
Article

The International Journal of

Robotics Research

1–27

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364919893451

journals.sagepub.com/home/ijr

The softness distribution index: towards
the creation of guidelines for the modeling
of soft-bodied robots

Giovanna A Naselli and Barbara Mazzolai

Abstract

Modeling soft robots is not an easy task owing to their highly nonlinear mechanical behavior. So far, several researchers

have tackled the problem using different approaches, each having advantages and drawbacks in terms of accuracy, ease

of implementation, and computational burden. The soft robotics community is currently working to develop a unified

framework for modeling. Our contribution in this direction consists of a novel dimensionless quantity that we call the soft-

ness distribution index (SDI). The SDI for a given soft body is computed based on the distribution of its structural proper-

ties. We show that the index can serve as a tool in the choice of a modeling technique among multiple approaches

suggested in literature. At the moment, the investigation is limited to bodies performing planar bending. The aim of this

work is twofold: (i) to highlight the importance of the distribution of the geometrical and material properties of a soft

robotic link/body throughout its structure; and (ii) to demonstrate that a classification based on this distribution provides

guidelines for the modeling.
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1. Introduction

Soft-bodied robots are often counterposed to rigid-linked

robots. The former have gained huge popularity in recent

years; the field is relatively young and since its appearance

it has posed many challenges to researchers (Laschi et al.,

2016; Lipson, 2014; Rus and Tolley, 2015). The latter

belong to an older, deeply investigated field, in which

researchers have solved major problems related to design

and control; as a result, rigid-linked robots have found sev-

eral industrial applications, in which both serial and parallel

manipulators are used to perform various tasks, such as

pick-and-place operations and handling of heavy metal

sheets, at high speed and with high accuracy and precision.

Rigid-linked robots are usually provided with variable

stiffness joints and actuators (Wolf et al., 2016), which

improve the performances at the cost of increased complex-

ity in the control. In these systems, named articulated soft

robots, the joint stiffness is treated as a lumped parameter

(LP), as explained by Albu-Schäffer and Bicchi (2016). In

addition to the stiffness of the joints, the stiffness of the

robotic links is taken into account in the study of elastody-

namics: the eigenfrequencies of a manipulator depend on

the structural properties of all its parts, and on how such

parts are interconnected. Correct estimation and appropriate

modeling of the stiffness of a robotic system are crucial to

avoid undesired vibrations, which may jeopardize the per-

formances in operative conditions. Therefore, the topic has

been addressed by several authors in their works (to men-

tion a very few of them, Pashkevich et al. (2009), Briot

et al. (2009), Cammarata (2012), Zhang et al. (2015),

Germain et al. (2015), and Rognant et al. (2010)). If the

modeling of the stiffness plays such a key role for the so-

called rigid-linked robots, it is easy to figure out that its

importance is even greater for soft-bodied robots: in fact,

they rely upon their low stiffness to perform a task, adapt-

ing their shape to the surrounding environment, often

elegantly.

Unfortunately, the beauty of soft robots is also the beast

that researchers have to fight. Different approaches have

been proposed to tackle the problem of modeling soft-

Istituto Italiano di Tecnologia, Center for Micro-BioRobotics (CMBR),

Pisa, Italy

Corresponding author:

Giovanna A Naselli, Istituto Italiano di Tecnologia, Center for Micro-

BioRobotics (CMBR),Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa,

Italy.

Email: giovanna.naselli@iit.it

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0278364919893451
journals.sagepub.com/home/ijr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364919893451&domain=pdf&date_stamp=2019-12-17


bodied robots. Among the most popular, we find the use of

the finite element method (FEM). In fact, some authors use

finite element commercial software to evaluate the mechan-

ical response of their soft robots and actuators, to perform

structural optimization or to develop their optimization

method based on finite element simulations (e.g., Connolly

et al., 2015; Elsayed et al., 2014; Moseley et al., 2016;

