
On the Measurement of Software Complexity for PLC Industrial
Control Systems using TIQVA

Adnan Muslija, Eduard Enoiu,
Email: muslija.adnan@gmail.com, eduard.enoiu@mdh.se

Mälardalen University, Västerås, Sweden.

ABSTRACT

In the safety-critical domain (e.g. transportation, nuclear, aerospace
and automotive), large-scale embedded systems implemented using
Programmable Logic Controllers (PLCs) are widely used to provide
supervisory control. Software complexity metrics, such as code
size and cyclomatic complexity, have been used in the software
engineering community for predicting quality metrics such as main-
tainability, bug proneness and robustness. However, since there
is no available approach and tool support for measuring software
complexity of PLC programs, we developed a tool called TIQVA in
an effort to measure complexity for this type of software. We show
how to measure different software complexity metrics such as lines
of code, cyclomatic complexity, and information flow for a popular
PLC programming language named Function Block Diagram (FBD).
We evaluate the tool using data provided by Bombardier Trans-
portation from a Train Control Management System (TCMS). In
addition, we report some empirical and industrial evidence showing
how TIQVA can be used to provide some experimental evidence
to support the use of these metrics to estimate testing effort for an
industrial control software. The results from this evaluation indi-
cate that other specific dimensions of PLC programs (e.g., function
block relationships, block coupling and timing) could be used to
improve the measurement of complexity for industrial embedded
software.

1 INTRODUCTION

Industrial control software is a type of software typically used
in industries such as transportation, chemical, automotive, and
aerospace to provide supervisory and regulatory control. This type
of software has different characteristics [39] that differ from tradi-
tional software. Programmable Logic Controllers (PLCs) [10] are
computer devices used for controlling industrial equipment and
they are often the primary components in smaller control systems
used to provide operational process control of such systems as
trains, car assembly lines and power plants. The semantics of soft-
ware running on a PLC [20] is characterized by the execution in a
cyclic loop where each cycle contains three phases, read (reading all
inputs and storing the input values), execute (computation without
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interruption), and write (update the outputs). In addition, inputs
and outputs in a PLC program correspond to internal signals, sen-
sors, or actuators. IEC 61131-3 is a popular programming language
standard for PLCs used in industry because of its simple textual
and graphical notations and its digital circuit-like nature. As shown
in Figure 1, blocks in an IEC 61131-3 program can be represented
in a Function Block Diagram (FBD). These diagrams form the basis
for composing applications. There is a need for tools measuring
complexity for FBD programs. Software engineering studies and
textbooks often used software complexity metrics to predict extra-
functional metrics such as faults proneness and maintainability
(e.g., [9, 17, 36]). However, no tools and studies have looked at how
code complexity of FBD industrial control software is measured.

This paper presents TIQVA, a tool for measuring the complexity
of industrial control software written in the FBD programming
language. In addition, we present the results of applying this tool to
an industrial embedded software project from Bombardier Trans-
portation Sweden AB. Data used in this study was created by expe-
rienced engineers for an industrial safety-critical system already in
use. Even if there are many aspects of a tool evaluation that can be
taken into account, we present here an experimental evaluation to
gather information that will help define problems and suggest hy-
potheses. For example, one might expect that more, more complex,
and larger requirements would increase software measures as well
as testing effort.

The paper makes the following contributions to this kind of
investigations:

• A tool for measuring code complexity for embedded soft-
ware written in IEC 61131-3 Function Block Diagram (FBD),
a popular programming language in the safety critical do-
main. There is a need to investigate how existing software
complexity metrics can be tailored to FBD software.

• Empirical and industrial evidence showing the applicability
of this tool for measuring the complexity of an industrial
system using real-world PLC software.

• A discussion on the use of TIQVA, as well as the use of a
linear regression model to estimate the test effort using soft-
ware complexity measured by TIQVA are shown. In addition,
the empirical results suggest that there is a moderate corre-
lation between software complexity and the number of test
cases created by experienced industrial engineers as well as
the execution time of these test cases.

2 BACKGROUND

In this section, we explain the concepts necessary for understanding
TIQVA and how the tool is used to obtain the results by covering
software complexity metrics and industrial control software. The
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i f ( a > b ) {
sum = a + c ;

} e l se {
sum = b + c ;

}

Figure 1: Two equivalent simplified programs written in two different program languages: a Java example (left) and a PLC

program written using the FBD language (right).

work presented in this paper focuses on the measurement of soft-
ware complexity for industrial embedded software written in the
FBD language.

