
Accepted for Publication in “The 26th Asia-Pacific Software Engineering Conference (APSEC 2019)”, IEEE

MBRP: Model-based Requirements Prioritization
Using PageRank Algorithm

Muhammad Abbas
Research Institutes of Sweden

Västerås, Sweden
muhammad.abbas@ri.se

Mehrdad Saadatmand
Research Institutes of Sweden

Västerås, Sweden
mehrdad.saadatmand@ri.se

Irum Inayat, Naila Jan
National University of Computer & Emerging Sciences

Islamabad, Pakistan
irum.inayat@nu.edu.pk, nailaneena@gmail.com

Eduard Paul Enoiu, Daniel Sundmark
Mälardalen University

Västerås, Sweden
eduard.paul.enoiu@mdh.se, daniel.sundmark@mdh.se

Abstract— Requirements prioritization plays an important
role in driving project success during software development.
Literature reveals that existing requirements prioritization
approaches ignore vital factors such as interdependency
between requirements. Existing requirements prioritization
approaches are also generally time-consuming and involve
substantial manual effort. Besides, these approaches show
substantial limitations in terms of the number of requirements
under consideration. There is some evidence suggesting that
models could have a useful role in the analysis of requirements
interdependency and their visualization, contributing towards
the improvement of the overall requirements prioritization
process. However, to date, just a handful of studies are focused
on model-based strategies for requirements prioritization,
considering only conflict-free functional requirements. This
paper uses a meta-model-based approach to help the
requirements analyst to model the requirements, stakeholders,
and inter-dependencies between requirements. The model
instance is then processed by our modified PageRank algorithm
to prioritize the given requirements. An experiment was
conducted, comparing our modified PageRank algorithm’s
efficiency and accuracy with five existing requirements
prioritization methods. Besides, we also compared our results
with a baseline prioritized list of 104 requirements prepared by
28 graduate students. Our results show that our modified
PageRank algorithm was able to prioritize the requirements
more effectively and efficiently than the other prioritization
methods.

Keywords— requirement prioritization, requirements
interdependencies, meta-model, page-rank

I. INTRODUCTION
Software development is a time and budget intensive

process. A successfully developed software system not only
depends on its correct functioning but also depends on the
value delivered to the stakeholders [1]. In today’s software
development culture where requirement changes are frequent
and continuous, the decision of which requirements will be
considered first (i.e., requirements prioritization (RP)) in a
specific iteration is very important. Requirements
prioritization is defined as a process of prioritizing a set of
requirements based on different parameters of interest e.g.,
risk, cost, time and inter-dependencies [1]. The prioritized list
(if performed for a software release) is developed and used
with the same process being repeated for upcoming iterations.
For example, the RP results can be used to plan and select the

optimal set of requirements for development in the next
release.

A number of RP techniques (e.g. [2][3][4]) have been
proposed in the literature together with some empirical
evidence on their evaluation. Genetic Algorithms (GA) is also
being used for prioritizing the requirements (e.g. [5][6]) with
promising results. In addition, the Analytic Hierarchy Process
(AHP) is one of the most discussed prioritization approaches
in the research community and is actively being used for RP
[7][8][9]. The use of fuzzy logic-based techniques for
prioritization of requirements has also been investigated in the
literature (e.g., [9][10]). Unfortunately, most of the existing
techniques are only focusing on prioritizing conflict-free
requirements (for instance in [11]) and in many cases, these
approaches are ignoring requirements interdependencies (e.g.,
[7][12][13][14]). Requirements dependencies play a huge role
in the overall software engineering process and researchers
have tried to compute them automatically [15].

Model-Driven Engineering (MDE) is an efficient and
effective way of both managing software complexity, as well
as providing a basis for the systematic development of
software at various abstraction levels. MDE has been applied
in Requirements Engineering (RE) for structuring,
formalizing, and visualizing the requirements in the form of
models (e.g. [16][17][18]). The resulting models can be used
for generating design models and executable code by using
Model-Driven Development (MDD) tools and technologies
and are useful to aid in software analysis during the whole
development process (e.g., trade-off analysis [19]). Extending
the potential of using such models, one can use these for
defining the dependency between requirements, with the goal
of automatically performing dependency-based prioritization.
A more recent work suggests that the use of the PageRank
algorithm [20] for RP [11] is effective for ranking
requirements based on dependencies. However, these kinds of
approaches are not taking into account non-functional
requirements and consider only optional requirements without
any requirement conflicts. This impedes the possibility of
using such RP approaches in realistic scenarios.