Polygerinos et al., 2013; Runge et al., 2017; Suzumori

et al., 2007). When using FEM, the stiffness appears in the

so-called stiffness matrix, the size of which depends on the

number and the kind of elements used. The computation of

the inverse of this matrix is often a bottleneck: finite ele-

ments are indeed a powerful tool, but they come at a high

computational cost. For this reason, other authors have

implemented their own finite element code to make it suit-

able for real-time simulations; such huge work has required

the efforts of a team and is part of a bigger framework

(SOFA) presented in literature some years ago (Faure et al.,

2012), followed by papers that expanded the work and

prove its validity (such as Duriez, 2013; Ficuciello et al.,

2018; Largilliere et al., 2015).

Other researchers based their approach on the Cosserat

rod theory (Renda et al., 2017, 2014, 2018). In these works,

the authors modeled the stiffness of soft bodies by means of

a diagonal stiffness matrix; in some case, they discretize the

structure of the body along its longitudinal axis and write a

stiffness matrix for each segment. Recently, Grazioso et al.

(2018) proposed a geometrically exact model that combines

Cosserat rod theory and finite elements; in this work, as

well as in previous approaches (such as that of Grazioso

et al., 2016), the authors account for the stiffness by the

same diagonal matrix. These works concern the modeling

of continuum arms, that is, slender structures that can be

discretized as a series of rods or beams.

Different approaches have also been found. For instance,

some recur to the classical beam theory (Shapiro et al.,

2015) or they start from the computation of the elastic

strain energy (Connolly et al., 2017) to model soft pneu-

matic actuators, or use the elastica theory (Armanini, 2018;

Armanini et al., 2017; Zhou et al., 2015) to describe the

behavior of soft links to be used for soft robotics applica-

tions. Finally, some researchers do not develop any struc-

tural model for their soft robots. In these cases, the

approach is purely experimental and the design and the

development of the soft-bodied system is based on intui-

tions and qualitative considerations, and improved by trial

and error.

All the approaches recalled above have both advantages

and limitations in terms of accuracy, required computa-

tional burden, ease of implementation, and applicability.

Researchers agree that the field still lacks a unified frame-

work for modeling (Renda et al., 2017; Trimmer et al.,

2015), and, more in general, that the development of a

common approach for modeling, design, and control will

be crucial for the success of the field (Bao et al., 2018).

Despite the relevant progress in recent years, modeling soft

robots still remains a challenging task. The difficulties lie

in their highly nonlinear mechanical behavior. A first

source of nonlinearity is geometrical and comes from the

fact that they typically undergo large deflections, and in

some cases, large strains. A second, no less important,

source may come from the materials often used to build the

body of the robot: polymers are characterized by nonlinear

stress–strain curves, whose trends are captured by well-

established models (e.g., Arruda and Boyce, 1993;

Mooney, 1940; Ogden, 1972). Owing to the use of these

materials (in addition to colloidal and granular matter),

Wang and Iida (2015) used the term soft-matter robotics to

highlight the role played by the material properties. In our

opinion, there is a further aspect to consider: two soft bod-

ies can behave very differently in terms of deformed shape,

even though they are built with the same material, have the

same size and undergo large displacements of the same

order of magnitude, under the same external load. Very

roughly speaking, some soft links can be considered more

hyper-redundant than others.

In this article, we do not propose any new modeling

technique. Instead, we explain why and how we have taken

a step back and analyzed the problem of modeling soft-

bodied robots under a different light. The focus of our work

is not only on how soft a robotic link is, but also, and in

particular, on the distribution of its structural properties,

and on the role that such distribution plays when a model-

ing technique must be chosen among others. To refer to the

distribution in a quantitative way, we define what we call

the SDI for planar bending. We show that this index, which

is a complex number, allows classes of soft bodies to be

associated with one or more modeling techniques involving

different numbers of parameters (and, therefore, having dif-

ferent computational cost).

