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Abstract 
Background: Deep learning can predict clinically relevant features such as genetic alterations 
directly from H&E stained histology images.1,2 In practice, many clinically relevant questions are 
limited by availability of clinical data and by the lack of standardized preprocessing pipelines. 
In our research projects, we strive to keep a consistent data format across projects to facilitate 
downstream analysis.  
 
Workflow: We analyze cohorts of cancer patients and try to predict clinically relevant labels 
directly from whole slide images (WSI). To achieve this, we manually or automatically detect 
tumor tissue in the WSI, tessellate the tumor into smaller image tiles and store these tiles in a 
cohort directory (Figure 1). We prepare a Slide Master Table, specifying which WSI belongs 
to which patient and a Patient Master Table, specifying the labels (target categories) for each 
patient. Our publicly available scripts automate the remaining workflow:3 Tiles are loaded, are 
matched to WSIs, which are matched to patients, which are matched to labels. Deep neural 
networks are trained to predict the labels and are evaluated on external cohorts. 
 
Target audience: This is a best practice manual focused on practical aspects such as file 
names, ground truth data tables and ROI annotation. This document is intended for onboarding 
new team members and for our academic collaborators. We hope that beyond our teams, this 
consensus document might be useful for other groups in the deep learning histopathology 
community. Our data standards are is inspired by The Cancer Genome Atlas (TCGA) stand-
ards (http://portal.gdc.cancer.gov). Please give your feedback on http://kather.ai. 
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Figure 1: A patient, a whole slide image (WSI) and a tile. Typically, one or multiple WSIs 
are available for one patient. Each WSI generates many tiles. Clinically relevant labels are 
available on the patient level only, and all WSIs and tiles inherit the label of their parent pa-

tient. Image credit for patient: Twitter Twemoji, Image credit for WSI and tile: TCGA 
(https://portal.gdc.cancer.gov)  

Key terms and definitions 
Slide    A glass slide with a tumor section for microscopy 
Whole slide image (WSI) A scanned glass slide used for histological examination 
Tile, patch or block  A small area cropped from a whole slide image 
Patient label   A property of each patient, to be predicted from a WSI 
Tile label   Tiles inherit the label from their parent patient 
Cohort    A group of patients which is analyzed together 
Region of Interest (ROI) A region in a WSI, e.g. the tumor tissue 
Annotation   A manually or automatically drawn ROI on a WSI 
Conv. neural network (CNN) An artificial neural network being trained on histology images 

Preparing cohort metadata 
General 

• For each cohort, we require a Slide Master Table and a Patient Master Table.  
• The Slide Master Table assigns WSI to patients while the Patient Master Table as-

signs clinically relevant labels to patients. Examples for clinically relevant labels are 
genetic features (such as microsatellite instability, MSI) or survival. 

Preparing the Slide Master Table 
• Each patient can have multiple slides (whole slide images, WSI). In the “Slide Master 

Table”, each WSI is linked to exactly one patient. There cannot be duplicate WSI 
names in this table. We require a CSV table with ‘,’ separator (Table 1) 

• The column headers must be ‘PATIENT’ and ‘FILENAME’. 
• Although one patient can have multiple slides, usually one slide per patient works well. 

 
PATIENT,FILENAME 

 Aachen-HCC-0001,Aachen-HCC-0001-Slide001 
 Aachen-HCC-0001,Aachen-HCC-0001-Slide002 
 Aachen-HCC-0001,Aachen-HCC-0001-Slide003 
 Aachen-HCC-0002,Aachen-HCC-0002-Slide001 
 Aachen-HCC-0003,Aachen-HCC-0003-Slide001 

Table 1: Example of a Slide Master Table 
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Preparing the Patient Master Table 
• Each patient can have several target variables which are later being used as ground 

truth labels for deep learning histopathology. We assume that all tiles inherit the target 
variable (label) of their parent WSI, which inherits the label of the patient. An example 
for a commonly used label is microsatellite status (MSI), as published in our previous 
work (Kather et al., Nature Medicine, 2019). Target variables can be continuous nu-
meric data (e.g. 0.13, 0.54, 0.32), categorical numeric (e.g. 1 and 2) or categor-
ical text (e.g. MSIH and nonMSIH). For categorical variables, text is preferred to nu-
meric values. This data is stored in the ‘Patient Master Table’ which should be provided 
as a CSV file (with ‘,’ separators) or in XLSX format, as shown in Table 2 

• In the Patient Master Table, each patient is one row. There cannot be duplicate patient 
names in this table. 