To alleviate the aforementioned restrictions, we proposed
a meta-model based approach to facilitate the modeling,
visualization, and prioritization of requirements and their
related test cases [21]. The proposed meta-model borrows
concepts from System Modeling Language (SysML1) which
can be found in other meta-models in the literature (for 1“SysML”, Available: https://sysml.org/

instance representing stakeholder information [22],
requirements [17] and their relationships [17][23]). The
proposed meta-model is capable of modeling requirements
along with interdependencies between them and other factors
(e.g., risk, cost, time to develop and business value) that are
significant for RP. The meta-model is supported by a tool that
aids the visualization, modeling, and prioritization of the
requirements. These models are integrated with RP and we
propose the use of a modified version of the PageRank
algorithm in which the initial rank is assigned differently, and
it can distinguish conflicting edges. To provide meaningful
experimental evidence on the use of such an approach, we
evaluated our proposed prioritization algorithm in terms of the
following questions:

RQ1: Does the modified PageRank algorithm effectively
prioritize a set of requirements?

RQ2: Does the modified PageRank algorithm efficiently
prioritize a set of requirements?

Based on these research questions, our experiment
compares our proposed approach with a list of 104
requirements prioritized by 28 graduate students registered in
the Advanced Requirements Engineering course in a private
university (onwards called the baseline).

The rest of the paper is structured as follows: in Section II
we discuss the related work, while in Section III we discuss
our proposed model-based RP approach. In Section IV we
demonstrate our proposed model-based requirements
prioritization approach on a small example case, while in
Section V we evaluate our modified PageRank algorithm by
comparing the results with the baseline and other algorithms.
In Section VI we discuss the results of this paper, and in
Section VII we discuss the threats to validity. Finally, in
Section VIII we describe the limitations of our work and
concluded the paper.

II. RELATED WORK
Recently, RP techniques using AI have been proposed and

deployed as a key component of an efficient and effective
process. For example, the fuzzy logic and evolutionary
algorithms along with traditional ones like the AHP [24] are
widely used independently and in combination [25][26]. An
evolutionary algorithm called Interactive Genetic Algorithm
(IGA) [27] was used to prioritize forty-nine functional
requirements based on a real case. The algorithm was
compared with AHP to determine the reduction in pairwise
comparison effort. The results showed that IGA outperformed
AHP by decreasing the elicitation effort by 10%. Another GA
based technique was proposed to prioritize requirements
called Least-Square-Based Random Genetic Algorithm
(LSRGA) and was empirically evaluated to measure its
performance in comparison to IGA [5]. Gradient Descent
Ranking (GDRanking) [28] is a machine learning approach
for prioritization of requirements elicited through the Quality
Function Deployment (QFD) [28]. This approach has two
distinct phases for pairing and balancing both the functional
and non-functional requirements. The proposed method was
evaluated for four pairs on both functional and non-functional
requirements. However, issues like requirement
dependencies, renewing the requirements rank with an
addition of new requirements and scalability are not
considered. Another machine learning based approach called

Case-Based Ranking (CB-Ranking) is proposed for
requirements prioritization [29]. CB-ranking uses pair-wise
comparisons (e.g., AHP) and the elicitation of the candidate
priority between requirements relies on Boolean values. This
gives less noisy data and concrete priority values for the pairs.
Their results showed that CB-ranking is more effective and
accurate as compared with AHP with an increase in the size
of the dataset. Further, the experimental results showed that
CB-ranking performs better than AHP by reducing the number
of disagreements. Nevertheless, this work relies on a rather
small data set and is not taking into account the dependency
factor between requirements. Interested readers can have look
at the comprehensive review on RP techniques [30].

AI techniques are helping RP by providing better support
for handling non-functional RP, prioritizing a large number of
requirements for large-scale software systems, and tackling
the precision and accuracy issues. However, there is a need to
evaluate RP techniques in more realistic situations by taking
into account factors like the interdependency between
requirements, and conflicting requirements. In this context, a
recent study proposed an i* model-based requirement
prioritization technique using the PageRank algorithm [11].
This work considered only optional and conflict-free
functional requirements. To the best of our knowledge, only
one recent study [11] considered the information available in
the models for prioritization. Moreover, our approach seeks to
improve previous approaches by taking into account other
factors for requirements prioritization such as risk, business
value, cost, dependencies, and even conflicts. This also makes
SysML not applicable in our case. SysML lacks in taking into
account the relevant factors like risk, business value, and cost.
Our approach is also independent of the type (i.e.,
Functional/Non-Functional) of requirements being
prioritized. Prioritizing requirements with conflicts can help
in providing decision support for deciding the resolution of
conflicting requirements based on priorities.

III. PROPOSED APPROACH
This section describes our proposed approach for

requirements prioritization using PageRank algorithm and
the meta-model (developed in Ecore2) behind the approach.
We also provide a (prototype) tool3 support that aims to
support the requirement visualization, analysis, and
prioritization.

