)
through the ITMO University fellowship, and the
European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant
agreement No 713694.

[1] P. G. Drazin and R. S. Johnson, Solitons: An Introduc-
tion, (Cambridge University Press, Cambridge, 1989).

[2] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From
Fibers to Photonic Crystals, (Academic Press, San Diego,
2003).

[3] G. I. Stegeman and M. Segev, Science 286, 1518-1523
(1999).

[4] F. Mitschke, Fiber Optics: Physics and Technology,
(Springer, Berlin, 2010).

[5] H. A. Haus and W. S. Wong, Rev. Mod. Phys. 68, 423-
444 (1996).

[6] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher,
M. Baumert, E. M. Richter, J. Kronjäger, K. Bongs, and
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