To better share our view with the reader, we present the

work following the stream of ideas and considerations that

have led us to the results here reported. Therefore, Section 2

provides a discussion about stiffness and softness, from

which we have found motivation for our work. Section 3

introduces the SDI. In Section 4, we briefly recall the model-

ing techniques that we use in this work, and that we relate to

ranges of value of the index. Section 5 reports the study per-

formed on a class of bodies, modeled by the techniques

listed in Section 4; to complete the investigation, other bod-

ies with particular distribution of the structural properties are

considered in Section 6. In Section 7 we report few exam-

ples that show how the SDI can be used when performing

optimization of a structure performing bending under a set

of applied loads. Section 8 contains a discussion concerning

the usefulness of the proposed index and highlights possible

applications. The limitations of the current work are also

clearly stated, to not mislead the reader. Conclusions follow.

2. Stiffness and softness

Stiffness is a property of structures and it depends on both

the material and the geometry. It is a physical quantity
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defined in relation to an applied load and the consequent

deflection along the considered direction; it is indeed a rela-

tive quantity. By the term soft we refer to a body, robot, or

structure, having low stiffness. In this article, therefore, we

often use the term softness as complementary to stiffness.

By the term rigid, instead, we refer to a body having much

greater stiffness than that of the surrounding environment

(as is well known, the definition of rigid body is purely the

result of abstraction).

2.1. Stiff or soft?

Let us now consider two systems: one made of two rigid

links connected by an elastic rotational joint, counterposed

to a single soft link. The difference between the two is clear:

in the former, the compliance is localized at the joint; in the

latter, the compliance is distributed and the relative position

between the two end sections depends on the position and

orientation of all the intermediate sections. Therefore, the

compliance of the former can be modeled by one parameter,

treating the joint as a torsional spring; for the soft link, such

approach generally turns out to be inapplicable. These two

examples represent the extrema of the path depicted in

Figure 1: it is possible to consider infinite systems between

these two, with gradually more and more distributed com-

pliance. Indeed, one may ask whether there is precise, sharp

boundary between what is soft and what is rigid, along this

path. We all distinguish soft robotic links from rigid links

based on our intuition, but can we draw a sharp line that

separates these two classes?

A similar question was posed by Ananthasuresh (2013)

about differences and similarities between compliant

mechanisms (CMs) and rigid-body mechanisms (RBMs).

In this work, Ananthasuresh highlighted that CMs have

features in common with both RBMs and stiff structures:

because they are continuum systems they can be seen as

structures; at the same time, they do not differ from RBMs

in terms of function as well as of modeling approach. In

fact, the pseudo rigid-body model (PRBM) has been pro-

posed (Howell and Midha, 1995; Howell et al., 1996), by

which the continuum structure of the CM is transformed

into its equivalent RBM with lumped springs. Later, Cao

et al. (2015) proposed a unified synthesis approach without

any prescription of the type of mechanisms obtained.

2.2. How to choose the modeling technique

CMs usually consist of thin leafsprings with uniform cross

section or in relatively rigid rods connected by flexural

pivots that provide mobility to the mechanism. As

explained by Ananthasuresh (2013), in some cases finite

elements are needed to model the mechanical response of

the CMs to applied loads, especially if an accurate analysis

of the mechanical stress must be performed. However, the

PRBM well describes the deformation of most of the CMs

and other CMs are studied by a spring–mass–lever (SML)

model. An important remark is that models such as the

PRBM and the SML are useful for synthesis purposes

(e.g., Howell and Midha, 1994, 1996; Pucheta and

Cardona, 2010). Therefore, the choice of a modeling tech-

nique is not merely a matter of convenience in terms of

computational burden and accuracy; it also helps in synth-

esis, optimization, and to achieve a deeper understanding

of how the system works. There is no reason to believe that

these considerations do not hold for soft-bodied robots too.