Our tool supported approach allows the generation of an
instance model from a spreadsheet exported from a
requirements management tool (e.g., DOORS4). At the
moment, the requirements dependencies are to be written
manually by the requirement analyst in a spreadsheet or
visually in our tool. We aim to automate this step by the use
of natural language processing algorithms. We also
considered other vital factors like risk, cost, business value
and time to develop (cost) for RP. The optional factors can
also be modelled manually or can be provided in the
spreadsheet. The generated model is based on the meta-model
shown in Fig. 1. The meta-model allows modelling of both
functional and non-functional requirements with
dependencies.

A. The Meta-Model and Concrete Syntax
Our requirements model borrows concepts from the

SysML and other models in literature. In our case, each
requirement has an id, title, description,
rationale and other optional properties vital to the 2“EMF.”, Available: https://www.eclipse.org/modeling/emf

3“MBRP”, Available: https://github.com/a66as/mbrp
4“Rational DOORS”, Available: https://www.ibm.com/se-

en/marketplace/requirements-management

requirements prioritization process (i.e., risk, cost, and
businessValue) can take values between one and ten
representing the risk factor associated with a requirement, the

expected cost for the development and value it adds to the
overall project, respectively.

Fig. 1. Meta-Model to support requirement prioritization

An optional initial priority (StakeHolderPriority)
is assigned to the requirements using MoSCoW technique
(Must have, Should have, Could have and Would have)) [31]
priorities. In our approach, it is recommended to model the
optional properties (if available) for a better prioritization. The
mbprPriority is used for automated priority calculation by
our modified PageRank algorithm.

Stakeholder(s) information can also be modeled and
linked to requirements. Each Requirement contains
multiple instances of RequirementRelationship which
can represent different types of dependencies (e.g. depends,
conflicts, derives, defines, refines and realizes). A
Requirement can also be linked to multiple test cases. Note
here that it can be extended to support the requirements
analysis phase in a more comprehensive way and with more
factors.

We have developed a concrete syntax for our instance
model in Sirius5. We used Sirius because it allows the
generation of Eclipse-based model editors. The tools allow
end-users to model the requirements and view the model
visually. TABLE I. shows our concrete syntax with respect
to the meta-model elements.

Functional requirements are represented using yellow
notes with id and title information associated with it.
Non-Functional requirements are represented using a purple
note with id and title information associated with it. A
Stakeholder is represented with a user icon. In addition, a
TestCase is represented using orange color note with id and
priority on it. The different types of dependencies are
mentioned on the edges and are also color coded as follows:
Depends (black arrow), Derives (grey arrow), Refines (blue

arrow), Conflicts (red arrow) and Realizes (black arrow with
“<realizes>” label). The association of requirements with the
respective stakeholder(s) is shown through doted green lines.

TABLE I. CONCRETE SYNTAX

Meta-Model
Element

Concrete Syntax
Representation Source Target

Requirement - -

NonFunctionalRe
quirement

- -

Stakeholder - -

TestCase - -

linkedRequireme
nts Stakeholder Req.

Depends Req. Req.

Derives Req. Req.

Refines

Req. Req.

Conflicts Req. Req.

Realizes Req. Req.

B. Requirements Prioritization
Requirements are prioritized by following the steps shown

Fig. 2. The requirement model is fed into the tool and for each
requirement, the initial rank, cost contribution, risk
contribution, and links contribution are calculated. All the
calculated values are summed, and the sum is assigned as a
priority to the requirement. These steps are repeated for each
requirement and then the tool sorts the new list based on

5“Sirius”, Available: https://www.eclipse.org/sirius/overview.html

resultant priorities producing a prioritized list of requirements.
We further explain each step, in detail in this section.

The Initial Rank is assigned as shown in eq. (1). The 𝑁"#$
in the equation represents the total number of requirements in
the requirements’ model. The initial rank equation has the
value of 0.625 representing the degree to which the priorities
should be dictated by the interdependencies.

𝑅_𝑖 = 𝑁_𝑟𝑒𝑞		 × 	0.625						(1)

Fig. 2. Prioritization Process

 The cost contribution to the priority is also calculated for
each requirement and is added to the priority of the
requirement. The cost contribution (to the priority) of a
requirement is calculated by taking the ratio of
businessValue and cost attributes of the Requirement.
Note that if the required values for calculation of cost
contribution is not modeled, the algorithm will just add one to
the priority of that respective requirement.

The algorithm adds the risk contribution to the priority of
the requirement. The risk contribution is calculated by taking
the ratio of businessValue and riskFactor attributes of
the Requirement. The algorithm will increment the priority
value by one if the required values for the calculation of risk
contribution to the priority are missing.