2.1 Industrial Control Software

In specific domains (e.g. transportation, nuclear, aerospace and au-
tomotive), embedded systems implemented using Programmable
Logic Controllers (PLCs) are widely used to provide supervisory
control [11]. For example, this supervisory control can be used
for opening and closing doors or controlling the temperature in a
furnace. PLC software differentiate from its general-purpose coun-
terpart in several ways, including the way that they are written
and tested. PLC programs are usually created using one of the IEC
61131-3 programming languages [20]. IEC 61131-3 is a interna-
tional standard that describes the programming language rules and
requirements used for creating PLC programs [20]. IEC 61131-3
has a number of programming language implementations: Struc-
ture Text (ST), Instruction List (IL), Ladder Diagram (LD), Function
Block Diagram (FBD). Two of these languages, FBD and LD, are
graphical programming languages and do not use a textual source
code notation. Since the IEC 61131-3 programming languages are
used in domain-specific applications, the resulting software is orga-
nized and operates using Program Organization Units (POUs) [20]
containing functions (i.e., procedure-like program code), function
blocks (i.e., stateful functions) and a top-level program code that
has access to the IO ports. FBDs contain variables, data types, func-
tions. However, conditional statements and loops are implemented
differently in FBDs. As shown in Figure 1, the IF statement is en-
capsulated in the MAX function. In this study we used programs
developed in the IEC 61131-3 standard and FBD programming lan-
guage by industrial engineers describing a safety-critical system
used in the train domain.

2.2 Software Complexity

A software complexity metric is a quantitative value that describes
a certain dimension of the software and depends on the type of
the artifact used for measurement [30]. Even if multiple software
dimensions can be used, it is not easy to use such measures on
multiple software artifacts (e.g., program source code and the soft-
ware architecture). Nevertheless, there are a number of software
complexity metrics that have been successfully used in software en-
gineering domain [8]. Source Lines of Code (SLoC) is a simple size
metric that measures the logical and the physical size of a source
file. It is a size metric, since it can only describe the size dimension
of a software artifact (e.g. the program source code). Weyuker et al.

[41] have shown how to formalize, evaluate and compare different
complexity metrics including SLoC. Although the motivation for
measuring a specific dimension of a software varies in practice [38],
several studies [21, 23] have indicated that complexity metrics may
be good at predicting quality and development effort. For example,
software complexity measurements [27] can be used to indicate
the number of test cases needed to cover the logic of a particular
artifact or can be used to show that a software architecture has a
high levels of coupling [19]. Kumar et al. [25] proposed the use of
source code metrics for PLC programs written in the ladder diagram
(LD) programming language.

Even if the literature on measuring software complexity for
industrial control software for PLCs has been scarce, other graph-
ical programming languages have been the focus of research on
complexity measurements. Olszewska et al. [33] tailored software
complexity metrics to the component-based syntax of Simulink
models. This study also performed a correlation analysis between
complexity and fault data obtained from a car fuel program created
using Simulink and found a positive correlation between compo-
nents with high complexity and the number of faults found. The
data was validated using three domain experts. At the time of writ-
ing, no other study have presented their method in a tool that can
be used by both researchers and practitioners. In addition, we con-
sider the use of such a tool for a correlation evaluation between
test effort and software complexity metrics in the industrial control
software domain.

3 COMPLEXITY MEASUREMENT OF PLC

PROGRAMS USING TIQVA

Since there is no approach and tool support for measuring software
complexity on PLC programs written in the FBD language, we
developed a tool called Tiqva [32] in an effort to create a complexity
measurement method for FBD software. Practically, we create an
FBD data structure model based on the Abstract Syntax Trees (AST)
used for parsing and processing source code. The data model is
organized hierarchically and works in several iterations. We use
the FBD XDS Schema rules in creating the data model (as shown in
Figure 2) that contains all relevant program information from the
FBD representation and maintains the hierarchy and relationships
between different FBD elements.