In general, the bodies that constitute a soft robot can

have irregular geometry and can be made of multiple mate-

rials. To provide a few examples, the actuator by Elsayed

et al. (2014) and the soft tentacle by Martinez et al. (2013)

are made of more than one polymeric rubber; the soft fin-

ger developed by Manti et al. (2015) has irregular geome-

try and is made of two materials; the robot that appears in

the work by Largilliere et al. (2015) is a parallel machine

whose soft limbs have variable cross section along their

length. All these systems are capable of large displace-

ments, but they differ in that they exhibit different deflected

configurations under the same applied load. Some distribu-

tions can be effectively described by models based on few

parameters, as happens for some CMs; others require more

computationally expensive techniques. As the deformation

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. From rigid to soft robotic system, passing through

intermediate systems with gradually distributed compliance, and

viceversa. The dashed arrow represents the giant leap from a

rigid system provided with a rotational joint (a) to a continuum,

compliant system (b). Full arrows denote the transformation from

(b) to continuum systems such as that in (d) passing through an

infinite number of systems (c) in which the structural properties

are more and more uniformly distributed; continuing with this

transformation (e), the final result is a continuum, soft link (f)

unequivocally. The same reasoning applies in the reverse way:

from the distributed compliance of system (f), systems with more

and more concentrated compliance are obtained up to the hinge-

like mechanism (b), and a final giant leap consists of jumping to

the non-continuum rigid-linked robot (a).
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of a body strongly depends on both the structural properties

and their distribution, it seems useful to consider not only

how soft a system is, but also how the softness is distribu-

ted throughout it, to select a modeling technique that

describes the deformed configuration with the required

accuracy and at the lowest computational cost. Let us con-

sider again that a compliant link with a flexural pivot (such

as that in Figure 1(b)) can be transformed into one with

uniformly distributed compliance (such as that in Figure

1(f)) by a continuous transformation of its structure; if we

cannot draw the aforementioned line that separates soft

bodies from rigid bodies, how can we assess to what extent

the methods developed for rigid-linked robots and CMs

can be used for soft robots? It is worth investigating this

aspect, to try to draw this line and provide quantitative,

rather than qualitative, answers.

Therefore, we need a quantity that takes into account the

variation of the structural properties along a given direction

in the system. In the next section, we define such quantity

and we discuss its meaning. As a considerable number of

soft-bodied robots (such as soft continuum manipulators,

soft fingers) perform their tasks by bending, the definition

is based on this deformation mode.

3. SDI for planar bending

As already stated, a soft robot body can have irregular geo-

metry and can be made of multiple materials. Figure 2 rep-

resents a beam in which both the cross section and the

material properties vary along the longitudinal axis.

Denoting by x the coordinate along the longitudinal axis

and by L the length of the beam, the so-called flexural

rigidity of the beam is the function

kf xð Þ= E xð ÞJ xð Þ ð1Þ

where E(x) and J (x) are the Young’s modulus and the

moment of inertia, respectively, computed at the generic

cross section x in the interval 0, L½ �. From now on, the

beam will be denoted by Bi, and it will be considered an

element of the set B, containing all the bodies performing

planar bending.

Provided that kf (x) is a smooth function, its first deriva-

tive can be computed as follows:

a xð Þ= dkf (x)

dx
= E xð Þ dJ xð Þ

dx
+ J xð Þ dE xð Þ

dx
ð2Þ

We denote by xM and xm the coordinates at which a(x)
has global maximum aM and global minimum am, respec-

tively. If xM and/or xm are not unique, they must be taken in

order to minimize the norm jxM � xmj. Based on Equations

(1) and (2), we define the SDI for planar bending as the

complex number

SDI = x + ic ð3Þ

where it is

x =
aM�am

maxfjaM j, jamjg �
L

xM�xm
ifa(x) 6¼ const:

0 ifa(x)= const:

�
ð4Þ

and

c =
kfM � kfm

kfM

� dM

L
ð5Þ

in which dM denotes the maximum dimension of the largest

cross section (for example, the maximum diameter in the

case of a circular cross section) and kfM and kfm denote the

maximum and minimum value of kf , respectively.

