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Abstract

This paper first presents an extension of a notable three dimensional (3D) channel model for air-to-ground (A2G)

radio propagation environments, from the plain distribution of angular energy to its quantization in terms of multipath

shape factors (SFs). Next, the paper presents a comprehensive analysis on the characteristics of multipath SFs for A2G

radio propagation environments observed at both ends of the link. The analysis include the impact of various physical

channel parameters on angular spread, true standard deviation, angular constriction, and direction of maximum fading.

These SFs are obtained by exploiting the analytical and empirical results available in the literature for the distribution

of energy in 3D angular space. Finally, a mechanism for classification of A2G propagation environments into taxiing,

en-route, and take-off scenarios on the basis of SFs is presented.

Keywords: Angle of Arrival, Multipath shape factors, Angular spread, Air-to-ground, Standard Deviation,

Angular Constriction.

I. INTRODUCTION

The technologies of communication for air-to-ground (A2G) and ground-to-air (G2A) have evolved

with time. In early days, color paddles, hand signals and other visual aids were used for A2G/G2A

communications. Technology developments improved these methods by the use of wireless telegraphy and

A2G radio systems. In today’s world of communication when researchers are implementing 5th generation

(5G) wireless communication systems for providing high speed and reliable network global coverage,

the internet access in aircrafts is now at the high demand. A reliable communication link is required to

provide high speed data services to the passengers as well as for navigation and security services to the

airplanes. It is expected in future for dramatic increase in the use of unmanned air vehicle (UAV) for

purposes like military applications, cargo delivery, industrial inspection, weather monitoring, emergency

humanitarian missions, and remote sensing. A reliable A2G link for such UAV communication nodes is

also of immense importance. It is of high importance to have accurate knowledge of channel statistics at both
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the communicating ends for establishing a reliable communication link. The rapid fluctuations in received

signals in a multipath channel are termed as small-scale fading [1]. In the literature, first-order channel

statistics are analyzed through characterization of small-scale fading with probability density functions

(PDFs) of angle of arrival (AoA). However, Durgin et al . has strengthened the theory of small-scale fading

by deriving a new concept of multipath shape factors (SFs) in [2]. Durgin et al . derived three SFs which are

the angular spread, the angular constriction, and the direction of maximum fading by using PDF of AoA. In

[3], these three SFs are redefined on the basis of trigonometric moments and a new quantifier, named true

standard deviation, is proposed. Applications of these SFs in Nakagami-m fading channels is discussed in [4,

5]. Various intensive studies on AoA, time of arrival (ToA) and Doppler spectrum analysis for land-mobile

radio cellular communication channels has been proposed in the literature [6–10]. The analysis on SFs for

such land mobile communication environments assuming both geometric channel models and measurement

based models is presented in [11–13]. The multipath SFs are core parameters in studying second order

fading statistics of the channel including level crossing rate, average fade duration, auto-covariance and

coherence distance [7]. No such study on the SFs of A2G communication scenarios has been conducted in

the literature. Various A2G communication scenarios lead to a rich multipath fading environment [14–16].

Therefore, it becomes imperative to conduct a thorough study on SFs for A2G communication environments

and to analyze the impact of physical channel’s parameters on these SFs.

In this paper, an extension of a notable three dimensional (3D) analytical model [17] for aeronautical

communication channels is presented from the plain distribution of angular energy to the quantization of

multipath SFs. The multipath AoA distributions for A2G/G2A communication environment are characterized

by using the multipath SFs: the angular spread, the standard deviation, the angular constriction, and the angle

of maximum fading. These SFs are computed by using PDF of AoA observed at both end of aeronautical

communication link with respect to azimuth and elevation planes with the approach used in [2, 3, 11–13].

The effects of different physical parameters of the proposed model on SFs is also been observed. The rest

of this paper is organized as follows: Section II discusses the proposed methodology and system model.

Discussion on obtained simulation results is given in Section III. Finally, the conclusions on obtained

analytical results are made in section IV.

II. PROPOSED METHODOLOGY AND SYSTEM MODEL

Aeronautical communication environment is such a scenario in which airplane communicates with their

ground base station (BS). The block diagram of such scenario is given in Fig. 1. Air station (AS) is assumed
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Fig. 1. Aeronautical communication environment.

at an height hAS and BS at an height hBS. The direct line-of-sight (LoS) and horizontal distance from BS to

AS are represented by dlos and d, respectively. The elevation angle with the ground plane of LoS multipath

component is θlos. The dlos and θlos are expressed as,

dlos =
√
d2 + (hAS − hBS)2. (1)

θlos = arctan

(
hAS − hBS

d

)
. (2)
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The propagation path delay associated with longest and shortest (LoS) paths is denoted by τmax and τo,

respectively. The sum of distance from each foci point of an ellipse to any point on its surface is always

the same. Exploiting this property, the spatial limits of scattering region can be defined by the ellipsoid

corresponded from the mutipath wave having longest path delay. The axis (minor and major) of ellipsoid