A significant number of software complexity metrics have been
proposed in the literature [12, 18, 19, 27, 29]. We chose to adapt and
implement the following complexity metrics, since these are among
the most popular and well-researched metrics [30] in the software
engineering literature: Source Lines of Code (SLoC), Cyclomatic
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Figure 2: A high-level view of the input processing layer of Tiqva for parsing the FBD programs.

complexity (CC), Halstead complexity (HC) and Information Flow
complexity (IFC). Both SLoC and HC are code size metrics and can
abstract the size or the length of a program artifact. The HC metric
is suggested to be good at providing information about software
maintenance [18]. CC is a direct measure of the amount of decisions
programmed in the software [27] and is used for determining the
number of tests achieving basic path coverage [40]. The IFC metric
was proposed by Henry and Kafura [19] and is mainly used for
measuring the complexity of software architecture designs, since
the metric computes the amount of coupling and cohesion between
different software modules. We use IFC for FBD programs since
some of these architecture models and FBD programs are both using
basic component-based modelling concepts [20].

Even if the utility of using HC and SLOC metrics is in doubt
[16, 35], there is some evidence (e.g., [34]) suggesting that the size
of the software is the strongest individual predictor to identify
programs likely to contain the largest numbers of faults. These
kinds of relations need to be investigated further for other software
quality attributes (e.g., testing effort, maintainability) and our tool
supports these endeavours for PLC industrial software.

3.1 Number of Elements (NoE)

In the IEC 61131-3 FBD programming language, the notion of a
program statement is very different compared to other general-
purpose programming languages. While in Java, a line of code can
be a function call, in FBDs functions are encapsulated inside block
components. Therefore, we mapped the SLoC metric to FBDs. If
the function calls and other program statements are abstracted via
blocks, and the order of their execution is controlled via connections,
then we can assume that the SLoC metric for FBDs would measure
the number of elements including the blocks and connections in an
FBD program [20]. We propose the use of Number of Elements (NoE)
in the context of the FBD programming language by counting the
number of declarations, blocks and connections. When initialized in
the graphical programming environment, FBD variables and their
data types are represented as component blocks (e.g., input, output
and local component blocks). For example, for the program shown
in Figure 3, the NoE score is 13 and is computed as the sum of all 3
variables, 2 function and 3 variable blocks and 5 connections.

Figure 3: An example of an FBD program that outputs the

square of the maximum between two input parameters.

3.2 Cyclomatic Complexity (CC)

In the original paper [27], Thomas McCabe proposed a software
measurement technique for computing the number of linearly in-
dependent paths through a program code. This metric is based on
graph theory and can be applied to a wide range of software arti-
facts (from simple program functions to architectures [28]). The
CC metric can be measured using the following equation [27]:

M = Π − S + 2, (1)
where Π is the number of decision points of a program and S is the
number of exit points. This equation 1 points out that the CC score
is directly influenced by the number of conditional statements in the
program. Since CC is influenced by the decision points of a program,
CC can directly be used for the FBD programming language. Using
equation 1 on the FBD example in Figure 3 we can compute a CC
value of 2.

3.3 Halstead Complexity

HC metric [18] is computing multiple software dimensions based
on the measurement of operands and operators. We assume that
a set of operators are represented using different mathematical
and logical operations and programming language functions and
syntax, while the set of operands are variables and values used
in the operations. HC metric defines the following measurements:
program vocabulary, program length, calculated program length,
volume, difficulty, effort, time, and delivered bugs. These measure-
ments are computed based on both the unique and total number of
operators and operands. In FBDs, program variables and their defi-
nition are separated from the logic itself, so operators and operands
are created in a different fashion compared to a Java or C program.
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Halstead measurements Equation Result

Number of unique operators η1 6
Number of unique operands η2 7
Total number of operators N1 8
Total number of operands N2 11
Program vocabulary η = η1 + η2 13
Program length N = N1 + N2 19
Calculated program length N̂ = η1 log2 η1 + η2 log2 η2 35
Volume V = N × log2 η 70
Difficulty D =

η1
2 ×

N2
η2 4

Effort E = D ×V 331
Time T = E

S s, S = 18 18s

Delivered bugs B = E
2
3

3000 0.02
Table 1: Halstead complexity measurement equations [18]

and the results for the example shown in Figure 3.

Functions and function blocks are representing operations such as
comparison and multiplication. In addition, FBD connections are
used for the flow of data through connections and thus we use them
to calculate the number of operands in an FBD program. The results
of calculating the Halstead values are shown in Table 1.