 The optional initial stake holder’s priority is also added to
the priority of the requirements. These priorities are modeled
using the StakeholderPriority enumeration in the meta-
model. As in the MoSCoW method our literals also contribute
to the priority in the ordinal way. The literal MustHave
contributes 9.0 to the priority, ShouldHave contributes 6.0 to
the priority, CouldHave contributes 3.0 to the priority and
finally WouldHave contributes 1.0 to the priority. Based on
the selected literal for the requirement, the targeted
contribution is added to the priority of the requirement.
 For the calculation of the link contributions, the algorithm
extracts all the dependencies among dependent requirements.
Each dependency edge (incoming) is weighted by dividing the
current priority of the source (of the dependency) requirement
equally among all dependency edges except for the edges
representing a Conflict. The weighting for each
dependency edge is done as shown in eq (2).

𝐿789:.; = 𝑃𝑟𝑖.="7."#$.		/	𝑙𝑒𝑛(𝑟𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝑒𝑞𝑠.)						(2)

 In case of conflict edges, the contribution of the edge to the
requirement priority is evaluated as per the following
conditions:

• If the source requirement of the edge has a higher
priority than the target of the edge, then half of the
weight of the edge is subtracted from the priority of
the target requirement.

• Otherwise, half of the weight of the edge is added to
the priority of edge’s source requirement.

The link contribution is added to the overall priority if the
edge is not representing a conflict.

The steps of this process (mirrored as steps 1, 2, 3, and 4
in Fig. 2) are repeated for each requirement and then the links
are weighted, and the links contributions are added to the
priorities of each requirement. The algorithm then sorts the
requirements based on the mbrpPriority and generates a
prioritized list of requirements.

IV. DEMONSTRATION OF THE PROPOSED APPROACH
For the illustration of our proposed approach, we have

presented a small example of a requirements dataset with four
requirements. TABLE II. shows the IDs of the requirements
and their relations (Link column), Business Value (BV
column), cost, initial MoSCoW priority (IP column), and risk
factors associated to a requirement (Risk).
 Fig. 3 shows the representation of the example dataset as
a model created in our tool. It shows that R1 has three
incoming links, R2 and R3 have one incoming link and R4
have no incoming link. The outgoing edges are modeled as per
shown the in the link column of the TABLE II.

TABLE II. EXAMPLE REQUIREMENTS DATASET

ID
Requirements Data

Link BV Cost IP Risk

R1 - 6 2 MustHave 2

R2 Depends on 1 7 5 MustHave 3

R3 Refines 2, Depends on 1 8 7 MustHave 3

R4 Depends on 1, Depends on 3 10 8 MustHave 5

All the four requirements have initial MoSCoW priority
of ‘9’ tagged as “Must Have”. As per our algorithm, an initial
rank is assigned to each requirement as per eq. (1). So, in this
case, all the requirements have an initial rank of 2.5 (4*0.625)
= 2.5). The MoSCoW priorities are then added to the initial
rank. For the example dataset, all the requirements are tagged
as “Must Have” and thus contributing the number 9.0 to the
priority (making overall priority = 2.5 + 9.0 = 11.5, shown in
Pi column of TABLE III.). After this step, risk and cost
contributions are summed (shown in the CR column in
TABLE III.) and are added to the overall priority of each
requirement. Cost and risk contributions to the priority are
calculated as discussed in Section III (e.g, for R1 cost
contribution is 6/2=3 and the risk contribution is also 3
eventually resulting in a contribution of 6 to the priority).

Fig. 3. Requirements model of example dataset

Till now the resulted priorities of each requirement are
considered as the current priorities and are shown in Px
column of TABLE III. For calculation of the links
contribution to the priority, the algorithm takes requirements
one by one and starts dividing the current priority in the
outgoing edges. In the case of R1, there are no out-going
links, so this step is skipped. In case of R2 the priority value
(15.8) is assigned to the edge (R2 to R1) and is added to the
priority of R1. For R3 the current priority (15.3) is divided
between the two outgoing edges, incrementing R1 and R2’s
priority by 7.6. For R4 the current priority (14.7) is divided
equally in between the two edges, resulting in an increment
of 7.3 in R1 and R3’s priority. The total sum of the edges
contribution for each requirement is shown in EC column of
TABLE III. The last column (Pf) shows the final priority of a
requirement calculated by using our modified PageRank
algorithm.

TABLE III. PRIORITIZED EXAMPLE DATASET

ID
Requirements Priorities

Pi CR Px EC Pf

R1 11.5 6 17.5 30.8 48.3

R2 11.5 4.33 15.8 7.6 23.4

R3 11.5 3.80 15.3 7.3 22.6

R4 11.5 3.25 14.7 0.0 14.7

 TABLE II. shows that R4 is of the highest value to the
stakeholder but since it has dependencies and thus requires
R1 and R3 (that depend on R2) to be developed first. In this
case, our algorithm correctly ranked the example data set of
requirements.