(Eτ ) can be calculated from the longest path delay (τmax). The equations for calculating axis are given

below,

aτ =
c τmax

2
. (3)

bτ =
√
a2τ − d2los/4. (4)

Moreover, the intermediate axis cτ of the bounding ellipsoid is equal to its minor axis bτ . Usually the

elevation of AS is more than the average rooftop level; therefore, the surroundings of AS are assumed as

scattering free region. Whereas, the ground BS’s vicinity contain dense spatial distribution of scattering

structures. For this reason, the region around BS is controlled by the ellipsoid (Eτ ) which is truncated by

plane of height at rooftop level and the ground plane. The distribution of scatterers is assumed as uniform.

These scatterers are confined inside the truncated ellipsoidal shaped scattering region (TESR). σb denotes

the rooftop height around the BS. The PDF of AoA for such a scenario with respect to azimuth and elevation

plane taken from both ends are given in [17] in the form of p(φa), p(βa), p(φb), and p(βb). The angles

formed in azimuth and elevation planes with angle of signal corresponding from a point of scattering are

denoted by φb and βb at the BS and are represented by φa and βa at the AS, respectively.

The methodology used for computing the SFs is same as used by Durgin et al . [2] and Khan [3]. The

distribution of multipath components is described by function p(φ) or p(β) where φ and β are the azimuthal

and elevational AoA. They used fourier coefficients or trigonometric moments for analyzing PDF of AoA.

The two methods results the same but we used the approach given in [3] because it is helpful in determining

the directional data and gives actual information about the physical dimensions of the SFs. This method

also defined SF, angular spread, in another form as standard deviation. The same approach is also used in

[11–13].

The nth complex trigonometric moments of any angular distribution is R̄n. For example, for p(α), (i.e.,

where α may be φ or β for the azimuthal and elevational AoA), whose total power is equal to Po =
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∫ 2π

0
p(α)dα, R̄n is defined as,

R̄n = C̄n + jS̄n (5)

where

C̄n =
1

Po

∫ 2π

0

p(α) cos(nα)dα (6)

and

S̄n =
1

Po

∫ 2π

0

p(α) sin(nα)dα. (7)

In case of discrete data, the definition for trigonometric moments can be modified. Only first and second

moments are used in characterization of the SFs. |R̄1| is the magnitude of first trigonometric moment. It

can take values between 0 and 1. Close to 0 value means receiver is receiving signals from a wider range

of angles and close to 1 means small angular width of AoA. The SF angular spread, Λα, is given as below,

Λα =
√

1− |R̄1|2. (8)

The standard deviation, σα, gives angular energy distribution in radians which is given as,

σα =
√

−2ln(|R̄1|). (9)

The other two SFs angular constriction γα, and orientation parameter αMF , are defined by Durgin et al .

in [2]. γα gives concentration of multipath about two directions and αMF provides direction of maximum

fading. Their relation with trignometric moments is given below,

γα =
|R̄2 − R̄2

1|
1− |R̄1|2 (10)

and

αMF =
1

2
phase{R̄2 − R̄2

1}. (11)

III. RESULTS AND DISCUSSIONS

This section presents an analysis on results of SFs for aeronautical communication channel. The SF,

angular spread Λα, gives the measurement of the concentration of multipaths around a single direction

by using range zero to one. The azimuthal and elevational angular spread observed from AS with respect
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Fig. 2. Angular Spread, (a) From AS, in azimuth plane, (b) From AS, in elevation plane, (hBS = 30m, d = 3km, and σb = 20m).

to height of AS for different delays of longest propagation path (τmax) is shown in Fig. 2 (a) and (b),

respectively. The azimuthal angular spread decreases with an increase in height of AS. However, rate of

decrease increases rapidly with respect to increase in height of AS by reducing the longest path’s length.

The elevational angular spread observed from AS increases gradually with increase in height of AS up to

an height when projection of AS lies within the scattering region but it decreases with further increase in

height of AS. Moreover, the elevational angular spread shows a converse trend with respect to τmax. The

elevational angular spread with an increase in τmax, decreases up to a certain height of AS: whereas, with

further increase in height of AS, it increases.

The SF σα, is the standard deviation of the angular energy distribution in radians (or degrees) which

gives the true physical information about the angular dispersion. The standard deviation of azimuthal and

elevational distribution of angular energy observed from AS with respect to height of AS taken for different

values of τmax are plotted in Fig. 3 (a) and (b), respectively. The trends for standard deviation are same as for

angular spread but it gives angular spread values in degrees. Therefore it is called as another definition for

angular spread giving exact true physical information for angular dispersion. The SF, angular constriction
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Fig. 3. Standard Deviation, (a) From AS, in azimuth plane, (b) From AS, in elevation plane,(hBS = 30m, d = 3km, and σb = 20m).