 
PATIENT,Hypermutated,MutationCount,AliveAfter1Year 

 Aachen-HCC-0001,0,15,NO 
 Aachen-HCC-0002,1,1200,YES 
 Aachen-HCC-0003,0,34,YES 

Table 2: Example of a Patient Master Table 

Specifics for survival data 
• Survival data (e.g. overall survival or progression-free survival) should contain the du-

ration of follow-up period and whether an event (e.g. death) occurred.  
• To be easily usable in downstream workflows, this type of survival data can be con-

verted to categorical data, e.g. ‘aliveAfter1Year’, ‘aliveAfter2Years’ with values ‘YES’, 
’NO’, and ‘NA’ (or similar) 

 
  PATIENT,followUpDays,death 
  Aachen-HCC-0001,115,YES 

Aachen-HCC-0003,410,NO 
Aachen-HCC-0003,380,YES 

Table 3: Example of survival data in a Patient Master Table  

Missing values 
• missing values in the Patient Master Table can be indicated empty fields or by any of 

these strings: 'NA', 'NaN', 'N/A', 'na', 'n.a.', 'N.A.', 'NotAvailable', 'undef', 'unknown', 'x', 
'NotApplicable', 'notperformed', 'NotPerformed', 'Notassigned', 'excluded', 'exclude'. 

Preparing an image dataset 
General considerations: What makes a good image dataset? 

1. Heterogeneity: Deep learning networks recognize patterns in images and learn from 
these patterns. Variations in coloring, tumor subtype, tissue shape, artifacts etc. can 
be advantageous for training a stable classifier. Of course, especially parameters such 
as tumor subtype or tissue shape can vary across different medical centers, especially 
in different countries. That is why establishing international academic collaborations is 
paramount to create high quality classifiers.  

2. Size: The more images a classifier is trained upon, the better it gets. This rule applies 
to a certain number of images: once you have built up a dataset containing several 
thousand slides, you may stop collecting and start training. For cohort sizes, biological 
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variability is key: WSI from many different patients yield a better classifier than multiple 
WSI from a single patient.  

3. Class balance: Once you have chosen a parameter of interest to train your classifier 
for, take a minute and check the number of patients in each group. Before training, tiles 
from the more abundant class are undersampled so that the classifier is trained on 
balanced classes. This may negatively affect training, so your dataset should be as 
balanced as possible to mitigate this problem. On the other hand, the deep learning 
system should be trained on a cohort which is as similar as possible to real-world co-
horts to which the system will be applied. In that case, achieving real-world distribution 
of the target label is more important than class balance. 

4. Image quality: In order to train a stable classifier, the visual quality of tumor tissue 
should not be impaired by technical artifacts such as air bubbles or pen marks on the 
glass slide. This begins with the scanning process: drops, dust, air inclusions, hair etc. 
should not be visible on WSI. Old scans cannot be changed anymore, but please keep 
that in mind when scanning new images.  

Scanning, naming files, naming patients 
• H&E stained tissue slides should be scanned at 20x (0.5 µm/px) or 40x (0.25 µm/px). 

For processing, we currently resample all tiles to 0.5 µm/px. 
• If possible, avoid pen marks on the slide (but if marks are present, often we can still 

work with the slides). Whole slide images are required to have at least 1 mm² of con-
tiguous tumor tissue.  

• Preferred scanner vendors are Aperio (SVS format) and Hamamatsu (NDPI format), 
other scanners might work as well as long as the files are compatible with QuPath 
(https://github.com/qupath/qupath/wiki/Supported-image-formats). (No conflicts of in-
terest here). Avoid BigTIFF and TIFF formats because image metadata in these for-
mats is often missing or causes downstream problems. Do not use slide scanners with 
exotic proprietary file formats. 

• Files should have unique names and can be numerical or text. Preferably, use ‘001’, 
‘010’, ‘100’ instead of ‘1’, ‘10’, ‘100’. A best practice example is ‘Aachen-HCC-0001-
Slide001.svs’. The patient name does not have to be part of the slide file name as the 
Slide Master Table (see below) takes care of matching slides to patients. 

• Patients should have unique non-numerical pseudonyms. Best practice examples are 
‘Aachen-HCC-0001’ 

• No personal information (such as patient name or date of birth) should be present in 
any WSI - please check your filenames, image metadata and images for presence of 
personal information and remove this information 

• keep patient pseudonyms and slide names simple and avoid problematic characters 
such as ‘ ‘, ‘/’, ‘ü’.  