V. EVALUATION
For evaluation of our approach, this section compares our

results with existing algorithms and with a baseline (obtained
from an experiment performed with human subjects). The
baseline is required in our case because we wanted to evaluate
our proposed approach for accuracy and efficiency. We
conducted an experiment where 30 graduate students
prioritized a dataset of 104 requirements. The lists from the
graduate students are evaluated and an average priority (from
28 valid lists) of each requirement is considered as the
baseline. the valid lists were averaged, and the baseline was
obtained. The same 104 requirements dataset was then
prioritized on AHP, and fuzzy Analytic Network Process
(ANP), FAHP, FANP, IGA, and our modified Page-Rank
algorithm. The obtained lists from the prioritization
algorithms were compared with the baseline using a statistical
test. Fig. 4 shows the overall flow of our experiment. The rest
of the section explains each step of the experiment in more
detail.

A. Preparing the Baseline
The evaluation of our proposed approach for RP is done

on a dataset of 104 requirements used in the development of
a smart home system. The dataset contained the required
information for requirements prioritization (such as
dependencies, expected development time, etc.). In order to
be able to compare the results of our approach, we conducted
an experiment to obtain a baseline prioritized list of

requirements. The experiment was conducted in a purely
academic setup where 30 graduate students participated in
this activity. The students were enrolled in the “Advanced
Software Requirements Engineering” course and had already
worked on at least one real software development project. A
one-hour session was conducted prior to the experiment
where the students were briefed about the requirements’
dataset. The students assigned the initial stakeholder
priorities, risk, cost contributions, dependency factors as per
their own understanding. For each requirement, all the
mentioned values were summed, and the sum was assigned
as priority to the requirement. All students prioritized the
dataset, but two submissions were not completed and were
not included in the baseline. Finally, a total of 28 submissions
were considered for creating the baseline. The baseline list
was obtained by considering the average of all the 28
priorities for each requirement.

B. Evaluation Experiment Execution
We prioritized the same dataset (used for preparing the

baseline) on AHP [24], ANP [26], FAHP, FANP, IGA [27],
and our modified PageRank algorithm. We selected these
techniques since they are widely used for multiple criteria
decision-making and deals with quantitative data. For
example, AHP is a pair-wise comparison technique used for
prioritization. It is definitely the most widely used and studied
requirements prioritization technique.

The tool that we used for evaluating AHP is named
“Super-Decision”. It automates the manual input of data into
models and helped us in getting the pair-wise decisions. The
tool was used for AHP prioritization in many fields of
business and marketing [2] and is also used for requirements
prioritization especially for the multi-criteria decision-
making process. We considered several optional factors:
stakeholder’s priority, risk, and cost. According to these
factors, we prioritize the requirements dataset. The tool
facilitates us to mention all these factors as criteria and all the
requirements in the form of clusters and also show their
relation to the mentioned factors (criteria). We created
different clusters of the modules to represent the requirements
as the 3rd hierarchy of the process. After creating this model,
we perform the pair-wise comparisons of the requirements
according to the criteria and we obtained the prioritized list
of requirements.

Analytical network process (ANP) is a generalization of
AHP also a multi-criteria decision-making technique used for
prioritization. In ANP the number of comparisons is almost
double than that of AHP because of the bidirectional
relationship between the clusters. We implemented the ANP
process by using the “Super Decision” tool which facilitated
the bidirectional relation between the cluster and the
requirements. The bidirectional arrow defines the
relationship of each factor to the elements of the alternative
cluster. The elements in the alternative cluster also have a
dependency on the factors of criteria cluster. The tool
facilitated us in all pair-wise comparisons of the clusters
according to the model and allowed us to rank the
comparisons. After ranking the comparison, the tool
calculated the normalized priority.

We also used Fuzzy AHP which is the fuzzy version of
AHP. This technique is also a multi-criteria decision-making
technique and handles both qualitative and quantitative form

of data. We used the fuzzy interface system (FIS) using the
Matlab ranking the dataset on Fuzzy-AHP.

Fuzzy-ANP is the advanced form of ANP just like in case
of Fuzzy-AHP. For Fuzzy-ANP we created different FIS files

as the clusters of Fuzzy-ANP and then implemented our
dataset to get the results in the form of priorities.