The real part of the SDI accounts for the distribution of

kf throughout the body: the first multiplying factor depends

on the maximum and minimum increments of kf along x,

whereas the second depends on the coordinates at which

these increments occur. Instead, the imaginary part accounts

for kf and for the slenderness of the structure; by definition,

it is always kfM ø kfm and, therefore, c ø 0.

The SDI can be computed for any body Bi of the set B;

it can be seen as a function SDI : B7!C. This function is

not injective (different bodies can be characterized by the

same SDI) and not surjective in C (in fact, there is no body

having c\0). An important property of the SDI is that it

does not depend on the orientation of the x-axis. This turns

out to be fundamental: to be meaningful, the index must

depend only on the structural characteristics of the body,

and not on the provided mathematical description. The

proof of the invariance under coordinate transformation is

given in Appendix A.

From now on, the objective of the work will be to find a

correlation between a body Bi and a modeling technique T i

by means of the SDI, as outlined in Figure 3. In this article,

we limit our investigation to four techniques that use differ-

ent number of parameters.

4. Modeling techniques

As already stated, we consider four different approaches/

techniques to study the static mechanical response of

bodies:

� finite element analysis (FEA);
� nonlinear matrix structural analysis (NMSA);
� elastica approach (EA);
� LPs model (LPM).

XL0 x

E(x)J(x)

Fig. 2. Beam with variable cross section and material along the

longitudinal axis X .
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In the following, we briefly recall these techniques and we

explain why they have been selected among others for the

purpose of this work. To avoid cumbersome mathematical

expressions and excessively long discussion, the details are

reported in the appendices at the end of the article, when

needed.

4.1. Finite elements

In structural analysis, finite elements (FE) allow mechanical

systems to be studied, however complex; that is, having

irregular geometry, multiple materials, under any boundary

conditions included distributed loads and occurrence of

contact. They have been widely used in the last 60 years for

a variety of engineering problems in which analytical mod-

els would be extremely difficult to handle, if not unwork-

able. The effectiveness and the consequent popularity of the

method has led to the implementation of both commercial

and open-source software, employed worldwide for analysis

and optimization. To summarize, the method is based on

the discretization of the investigated system in a number of

elements having finite dimensions; the result of the discreti-

zation is called a mesh. For the generated mesh, a set of

algebraic equations are written that correlates the vector of

nodal displacements to the vector of nodal forces by means

of the stiffness matrix.

A review on the topic goes far beyond the scope of this

paper; we limit the discussion to the description of the set-

tings adopted using a commercially available software

(ABAQUS�). In all the performed simulations, the type

and the number of elements has been selected in order to

obtain reliable results. For each simulation, we have veri-

fied that no excessive distortion of elements had occurred

and that a further increase of the fineness of the mesh did

not lead to any significant change in the results obtained.

Moreover, for the purpose of this work, all the simulations

account for large deflections.

It is necessary to remark that in this work we do not

implement a FEM model that needs to be validated, nor do

we suggest the use of FEM as a general approach; our aim

is to compare the results of FEA with those obtained by

other techniques that involve far fewer parameters. From

now on, therefore, we consider the deformation computed

by FEA as the most accurate, but at the highest computa-

tional cost.

4.2. NMSA

Matrix structural analysis (MSA) can be considered the

mother of the well-established FEM. For the interesting

story of this technique and the way it finally turned into

FEM, the reader can refer to Felippa (2001). Applications

of the technique can be found in works addressing the elas-

todynamics of conventional rigid-linked manipulators (such

as those cited in Section 1).