3.4 Information Flow Complexity

Henry and Kafura proposed the use of a software complexity metric
[19] that could be applied at earlier stages of software development
(e.g., during the software architecture modelling). As shown in
Figure 4, a software module (i.e., module D) depends on other
software modules. IFC can be used to measure the information flow
between procedures or functions of a single program unit. Although
IEC 61131-3 POUs (i.e., programs, functions and function blocks)
are used as independent program units, these can be represented
as software modules in the overall software architecture of a PLC
software system. IFC can be tailored by measuring the number of
defined inputs and outputs of an FBD functions or function blocks.
This provides a baseline IFC score of an FBD POU, and that value
can only increase when the POU is used in other FBD programs.
In addition, we compute fan-in value using the number of output
parameters and fan-out value using the number of input parameters.
The SLoC value was measured using the FBD-equivalent NOE
metric already defined in TIQVA.

TIQVA computes an IFC value based on (fan-in, fan-out and NoE:

c = NoE × (fan-in × fan-out)2 (2)
For example, for the FBD program shown in Figure 3, the infor-

mation flow complexity score can be calculated as follows:

c = SLOC × (fan-in × fan-out)2 = 13 × (1 × 2)2 = 52 (3)

4 IMPLEMENTATION AND EXPERIMENTAL

METHODOLOGY

In this section we present the experimental roadmap used including
the subject software, how we measured software complexity on

Figure 4: The architectural view of an examined module D,
which is used by A, B, C and is using modules E, F.

such software as well as a use case for TIQVA in the form of a
correlation analysis of the test effort for manual testing.

4.1 Implementation of TIQVA

IEC 61131-3 IDEs (i.e., the open-source Beremiz IDE [2] and the
enterprise IDE Multiprog [3]), are lacking the support of a tool for
measuring software complexity measurements that some general-
purpose IDEs usually offer (e.g., Eclipse [1] or IntelliJ [4]). We
developed TIQVA using Java programming language and the tool
works directly with the PLCOpen XML file supported by IEC 61131-
3 IDEs.

In Figure 5 we show the high-level architecture view of TIQVA
containing three essential components:

• Processing of Input Programs by reading XML files containing
FBD programs and generating a model.

• Software Complexity Metrics Selection by measuring different
software complexity metrics using the defined techniques
and generated models.

• Results Writer : Reporting the results in a .csv file format.
To increase modularity and reusability of TIQVA, we created a

Java interface, ComplexityMetric, that defines methods for measur-
ing software complexity of an FBD program. The interface contains
two methods, one for measuring the complexity of a single POU,
while the other measures the complexity of an entire FBD project
containing multiple POUs. Once the software complexity measure-
ment scores are computed, the collected results are reported. The
SoftwareComplexity interface methods return the HashMap objects
which contain the measurement results.

Maven [6] was used for building and handling the dependencies
of the tool. TIQVA depends on standard Java packages found on
the Maven repository. We used DOM4J framework to do the initial
XML parsing. Since XML parsing is slow, compared to other com-
ponents of TIQVA, we use multi-threading for certain parts of the
tool to compensate for the overhead introduced by the parsing. If
multiple XML files are provided to the tool, each file is assigned an
individual thread for XML parsing, model building, and complexity
measurement. Up to 100 FBD XML projects can be parsed at a given
time. Once all XML files have been parsed by TIQVA, the results
are collected and reported using the .csv results writer.

4.2 Subject Software

The safety-critical industrial control software used in this paper
is part of the Train Control Management System (TCMS). TCMS
is a system developed and used by Bombardier Transportation
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Figure 5: Architecture and modules of TIQVA.

Sweden AB for high speed trains. TCMS is an embedded software
running on PLCs and used for handling a wide variety of operation-
critical and safety-critical functions of a train. TCMS is written
in IEC 61131-3 FBD programming language using a combination
of IEC 61131-3 function and function blocks and in-house built
function blocks. We used 82 FBD programs part of train control
management system that perform supervisory operations and are
developed independently of each other.