Fig. 4. Process of the evaluation experiment

The IGA was with default setup and the fitness function
used for the IGA was to check if top 7 known requirements
are listed in the top 20 of the obtained lists. The IGA would
stop if and only if all the top 7 requirements are listed in the
top of the obtained list OR it would stop if the predefined
number of iterations are completed. In our case, we limited
the iterations to 50,000. This took around 60 minutes on an
Intel Core i3 (2.20 GHz) 2nd gen. machine with RAM of 4
gigabytes. Note that as an initial population, we provided ten
lists obtained from the students.
The proposed PageRank algorithm was used to prioritize the
created requirement model by using our own tool
implementation. Our tool has the option of loading a
requirement list from a comma-separated values file. We
loaded the dataset from a file and the model was
automatically generated by our tool. We manually verified
the correctness of the generated model. We then prioritized
the requirements model and a sorted prioritized list was
generated and written to a file within seconds.

C. Experimental Results and Analysis
To answer our RQ1 (Does the modified PageRank

algorithm effectively prioritize a set of requirements?) we
checked the normality of the prioritized lists obtained from
AHP, ANP, FAHP, FANP, IGA and modified Page-Rank.
Our data observations are drawn from an unknown
distribution, we applied the Wilcoxon signed-rank test [32] to
evaluate if there is any significant difference between the
generated RP lists and the baseline without making any
assumptions on the distribution.

We found that all the lists obtained from the selected
techniques (including modified PageRank) produced
different results as compared to the baseline. The p-values of

the applied statistical test are listed in TABLE IV. From our
results, we infer that there is a statistical difference between
all data sets at the 0.05 level. To check the actual difference,
we applied Cohen’s D effect size [33] and the result against
each technique is shown in TABLE IV. Cohen D test was
used to calculate two data sets and returning the deviation that
a sample from one set will be different than a randomly
selected sample from the other set. According to Cohen [33],
the effect can be small (<0.2), medium and large (>0.8).

Fig. 5. Comparison of the accuracy results

TABLE IV. THE P-VALUES AND THE EFFECT SIZE

Technique
Statistical Tests and Values

P-Value (Wilcoxon signed-rank) Effect Size

PageRank 0.004 0.1

AHP P<2.2e-16 1.41

Technique
Statistical Tests and Values

P-Value (Wilcoxon signed-rank) Effect Size

ANP P<2.2e-16 1.37

FAHP P=0.003 0.2

FANP P=2.6e-13 1.2

IGA P=2.9e-11 1.71

 We have found that the list produced by PageRank is
closer to the actual baseline and thus it can be concluded that
our modified PageRank algorithm effectively prioritized the
list of 104 requirements when compared to our baseline than
the other techniques. Fig. 5 shows the exact differences for
each technique from the baseline.

To answer our RQ2 (Does the modified PageRank
algorithm efficiently prioritize a set of requirements?) we
recorded the time taken by each technique to prioritize our
dataset of 104 requirements. Our results show that ANP and
AHP took the most time and that is because these techniques
are impacted by the manual effort needed to perform them.

IGA took more than one hour to converge upon a solution,
while FANP and FAHP outperformed IGA in terms of time.
The FAHP technique was even more efficient in terms of time
when directly compared to the FANP technique. We have
also recorded the rule coding time for FANP, and the results
are shown in Fig. 6.

Our proposed approach produced the prioritized list of
requirements in less than a second. Note that our approach
generates the requirements model automatically from the
generated .csv file. Based on the time results for each
technique we can clearly see that the modified Page-Rank
algorithm efficiently prioritized the list of 104 requirements.
The time (in minutes) taken by each technique is shown in
Fig. 6.

Fig. 6. Comparison of time taken by all techniques

VI. DISCUSSION
In this paper, we used PageRank algorithm on models for

RP and evaluated our approach. The results obtained from
this evaluation show that all the selected techniques for the
experiment produced different results when compared to a
baseline. Some techniques (e.g., the Fuzzy-AHP and
PageRank) was able to produce closer results to the baseline
than the other techniques. Our results suggest that
prioritization techniques considering requirement
dependencies can produce more closer (to humans) results. In

the cases where the requirements dependencies are hard to
determine, automated dependencies extraction approaches
can be used. Since most of the approaches have no way to
represent conflicting requirements or competing
stakeholder’s interest, a multi-criteria decision support
system with the ability to use requirement-level dependency
information and conflict resolution should be considered for
requirement prioritization.

In addition, the results obtained from the experimental
evaluation show that manual techniques (even the tool
supported) are not efficient and consume a huge amount of
computational time. It is important to mention that the
evolutionary algorithms might not converge upon a solution
(in case of larger datasets) in a reasonable amount of time.

