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This work is concerned with the stabilization of defocusing nonlinear Schrödinger
equations (dNLS){

i ∂ty + ∆y − |y|p y + i a(x) y = 0 in Ω × (0, T ),

y(0) = y0 in Ω,
(1)

where Ω is a general domain, and a is a nonnegative function that may vanish on
some parts of the domain. We first study (dNLS) on a bounded domain Ω in RN

with boundary Γ of class C2. In this case we assume y = 0 on Γ. Then, we extend
the theory to unbounded domains in the particular cases Ω = RN and Ω being an
exterior domain.

Assumptions. The power index p can be taken as any positive number. The
nonnegative real valued function a(·) ∈ W 1,∞(Ω) represents a localized dissipative
effect.
If Ω is a bounded domain we will assume that a satisfies the geometric condition
a(x) ≥ a0 > 0 (for some fixed a0 ∈ R+) for a.e. x on a subregion ω ⊂ Ω that

contains Γ(x0), where Γ(x0) = {x ∈ Γ : m(x) · ν(x) > 0}. Here, m(x) := x − x0
(x0 ∈ RN is some fixed point), and ν(x) represents the unit outward normal vector
at the point x ∈ Γ. On the other hand, if Ω is the whole space, we assume
a(x) ≥ a0 > 0 in RN\BR′ , where BR′ represents a ball of radius R′ > 0. We
assume the same if Ω is an exterior domain: Ω := RN \ O, where O ⊂⊂ BR′

being O a compact star-shaped obstacle, namely, the following condition is verified:
m(x) ·ν(x) ≤ 0 on Γ0, where Γ0 is the boundary of the obstacle O which is smooth
and associated with Dirichlet boundary condition as in Lasiecka et al. [3]. In this
case, the observer x0 must be taken in the interior of the obstacle O. Regarding to
the localized dissipative effect, we consider a(x) ≥ a0 > 0 in Ω\BR′ . Moreover, in
all cases, we assume that the damping coefficient a(·) satisfies:

(2) |∇ a(x)|2 . a(x), ∀x ∈ Ω.

The main goal of the present paper is to achieve stabilization with the (natural)
weaker dissipative effect ia(x)y instead of relying on a strong dissipation such as
ia(x)(−∆)1/2a(x)y. It will turn out that the assumption (2) enables us to avoid
using such strong dissipation. We want to achieve stabilization in all dimensions
N ≥ 1 and for all power indices p > 0. For this purpose, we first construct
approximate solutions to problem by using the theory of monotone operators. We
show that these approximate solutions decay exponentially fast in the L2-sense by
using the multiplier technique and a unique continuation property. Then, we prove
the global existence as well as the L2-decay of solutions for the original model by
passing to the limit and using a weak lower semicontinuity argument, respectively.

In addition, we implement a precise and efficient algorithm for studying the expo-
nential decay established in the first part of the paper numerically. Our simulations
illustrate the efficacy of the proposed control design.
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