4.3 Test Effort

In this paper we use test cases for the individual TCMS FBD pro-
grams, which have been manually created and used for thorough
testing performed by experienced industrial engineers. Practically,
we used 82 test suites created by industrial engineers in Bombardier
Transportation from a TCMS project delivered already to customers.
A test case created for an FBD program contains a set of test cases
containing inputs, expected and actual outputs and timing infor-
mation. Data about these test cases was collected by using a post-
mortem analysis [15]. In testing FBD programs in TCMS, the testing
processes of software assurance are performed according to safety
standards and regulations. Requirement-based testing is mandated
by the EN 50128 standard [13] to be used to design test cases with
each test case contributing to the requirement satisfaction. In addi-
tion, testers are required to create test cases based on multiple goals
such as their experience, negative test cases as well as coverage-
based test cases. Executing test cases on TCMS is supported by a test
automation framework. The test cases collected in this study were
based on functional requirements expressed in a natural language
and achieved 100% requirement coverage for each program.

Test cases used in this paper are developed by experienced in-
dustrial engineers and were used for testing of a critical system
already deployed in which the development has been finished. In
this case strict requirements on both specification-based testing and
code coverage typically are met with rigorous manual testing. Test
suites were created to meet a rather good level of adequacy and are
covering 100% of the functional and extra-functional requirements.

Many factors affect the effort needed to test an FBD program.
According to Leung and White [26], testing involves direct and
indirect costs. A direct cost includes the time needed for testing
activities and the machine resources such as the test infrastructure

used. Indirect costs could include the management of the testing
process and the test tool development. Ideally, the test effort is
captured by measuring the time required for performing all the
different testing activities. Since this is a post-mortem study of a
deployed TCMS system and the testing process was performed a
few years back, we used proxy measures capturing the context
that directly affects testing effort. We note here that the number of
test cases depends on the testing strategy used but also on other
contextual factors. A test strategy that requires that every branch
in the program to be executed generally needs more tests than one
which only requires all statements of the program to be executed.
in this paper we assume that higher the number of tests cases, the
higher is the respective test effort. Practically, this is a measure
of the test effort of industrial engineers (working at Bombardier
Transportation Sweden AB testing the programs used in our study)
to perform thorough testing. The intuition is that a complex pro-
gram will require more effort for testing, and also more tests than
a simple program. Thus, the investigated hypothesis is that the test
effort is related to the same factor— the complexity of the software
which will influence the number of test cases. In addition, we use
the time needed to execute the test cases as another proxy measure
of test effort. This was measured directly when executing the test
case on the actual test system configuration.

5 RESULTS

In this section, we quantitatively evaluate TIQVA. As Section 3
explained, we collected data and computed complexity measures for
the FBD programs considered; and by collecting the number of test
cases in each test suite as well as the test execution time we aimed at
investigating the relation between the measured complexity scores
and test effort.

5.1 Complexity Measurements

Figure 6 shows some of the data collected for all FBD programs,
with each data point representing the number of test cases in each
test suite as well as the test case execution time. Table 2 gives the
descriptive statistics of the test data. We can observe that the aver-
age test execution time is 32 seconds while the test suite with the
largest execution time takes 900 seconds. In addition, the average
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Figure 6: The number of test cases and the test execution

time plotted for each individual test suite created for all pro-

grams.

number of test cases in a test suite is 8.5 with the largest test suite
containing 31 test cases.

We measured the software complexity of each FBD program
using the Tiqva tool. This resulted in a total of 15 measurements
for all software complexity measures used in this paper (NoE, CC,
HC, IFC). Tiqva used these 15 measurements for the selected 82
programs.

In Table 3 we show the results of measuring the complexity of all
FBD industrial control software. The different software complexity
measures cannot be directly compared with each other. However,
one program and its IFC score stands out with a high value of
IFC complexity score. Actually, four FBD programs from TCMS
showed high software complexity scores (i.e., Program 9, Program
60, Program 32 and Program 55). In particular, Program 32 achieved
high complexity scores for NoE, CC, and Halstead (HC). Program 55
achieved the highest NoE score, Program 60 the highest IFC score
and Program 9 the highest Halstead Difficulty score. Upon closer
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Figure 7: Normalized scores for the Number of Elements

(NoE) complexity and Cyclomatic Complexity (CC) for all

considered programs.

inspection, Program 32 has a very high number of input and outputs
parameters as well as elements and can be considered, based on all
complexity scores, the most complex program considered in this
paper.

In order to get a better view on the distribution of individual
metrics, we normalized the reported values (i.e., with 0 representing
the lowest complexity score while 1 showing the highest complexity
score.