As stated previously, for the purposes of this work, we

analyze soft bodies performing planar bending. Similarly

to FEM, the body is discretized into a certain number of

elements having finite dimensions; in this work, we use

two-node beam elements, each node having three degrees

of freedom (DOFs) on the plane (the translations along two

orthogonal directions and the rotation along the axis ortho-

gonal to the plane). As a result, each element is character-

ized by a 6× 6 stiffness matrix. The size of the matrix

modeling the stiffness of the entire structure depends on

the total number of nodes of the mesh, as in FEM; how-

ever, the stiffness matrix in MSA is usually considerably

smaller than that in FEM, owing to the low number of

nodes in the mesh. Focusing on the modeling of the stiff-

ness, the method shares similarities with both FEM and the

Cosserat approach used for continuum manipulators: in

fact, the stiffness matrices in MSA are formally identical to

those written based on FEM, but the number of parameters

involved is of the same order of magnitude of that appear-

ing in Cosserat-based approaches (see, for instance, Renda

et al., 2017), owing to the coarseness of the discretization.

A complete and detailed explanation of the method can

be found in McGuire and Gallagher (1979). To model the

dynamics of a system, a mass and a damping matrix are

also defined; however, our investigation is limited to the

static response of bodies. Therefore, when using MSA we

will write the stiffness matrix only.

If the assumption of small displacements is valid, nodal

displacements and nodal forces are related by the very well-

known Hooke’s law, that is, by a linear relation. To account

for large displacements, NMSA must be carried out. For

this reason, in this work we implement a linear-incremental

MSA: the external load is applied in incremental way in a

predefined number of steps. Although each step is linear,

the overall computation is nonlinear, because at each step

the stiffness matrix is updated based on the displacements

computed in the previous step. A detailed mathematical

description is reported in Appendix B.

Fig. 3. The SDI associates the body Bi with the pair (x,c)
denoting a point on the complex plane C; the further step is to

associate such point with a modeling technique, T i, which

allows the deformation of the body to be modeled with the

required accuracy and with the fewest parameters.

Naselli and Mazzolai 5



4.3. EA

Some authors have investigated the use of the EA to model

the mechanical response of soft links or arms (Armanini,

2018), suggesting potential application in the field of soft

robotics. Unlike FEM and MSA, which are based on alge-

braic equations written in matrix form, this approach

involves differential equations. A brief discussion on the

topic can be found, for instance, in Howell (2001).

The theory allows to account for large deflections of a

beam subject to an applied load; the relation between the

curvature and the bending moment is described by the

equation

1

r(s)
=

du

ds
=

M sð Þ
E sð ÞJ sð Þ ð6Þ

in which s denotes the curvilinear coordinate along the axis

of the beam. By r and u we denote the radius of curvature

and the rotation of the cross section located at s, respec-

tively, owing to the bending moment M(s). In Cartesian

coordinates, x is the axial coordinate and y is the direction

of the vertical deflection, thus the equation is written as

M xð Þ
EJ

=
d2y

dx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + dy

dx

� �2
� �3

r ð7Þ

For a beam undergoing small deflections, the derivative dy

dx

(that is, the rotation of the cross section) is small and can be

neglected; therefore, the equation takes the form

M xð Þ
EJ

=
d2y

dx2
ð8Þ

and it can be integrated twice over the length of the beam

to compute the vertical deflection y xð Þ under given bound-

ary conditions. This equation is widely used for a variety of

classical mechanical and civil engineering problems, in

which the product EJ is usually constant. It is worth to

highlight that Equation (8) does not allow the displacement

of the cross sections along x to be computed; in fact, in the

assumption of small vertical deflections, the horizontal

deflections are neglected. This makes Equation (8) unsuita-

ble for soft robotics applications, in which the systems typi-

cally undergo large deflections. Therefore, in this article,

we only consider Equation (6). The Cartesian coordinates

of the generic cross section are related to the curvilinear

coordinate by the relations

dx

ds
= cos u ð9Þ

dy

ds
= sin u ð10Þ

The integration of Equation (6) may be a difficult task,

depending on the loading and constraint conditions. In gen-

eral, the equation is reworked, written in a form that

contains elliptic integrals and solved by numerical tech-

niques (see, for instance, Zhang and Chen, 2013).

4.4. LPs

LPs are used in a huge variety of domains other than

robotics, such as the automotive industry, civil engineering,

and biomechanics.

