EXPONENTIAL STABILITY FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH LOCALLY DISTRIBUTED DAMPING

M.M. CAVALCANTI, W.J. CORRÊA, T. ÖZSARI, M. SEPÚLVEDA, AND R. VÉJAR-ASEM

This work is concerned with the stabilization of defocusing nonlinear Schrödinger equations (dNLS)

(1)
$$\begin{cases} i \partial_t y + \Delta y - |y|^p y + i a(x) y = 0 & \text{in } \Omega \times (0, T), \\ y(0) = y_0 & \text{in } \Omega, \end{cases}$$

where Ω is a general domain, and *a* is a nonnegative function that may vanish on some parts of the domain. We first study (dNLS) on a bounded domain Ω in \mathbb{R}^N with boundary Γ of class C^2 . In this case we assume y = 0 on Γ . Then, we extend the theory to unbounded domains in the particular cases $\Omega = \mathbb{R}^N$ and Ω being an exterior domain.

Assumptions. The power index p can be taken as any positive number. The nonnegative real valued function $a(\cdot) \in W^{1,\infty}(\Omega)$ represents a localized dissipative effect.

If Ω is a bounded domain we will assume that a satisfies the geometric condition $a(x) \geq a_0 > 0$ (for some fixed $a_0 \in \mathbb{R}_+$) for a.e. x on a subregion $\omega \subset \Omega$ that contains $\overline{\Gamma(x^0)}$, where $\Gamma(x^0) = \{x \in \Gamma : m(x) \cdot \nu(x) > 0\}$. Here, $m(x) := x - x^0$ $(x_0 \in \mathbb{R}^N \text{ is some fixed point})$, and $\nu(x)$ represents the unit outward normal vector at the point $x \in \Gamma$. On the other hand, if Ω is the whole space, we assume $a(x) \geq a_0 > 0$ in $\mathbb{R}^N \setminus B_{R'}$, where $B_{R'}$ represents a ball of radius R' > 0. We assume the same if Ω is an exterior domain: $\Omega := \mathbb{R}^N \setminus \mathcal{O}$, where $\mathcal{O} \subset \mathbb{C} B_{R'}$ being \mathcal{O} a compact star-shaped obstacle, namely, the following condition is verified: $m(x) \cdot \nu(x) \leq 0$ on Γ_0 , where Γ_0 is the boundary of the obstacle \mathcal{O} which is smooth and associated with Dirichlet boundary condition as in Lasiecka et al. [3]. In this case, the observer x_0 must be taken in the interior of the obstacle \mathcal{O} . Regarding to the localized dissipative effect, we consider $a(x) \geq a_0 > 0$ in $\Omega \setminus B_{R'}$. Moreover, in all cases, we assume that the damping coefficient $a(\cdot)$ satisfies:

(2)
$$|\nabla a(x)|^2 \lesssim a(x), \forall x \in \Omega.$$

The main goal of the present paper is to achieve stabilization with the (natural) weaker dissipative effect ia(x)y instead of relying on a strong dissipation such as $ia(x)(-\Delta)^{1/2}a(x)y$. It will turn out that the assumption (2) enables us to avoid using such strong dissipation. We want to achieve stabilization in all dimensions $N \geq 1$ and for all power indices p > 0. For this purpose, we first construct approximate solutions to problem by using the theory of monotone operators. We show that these approximate solutions decay exponentially fast in the L^2 -sense by using the multiplier technique and a unique continuation property. Then, we prove the global existence as well as the L^2 -decay of solutions for the original model by passing to the limit and using a weak lower semicontinuity argument, respectively.

In addition, we implement a precise and efficient algorithm for studying the exponential decay established in the first part of the paper numerically. Our simulations illustrate the efficacy of the proposed control design.

$1,\,2,\,3,\,4,\,{\rm AND}\,\,5$

References

- M. M. Cavalcanti, W. J. Corrêa, D. Cavalcanti, and M. R. Astudillo Rojas. Asymptotic behavior of cubic defocusing schrödinger equations on compact surfaces. Z. Angew. Math. Phys., 69(04):1–27, 2018.
- [2] M. M. Cavalcanti, W. J. Corrêa, V. N. Domingos Cavalcanti, and L. Tebou. Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation. J. Differential Equations, 262(3):2521–2539, 2017.
- [3] I. Lasiecka, R. Triggiani, and X. Zhang. Global uniqueness, observability and stabilization of non-conservative Schrödinger equations via pointwise Carleman estimates. I. H 1 (Ω)-estimates. J. Inverse Ill-Posed Probl., 12(1):43–123, 2004.
- [4] T. Özsarı, V. K. Kalantarov, and I. Lasiecka. Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control. J. Differential Equations, 251(7):1841–1863, 2011. *Email address:* mmcavalcanti@uem.br

(1) STATE UNIVERSITY OF MARINGÁ, MARINGÁ, PR, BRAZIL

Email address: wcorrea@utfpr.edu.br

(2) FEDERAL TECHNOLOGICAL UNIVERSITY OF PARANÁ, CAMPO MOURÃO, PR, BRAZIL

Email address: turkerozsari@iyte.edu.tr

(3) Department of Mathematics, Izmir Institute of Technology, Izmir, Turkey

Email address: mauricio@ing-mat.udec.cl

- $Email \ address: \ {\tt rodrigovejar@ing-mat.udec.cl}$
- (5) UNIVERSIDAD DE CONCEPCIÓN, CHILE