The plots in Figure 7 show the distribution of NoE and CC met-
rics. We can observe that two outliers (Programs 32 and Program
55) show high NoE and CC scores. The rest of the programs are
scattered below the 0.5 threshold score. A similar result can also
be seen when considering IFC and Halstead Difficulty metrics. In
Figure 8 we observe that IFC scores are very much polarized with
quite low scores for most of the programs. In Figure 9 we show
an area plot for two Halstead complexity measures (i.e., Halstead
Difficulty and Halstead Volume) which are used to construct the
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Measure of Test Effort Min Max Average Median Standard Deviation

Number of test cases 1 31 8.5 6 6.2
Test execution time (sec.) 1 900 32.2 10 105.2

Table 2: Results for both test effort metrics: the number of test cases in each test suite and the test execution time.

Software complexity measure Min Max Average Median Standard Deviation

Variables 4 85 22 18.5 14.7
Connections 3 216 33.8 25.5 32.5

Blocks 5 228 39 29.5 35.1
Number of elements (NoE) 12 483 94.8 74.5 80

Cyclomatic Complexity (CC) 1 133 18.9 13 21.8

Information flow complexity (IFC) 12 57065472 2690651 68506 8478907.8

Unique operators 8 19 11.4 11 2.6
Unique operands 9 262 59.5 47.5 47
Total operators 12 229 59.1 49.5 39.8
Total operands 12 402 86.3 69 71.1

Halstead Program vocabulary 17 278 71 60 48.5
Halstead Program length 24 599 145.5 117 110.1

Halstead Calculated Program Length 52.5 2168.7 413.2 309.1 385.6
Halstead Volume 98.1 4844.3 942.5 691.5 886.8
Halstead Difficulty 5.3 14.1 8.1 7.9 1.8
Halstead Effort 523.2 59747.4 8756.5 5470.9 10925.8
Halstead Time 29 3319.3 486.4 303.9 606.9

Halstead Delivered Bugs 0.02 0.5 0.1 0.1 0.09
Table 3: Results for all software complexitymetrics (i.e., Number of Elements (NoE), Cyclomatic Complexity (CC), Information

Flow Complexity (IFC) and Halstead) together with the basic measures used to calculated these metrics.

rest of the other Halstead metrics (i.e., Effort, Testing Time and De-
livered Bugs). Both of the metrics shown in Figure 9 have a similar
distribution for all the programs considered in this study.

5.2 Correlation Analysis

Is the test effort (i.e, number of test cases and test execution time)
influenced by the software complexity of the programs considered
in this study? Table 4 shows the Kendall correlation coefficients
[22] we computed to answer this question. Kendall rank correlation
is used as a measure of correlation between software complexity
scores and the test effort proxy scores. Since the data is not normally
distributed we use Kendall correlation to not introduce unnecessary
assumptions about the collected data. We try to determine the
possible statistical relationship between software complexity and
the test effort scores. We used Kendall’s rank correlation coefficient
to calculate the statistical relationship between the scores with a
significance level of 0.05 since a statistically significant correlation
does not necessarily mean that the strength of the correlation is
strong. Here we use the Cohen scale [14], in which correlations
with absolute value less than 0.3 are described as weak, 0.3 to 0.5
as moderate, 0.5 to 0.9 as strong and very strong.

The two test effort proxy measures required the computation
of the correlation coefficients using R [5]. Table 4 shows τ coef-
ficients and p-values for the two proxy measures (i.e., E stands

Software complexity metrics τE p-valueE τN p-valueN
Number of Elements 0.342 8.192e−6 0.368 2.315e−6

Cyclomatic Complexity 0.225 0.003 0.252 0.001358
Information Flow Metric 0.264 0.0005 0.345 9.116e−06

Halstead Volume 0.328 1.878e−5 0.351 6.25e−6
Halstead Difficulty 0.208 0.006 0.125 0.1061
Halstead Effort 0.320 2.882e−5 0.320 3.876e−5

Table 4: Kendall correlation coefficient (τ ) and p-value be-

tween software complexity metrics and the test effort. The

test effort was expressed by two proxy scores: test suite exe-

cution time (E) and the number of tests in a test suite (N).

for test suite execution time and N stands for the number of test
cases in a test suite). A positive correlation can be observed for
four software complexity metrics (i.e., Halstead is shown as three
separate complexity measures: Difficulty, Volume and Effort). We
should note here that the p-valueN for Halstead Difficulty is 0.1,
thus showing that for this measure the correlation is not strong.
Overall, the results show that all coefficients, except for Halstead
difficulty measure, are significant. Table 4 gives the correlation be-
tween the different complexity scores and the test suite execution



SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Muslija and Enoiu.