VII. THREATS TO VALIDITY
 The internal validity threats are related to our
experimental design. The experiment was not conducted in a
real industrial setup and was conducted in an academic
environment. The participants of the experiments were
students and not industry professionals, and this could affect
the final results. Nevertheless, we ensured that the students
are familiar with the requirements prioritization topic and
have worked on one real software development project.
While it is possible that prioritizations created by industrial
engineers would yield different results, there is some
scientific evidence [34] supporting the use of students in
software engineering experiments.

Some external validity threats were addressed by selecting
a diverse set of requirements. We argue that having access to
a realistic dataset and rather a good number of requirements
can be representative. The size of the dataset is another
limitation which makes our results less generalizable for
large-scale scenarios in thousands of requirements are to be
consider. More studies are needed to generalize these results
to other domains and RP methods used.

VIII. CONCLUSION
 In this study, we considered dependencies for
requirements prioritization with the help of a meta-model and
PageRank algorithm. Our approach helps in modeling the
requirements dependencies and prioritizing the requirements
based on dependencies. Our approach is implemented in a
tool and helps in visualizing the requirements along with
dependencies. We evaluated our approach on a dataset of 104
requirements. We conducted an experiment to obtain a
baseline so that we can compare the results of our algorithm
and other state-of-the-art to a ground truth (baseline). We
compared the results of our PageRank based prioritization
with the baseline and also with five other techniques (i.e.,
AHP, ANP, FAHP, FANP, and IGA). We found that our
modified PageRank algorithm prioritized the list of
requirements effectively and efficiently and taking into
account the dependency factor between requirements.

As future work, our research target includes the automated
extraction of dependencies based on natural language
requirements. Adding more representations and viewpoints to
enhance the visualization and analysis of requirements is also
one of our future concerns.

ACKNOWLEDGMENT

This work has been supported by and received funding
from the XIVT project (https://itea3.org/project/xivt.html).
This work was also supported by the Electronic Component
Systems for European Leadership Joint Undertaking under
grant agreement No. 737494 (MegaM@Rt2).

REFERENCES
[1] A. A and W. C., “4 Requirements Prioritization,” in Engineering and

Managing Software Requirements, Springer-Verlag Berlin Heidelberg,
2005.

[2] A. Görener, “Comparing AHP and ANP: An Application of Strategic
Decisions Making in a Manufacturing Company,” Int. J. Bus. Soc. Sci.,
vol. 3, no. 11, pp. 194–208, 2012.

[3] H. Wang, M. Xie, and T. N. Goh, “A comparative study of the
prioritization matrix method and the analytic hierarchy process
technique in quality function deployment,” Total Qual. Manag., vol. 9,
no. 6, pp. 421–430, 1998.

[4] S. Siddiqui, M. Beg, and S. Fatima, “Effectiveness of Requirement
Prioritization Using Analytical Hierarchy Process (AHP) And
Planning Game (PG): A Comparative Study,” Int. J. Comput. Sci. Inf.
Technol. 2013, vol. 4, no. 1, pp. 46–49, 2013.

[5] H. Ahuja, Sujata, and U. Batra, “Performance Enhancement in
Requirement Prioritization by Using Least-Squares-Based Random
Genetic Algorithm,” Stud. Comput. Intell., vol. 713, pp. 251–263,
2018.

[6] P. Tonella, A. Susi, and F. Palma, “Using interactive GA for
requirements prioritization,” Proc. - 2nd Int. Symp. Search Based
Softw. Eng. SSBSE 2010, no. February 2014, pp. 57–66, 2010.

[7] A. Chindapornsopit and T. Samanchuen, “Requirement Prioritization
for Software Release Planning Based on Customer Value with Analytic
Hierarchy Process,” vol. 01, pp. 21–27, 2016.

[8] M. Sadiq, J. Ahmed, M. Asim, A. Qureshi, and R. Suman, “More on
elicitation of software requirements and prioritization using AHP,”
DSDE 2010 - Int. Conf. Data Storage Data Eng., pp. 230–234, 2010.

[9] M. A. Iqbal, A. M. Zaidi, and S. Murtaza, “A new requirement
prioritization model for market driven products using analytical
hierarchical process,” DSDE 2010 - Int. Conf. Data Storage Data Eng.,
pp. 142–149, 2010.

[10] A. Ejnioui, C. E. Otero, and A. A. Qureshi, “Software requirement
prioritization using fuzzy multi-attribute decision making,” 2012 IEEE
Conf. Open Syst. ICOS 2012, pp. 1–6, 2012.

[11] F. Shao, R. Peng, H. Lai, and B. Wang, “DRank: A semi-automated
requirements prioritization method based on preferences and
dependencies,” J. Syst. Softw., vol. 126, pp. 141–156, 2017.

[12] N. R. Mead and S. Engineering, “Requirements Prioritization Case
Study Using AHP,” no. September, pp. 1–11, 2008.