Exclusion criteria for WSI 
For the analysis of invasive tumor tissue, slides with following characteristics are excluded 
from analysis in our standard workflows:  

• no tumor on slide (often, slides will not contain any tumor tissue, even in reference 
databases such as TCGA) 

• not H&E stain (sometimes different stains end up in the same cohort by accident) 
• Artifacts in >50% of the region of interest or globally altered image quality 
• tissue microarray (TMA) extraction holes taking up >50% of region of interest or alter-

ing image quality 
• blurred (out-of-focus) images or regions (caution: sometimes this is only visible when 

zoomed in) 
• Pen marks covering most of the region of interest 
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Annotating the region of interest in whole slide images 
Tumor resections and biopsies 

• We generally want to constrain our analysis to regions containing invasive cancer and 
not include normal tissue or precancerous lesions (Figure 2). This can be achieved 
either by manual or by automatic tumor detection. In manual workflows, we achieve 
this by circling the tumor region in QuPath. These annotations can be performed by 
trained observers in 10-30 seconds per slide. Alternatively, fully automatic tumor de-
tection can be used, as previously published in colorectal cancer.2 However, in our ex-
perience such a tumor detector has to be calibrated for specific tumor types to achieve 
high accuracy. Often, manually annotating images is faster than training a new tumor 
classifier.  

• In case of manual annotations, we use QuPath v0.1.24 to annotate WSI and store the 
annotations as .qpdata files. Alternatively, annotations can be made using Aperio Im-
ageScope and be stored as .xml files which can be imported into QuPath.  

• We make annotations at low levels of magnification and we do not manually exclude 
smaller-scale non-tumor tissue between tumor glands (Figure 2). 

• White background on the slide can be included in the annotations as these regions will 
be automatically removed later (by a hard brightness threshold).  

• Pencil stains will not be automatically removed and should be excluded from annota-
tions 

• If you exclude images from the analysis, this has to be documented and the reason 
has to be recorded (‘no tumor on slide’, ‘poor image quality’, etc.).  

 

  
Figure 2: Manual annotation of invasive carcinoma in a scanned whole slide image  

of a colorectal cancer endoscopic biopsy. More examples are listed below, in the Supple-
mentary Data. Image source: Heike Grabsch, personal communication.  

Working with tiles 
Creating the tiles with QuPath 

• To be made accessible to deep neural networks, whole slide images need to be tes-
sellated into tiles. Usually, we only use tiles if their center is within the region of interest 
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and if their median brightness is less than 220/255 (i.e. at least half the tile area is not 
background).  

• Tiles are stored on the disk in JPG format. The file name of each tile must contain the 
file name of the parent WSI and its location in the WSI, as shown in Table 4. 
 

  PARENTNAME_(CENTER_X,CENTER_Y).jpg 
Table 4: Example of a tile filename. 
 

 
Figure 3: Examples of tiles. Tile size is 512x512 px at 0.5 µm/px. 

Storing the tiles 
• Each cohort contains many WSI and each WSI generates many tiles 
• The folder structure should be as shown in Table 5. 

 
 

COHORT_NAME/BLOCKS/WSI_NAME/TILE_NAME.jpg 
 
for example, in the cohort “TCGA-STAD-DX”, a tile from the WSI “TCGA-ZA-A8F6-01Z-00-
DX1.89510833-5BC8-4983-817E-0E9244824168” is: 
 
D:/TCGA-STAD-DX/BLOCKS/TCGA-ZA-A8F6-01Z-00-DX1.89510833-5BC8-4983-
817E-0E9244824168/TCGA-ZA-A8F6-01Z-00-DX1.89510833-5BC8-4983-817E-
0E9244824168_(9412,20271).jpg 

Table 5: Example of a folder name and a tile file name. 

Tile augmentation and preprocessing 
• Before the training process, we rescale tiles to be the size of the input layer of the CNN. 

We usually use 512 px at 256 µm for each tile and use a CNN model with 512x512x3 
input neurons. 

• Data augmentation is performed on the fly during training to introduce more images for 
training the classifiers. We randomly flip tiles horizontally and vertically. This process 
also introduces rotational invariance, which is very important when working with histo-
logical slides. Apart from that, we do not consider any other type of image augmentation 
to be relevant if there are enough WSI available. By providing more data to the classifier 
overfitting is prevented. Empirically, shearing and other augmentation methods do not 
improve the performance of the final classifier. 
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Conclusion and further steps 
This protocol describes all steps from a patient of cohort to a set of image tiles that are ready 
to use for downstream deep learning analyses. All further steps usually involve training CNNs 
with algorithms implemented in MATLAB (such as Kather et al.3) or Python (such as Fu et al.5). 
However, clean, standardized input data are a prerequisite for such downstream algorithms to 
achieve high performance. 
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