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Program ID

In
fo
rm

at
io
n
Fl
ow

M
et
ric

20 40 60 80

0.2

0.4

0.6

0.8

1

Program ID

H
al
st
ea
d
eff

or
tc
om

pl
ex
ity

Figure 8: Normalized scores for the Information Flow Met-

ric (IFC) and Halstead Effort Complexity for all considered

programs.

time and the number of test cases measures of test effort. For all
programs, we see a low to moderate correlation between software
complexity and the number of test cases created as well as for the
test suite execution time (with a highest correlation coefficient of
0.368 for the Number of Elements (NoE) metric). These results show
that there is a statistical relationship between software complexity
measures and test effort measures for FBD programs and test data
for a real industrial system engineered by Bombardier Transporta-
tion Sweden AB. The NoE metric achieved the highest correlation
score. Interestingly enough, the cyclomatic complexity metric, a
structure metric, obtained a lower correlation than NoE size metric.
This can be taken as an argument in favor of not measuring the
structure of FBD programs in this way.

Our results suggest that, for the industrial programs considered
in this study, TIQVA is an applicable tool and can be used for
correlation analysis between different software metrics. Our results
suggest that there is a low to moderate correlation between the test

20 40 60 80

0.5

1

1.5

2

Program ID

H
al
st
ea
d
M
et
ric

s Volume
Difficulty

Figure 9: A normalized area plot showing two Halstead met-

rics (i.e., Volume and Difficulty) with a similar distribution

of scores across all programs in TCMS.

effort (i.e., the number of created test cases and the test execution
time) and the software complexity of a program. The size of the
software (i.e., number of elements measure) provides the highest
correlation with the test effort.

5.3 Building a Prediction Model using TIQVA’s

Complexity Metrics

We examined a train control software, which is a valid and represen-
tative case for industrial software and IEC 61131-3 FBD software
used in the embedded system domain. By using the complexity
measurement results and the test effort dedicated for testing the
software (i.e., the number of tests cases of a test suite and the exe-
cution time of a test suite), we indicated that there is a statistical
relationship between software complexity and test effort. However,
the correlation is low to moderate (i.e, 0.368 Kendall’s τ coefficient
is the highest correlation score). There are indications that higher
FBD software complexity does not imply a higher test effort.

As an effort to implement a test effort prediction model, we de-
signed a linear regression model of the test effort using several
software complexity metrics. The idea is to predict a dependent
variable using correlated independent variables. We use a linear re-
gression [31] (i.e., multiple linear regression (multiple independent
variable)) to show how the results and the Tiqva tool can be used
predict the test effort required for adequate testing. In practice, we
used a linear regression model of the test effort measure using the
following measures:

β1C1 + β2C2 + · · · + βn−1Cn−1 + βnCn = Tmeasure, (4)
where the test effort measure Tmeasure is a linear function of

different weighted software complexity scores Cns. The linear re-
gression model shown in equation 4 could be used to predict the
test effort for an industrial control software after determining the
weight values (βs), and it requires an existing set of software com-
plexity measurements and a test effort measure to be solved.

Using the previously measured software complexity scores for
the 82 FBD programs as the input data set and the two test effort
proxy measures as the output data set, we determined the weights
using a Python machine learning library [7]. We used the Linear
Regression module to determine the weights as well as to assign a
variance score (i.e., the amount of correct predictions of the model
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Test Effort Measures βNoE βCC βHEC βIFM MSE Score
Number of Test Cases 1.118e−7 4.69e−2 −6.528e−4 1.36e−7 17.31 0.55

Test Suite Execution Time 1.92 −1.4 −3.82e−3 −5.56e−6 5077.68 0.54
Table 5: Complexity weights and mean square error of predictions based on the weights and the prediction variance score.
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Figure 10: Graphs showing the predictions of the trained lin-

ear regression model for the test effort proxy measures (i.e.,

number of test cases and test suite execution time).

with 1.0 being the highest score). Two regression models have been
developed based on the previous equation (i.e., Equation 4) and
several complexity metrics for FBD programs:

βNoECNoE + βCCCCC + βHECCHEC + βIFMCIFC = TN (5)

βNoECNoE + βCCCCC + βHECCHEC + βIFMCIFC = TE, (6)

where NoE is the Number of Elements, CC is the Cyclomatic Com-
plexity, HEC is the Halstead Effort Complexity, IFC is the Informa-
tion Flow Complexity, N and T stand for the number of test cases

and test suite execution time respectively. Only Effort has been
taken into account from the different HC metrics.