[13] T. Bebensee, I. Van De Weerd, and S. Brinkkemper, “Binary priority
list for prioritizing software requirements,” Lect. Notes Comput. Sci.,
vol. 6182 LNCS, pp. 67–78, 2010.

[14] R. Beg, Q. Abbas, and R. P. Verma, “An approach for requirement
prioritization using B-tree,” Proc. - 1st Int. Conf. Emerg. Trends Eng.
Technol. ICETET 2008, pp. 1216–1221, 2008.

[15] S. Tahvili et al., “Functional Dependency Detection for Integration Test
Cases,” Proc. - 2018 IEEE 18th Int. Conf. Softw. Qual. Reliab. Secur.
Companion, QRS-C 2018, no. July, pp. 207–214, 2018.

[16] M. Śmiałek, W. Nowakowski, N. Jarzȩbowski, and A. Ambroziewicz,

“From use cases and their relationships to code,” 2012 2nd IEEE Int.
Work. Model. Requir. Eng. MoDRE 2012 - Proc., pp. 9–18, 2012.

[17] A. Goknil and M. A. Peraldi-Frati, “A DSL for specifying timing
requirements,” 2012 2nd IEEE Int. Work. Model. Requir. Eng.
MoDRE 2012 - Proc., pp. 49–57, 2012.

[18] G. Mussbacher, J. Kienzle, and D. Amyot, “Transformation of aspect-
oriented requirements specifications for reactive systems into aspect-
oriented design specifications,” 2011 Model. Requir. Eng. Work.
MoDRE 2011, pp. 39–47, 2011.

[19] M. Saadatmand and S. Tahvili, “A Fuzzy Decision Support Approach
for Model-Based Tradeoff Analysis of Non-functional Requirements,”
Proc. - 12th Int. Conf. Inf. Technol. New Gener. ITNG 2015, pp. 112–
121, 2015.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web,” World Wide Web
Internet Web Inf. Syst., vol. 54, no. 1999–66, pp. 1–17, 1998.

[21] M. Abbas, I. Inayat, M. Saadatmand, and N. Jan, “Requirements
Dependencies-Based Test Case Prioritization for Extra-Functional
Properties,” in 2019 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2019, pp.
159–163.

[22] D. De Almeida Ferreira and A. R. Da Silva, “RSL-IL: An interlingua
for formally documenting requirements,” 2013 3rd Int. Work. Model.
Requir. Eng. MoDRE 2013 - Proc., pp. 40–49, 2013.

[23] D. Blouin, E. Senn, and S. Turki, “Defining an annex language to the
architecture analysis and design language for requirements engineering
activities support,” 2011 Model. Requir. Eng. Work. MoDRE 2011, pp.
11–20, 2011.

[24] R. W. Saaty, “The analytic hierarchy process-what it is and how it is
used,” Math. Model., vol. 9, no. 3–5, pp. 161–176, 1987.

[25] A. Soni, “An Evaluation of Requirements Prioritisation Methods,” Int.
J. Innov. Res. Adv. Eng., vol. 1, no. 10, pp. 402–411, 2014.

[26] J. Chen and Y. Yang, “A fuzzy ANP-based approach to evaluate region
agricultural drought risk,” Procedia Eng., vol. 23, pp. 822–827, 2011.

[27] P. Tonella, F. Palma, P. Tonella, and A. Susi, “Using Interactive GA
for Requirements Prioritization Using Interactive GA for Requirements
Prioritization,” no. February 2014, 2010.

[28] D. Singh and A. Sharma, “Software requirement prioritization using
machine learning,” Proc. Int. Conf. Softw. Eng. Knowl. Eng. SEKE,
vol. 2014-Janua, no. January, pp. 701–704, 2014.

[29] A. Perini, A. Susi, and P. Avesani, “A Machine Learning Approach to
Software Requirements Prioritization,” IEEE Trans. Softw. Eng., vol.
PP, no. 99, p. 1, 2012.

[30] Q. Ma, “The effectiveness of requirements prioritization techniques for
a medium to large number of requirements: a systematic literature
review,” Diss. Auckl. Univ. Technol., no. November, 2009.

[31] K. Brennan, A Guide to the Business Analysis Body of Knowledge, no.
c. International Institute of Business Analysis, 2009.

[32] D. C. Howell, Statistical Methods for Psychology, Seventh Ed.
Wadsworth, Cengage Learning, 2012.

[33] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd
Editio. Lawrence Erlbaum Associates, 2013.

[34] I. Salman, A. T. Misirli, and N. J. Juzgado, “Are Students
Representatives of Professionals in Software Engineering
Experiments?,” 2015 IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,
vol. 1, pp. 666–676, 2015.