γα, gives measure of concentration of multipaths around two directions. The values for γ ranges from

zero to one, with one denotes arrival of exactly two multipath components from different directions and

zero denotes no clear bias in two arrival directions [2]. The angular constriction for azimuth and elevation

angles observed from AS with respect to height of AS is plotted in Fig. 4 (a) and (b), respectively. The

angular constriction with azimuth angles increases with increase in height of AS however rate of increase is

decreasing with increase in τmax. The concentration around zero is evident that for a certain height AS lies

with in scattering region however when AS came outside the scattering region, the angular constriction has

values near one which means now multipaths are receiving from fewer directions. The angular constriction

from elevation angles is gradually increasing with increase in height of AS. Moreover, with increase in

τmax, it decreases. The SF, αMF , for these scenarios stays about −90o.

The azimuthal and elevational angular spread observed from BS with respect to height of AS for different

delays of longest propagation path is shown in Fig. 5 (a) and (b), respectively. The azimuthal angular spread

is observed constant (approximately) with respect to increase in height of AS however it increases with

increase in τmax. An exponential increase is observed in the angular spread in elevation plane seen at BS
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TABLE I. NUMERICAL VALUES OF SHAPE FACTORS FOR DIFFERENT A2G COMMUNICATION SCENARIOS

Angular Spread Standard Deviation Angular Constriction

Scenarios Λφa Λβa Λφb Λβb σφa σβa σφb σβb γφa γβa γφb γβb

Arrival / Take-off
(hAS = 1.1km, d =

2km, τmax = 7 μsec)

0.086 0.077 0.380 0.014 4.95 4.44 22.64 0.839 0.995 0.996 0.993 0.999

En-route
(hAS =

10km, d = 9.5km, τmax = 33
μsec)

0.165 0.129 0.062 0.002 9.63 7.47 3.79 0.147 0.971 0.976 0.970 0.999

Taxiing / Parking
(hAS = 0.25km, d =

0.2km, τmax = 0.7 μsec)

0.199 0.133 0.656 0.051 11.52 7.69 43.04 2.97 0.965 0.971 0.999 0.999

with increase in height of AS. Furthermore, the rate of increase in angular spread is decreases with increase

in longest propagation path’s length. The standard deviation of azimuthal and elevational distribution of

angular energy observed from BS with respect to height of AS taken for different values of τmax are plotted

in Fig. 6 (a) and (b), respectively. This definition of angular spread shows the same trends as in previous

one but it is the exact measure of angular spread in degrees.

The angular constriction for azimuth and elevation angles for different values of height of BS observed

from BS with respect to height of AS is plotted in Fig. 7 (a) and (b), respectively. The angular constriction

remains almost constant with respect to azimuth angles with increase in height of AS as long as AS

lies inside the scattering region. However it increases with increase in hBS. The angular constriction with

elevation angles has a gradual decrease with increase in height of AS. However, conversely with azimuthal

side, it decreases with increase in hBS. The SF, αMF , for these scenarios remains around 0o. As the azimuthal

angular spread graphs decreases from one to zero and azimuthal angular constriction graphs increase from

zero to one. It is evident that if there is not a bias in either one or two directions of AoA, then angular

spread, Λα, will be one and angular constriction, γα, will be zero. The A2G communication environments are

usually classified into take-off/arrival, en-route, and taxing/parking scenarios. For these scenarios, numerical

results of SFs observed from both ends of the communication link are given in table I. The parameters,

height of AS, distance between communicating nodes, and longest propagation path’s delay; for these
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Fig. 4. Angular Constriction, (a) From AS, in azimuth plane, (b) From AS, in elevation plane, (hBS = 30m, d = 3km, and σb = 20m).
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Fig. 6. Standard Deviation, (a) From BS, in azimuth plane, (b) From BS, in elevation plane, (hBS = 70m, d = 3km, and σb = 30m).

typical propagation scenarios are taken same as measured in experimental studies given in [18, 19]. The

proposed analysis on SFs for A2G/G2A communication environments are useful in studying second order

fading statistics, like, level crossing rate, average fade duration, auto-covariance, and coherence distance.

The proposed analysis can be used in designing beamwidth for phased antenna arrays by manipulating the

correlations among antenna elements.

IV. CONCLUSION

An extension of a notable 3D analytical model for aeronautical communication channels, from the plain

distribution of angular energy to the quantization of multipath SFs has been presented. Furthermore, an

analysis on multipath SFs for A2G communication environments has been presented. The SFs are the

angular spread, standard deviation, angular constriction, and direction of maximum fading. The SFs are

computed using knowledge of PDFs of AoA at both ends of the communication link with respect to both

elevation plane and azimuth plane. The impact of varying the height of AS, height of BS, and longest

propagation path’s delay on these SFs has been thoroughly observed. The SFs are analyzed numerically for

different scenarios of A2G communication environment for available measured parameters.
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