Based on our results, we assumed that the linear regression
model will not have a high prediction accuracy considering the
low to moderate correlation between software complexity metrics
and test effort. After examining the trained linear regression model
using the full data set of 82 programs for training and for testing the
model, we report the results in Table 5. These results show that only
half of the test effort predictions were accurate. The mean squared
value was low when the model tried to predict the number of test
cases and significantly higher for the test suite execution time.
This can be explained by the non-linear and irregular values of the
execution time test effort shown in Figure 6. Another characteristic
of the model is the achieved higher β weight value for the Number
of Elements (NoE) messure in both models.

Figure 10 shows the predictions (in blue scatter points) of the
test effort in contrast to the measured test effort (black line). Al-
though the predictions of the test execution time are similar to the
predictions for the number of test cases, these are clustered around
one area (i.e., lower test execution time), while the number of test
cases is distributed across the complete test effort scores spectrum.
This shows that a test effort estimation can be made using software
complexity measurement scores. Since test cases in industry are
designed using different information sources (e.g., in the safety
critical domain using functional specifications and human domain
knowledge), one would need to include other metrics for predicting
the test effort. The results are promising, but we only achieved a
rough estimator. However, researchers and practitioners should fine
tune this kind of estimations by taking into account other metrics
for software artifacts (e.g., specification, test knowledge) which are
heavily influencing the overall test effort.

6 THREATS TO VALIDITY

Industrial control software used in PLCs can be programmed in
a wide variety of programming languages, such as IEC 61131-3
FBD and ST languages. In this paper, we examined how software
complexity metrics can be applied on industrial control software
developed using FBDs in one company (i.e., Bombardier Transporta-
tion Sweden AB), thus narrowing the scope of the study. However,
we argue that the examined software (TCMS) shows general charac-
teristics of the safety-critical industrial domain. In addition, the set
of software complexity metrics chosen to be used on FBD programs
is not complete by any means. We have not used complexity mea-
sures such as entropy [37], Kolmogorov complexity [24], since the
purpose of this paper is to explore the test effort relation with soft-
ware complexity. This is a first step in this endeavour. Also, the test
effort is not straightforward to measure and requires knowledge of
the multiple phases performed during software testing including
test creation. In this study we focus on two proxy measures for
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test effort. More studies are needed to generalize the results of this
paper.

7 CONCLUSION

TIQVA is a tool that automatically produces complexity measure-
ments scores for FBD control programs. TIQVA implements several
measures adapted to the nature of the FBD language. This paper
presents also an exploration on how software complexity can be
applied on industrial domain-specific software written in the FBD
graphical programming language. We used four, well known, soft-
ware complexity metrics. We studied the relationship between test
effort (i.e., number of test cases and test execution time of a pro-
gram’s test suite) and the program complexity scores. From the
82 industrial FBD programs we studied, we drew the following
conclusions: TIQVA is applicable to measure the complexity of real
industrial FBD programs, there is a low to moderate correlation
between the effort needed to test a program and its complexity, and
the size of the software in terms of the number of elements provides
the highest correlation with the test effort. The results from this
study also indicate that other aspects than code complexity should
be taken into account to better capture the relationship between the
implemented and specified software artifacts and test effort. Also,
other complexity dimensions of the FBD programs (e.g., function
block relationships, block coupling and timing) could be used to
improve the measurement of complexity for an FBD program.

The results of applying TIQVA on an industrial system are useful
for both researchers and industrial engineers and show its applica-
bility when applied on a safety-critical industrial software for high
speed trains. We argue that we went further and showed experi-
mental evidence on how this tool can be used for estimating one
aspect of software development (i.e., test effort). Given that we have
used well-known complexity metrics in TIQVA, we believe that our
results (even if negative for the correlation between test effort and
well-known software complexity metrics) are especially important
in engineering of PLC systems. Since experimentation should drive
research forward, for pragmatic and methodological reasons, it is
important to report both positive and negative experimental results
like the ones described in our paper. Finding and acknowledging
the actual use of this tool and these complexity metrics should be
regarded as a benefit for our field of research.
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