The advantage of using LPs is the low computational

cost, especially compared with other techniques such as

FEM. A lumped stiffness k can be either constant or displa-

cement-dependent; in any case, it consists of a single quan-

tity that accounts for the distributed stiffness of one or

more mechanical components. Lumped springs are suc-

cessfully employed to model the behavior of CMs, as stated

in Section 2.

However, in many cases LPs turn out to be insufficient

to describe the deformed configuration of a system: for

instance, the variable radius of curvature of a long, soft

continuum arm that performs bending would be scarcely

captured by few lumped springs.

In the following section, we model the planar bending of

a body using few parameters, whose values are computed

based on the structural properties.

5. A soft notched body made of uniform

material

Keeping in mind the concept depicted in Figure 1, our

investigation starts with a soft notched body made of one

material having Young’s modulus E. The body has length L

and rectangular cross section with constant width b and

variable height h(x), which ranges from a minimum hm to a

maximum hM along the x-axis, as represented in Figure 4:

h(x)= hM +
1

2
(hM � hm) cos

np(x� L
2
� L

n
)

L
� 1

� 	
�

H x� L

2
� L

n

� 	
H

L

2
+

L

n
� x

� 	
ð11Þ

Fig. 4. Notched soft body made of one material and with

variable cross section along the x-axis. Dimensions are

normalized with respect to L. The distance from the neutral plane

is denoted by h=(2L). Here L0= Ln=L is the normalized length of

the notch.
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in which H( � ) denotes the Heaviside function. The para-

meter n is used here to tune the length Ln of the notch; it

is, in fact, Ln = 2L=n. Increasing n, a narrower notch is

obtained; decreasing n, the length of the notch tends to the

length of the link, up to the limit condition n = 2, in which

it is Ln = L. Figure 5 shows the geometries obtained for

n = 2, 4, 10. In this case, because the material properties do

not change along the body, only the geometry plays a role

in the distribution of the stiffness; the Young’s modulus

reduces to a multiplying factor in the first derivative of kf :

a xð Þ= E
dJ xð Þ

dx
ð12Þ

Therefore, in this section we speak about the variation

of kf or of the geometry along the x-axis without distinc-

tion. Here and in the following, we set E = 1 MPa, a value

in the range reported by Wang and Iida (2015) for soft-

matter robotics.

By tuning the parameter n we obtain more/less abrupt

variations of the cross sections. Intuitively, we expect that a

body characterized by a high value of n behaves in a hinge-

like way in response to an applied moment load; hence, the

adoption of a LPM might provide accurate results at a very

low computational cost. In contrast, a body with low n has

a more distributed softness. In this case, we expect that the

use of a different technique is necessary to compute the

relative displacement between the two end sections of the

body with the same accuracy.

In this section, we compute the SDI for this class of bod-

ies, we model the bodies by using the modeling techniques

listed in Section 4 and, based on the results obtained, we

derive the correlation between the SDI and the convenience

of a modeling technique in terms of accuracy, computa-

tional burden and ease of implementation.

5.1. SDI for the notched body

The SDI as defined in Equations (3), (4), and (5) depends

on kf , on its first derivative and on the aspect ratio of the

body. We treat n and the ratio hm=hM as parameters which

range in given intervals, to observe how the SDI varies

depending on the geometry. The intervals and the values of

the material and geometrical parameters adopted for this

study are reported in Table 1.

To provide an example, Figure 6 shows the graph of the

function kf (x) and the first derivative a(x) for a notched

body with n = 10, hm = 8 mm and other parameters as

reported in Table 1. In this case, it is xm = 43:4 mm, xM =
56:6 mm, am = � 534:2 Nmm, and aM = 534:2 Nmm;

the maximum and minimum flexural rigidity are

kfM = 3:413× 103 Nmm2 and kfm = 0:427× 103 Nmm2,

respectively. Being dM = hM , the computed SDI for this

body is SDI = 15:26 + i0:14.

The values of n and hm=hM do not influence the trend

of the functions kf (x) and a(x); as far as it is hm\hM , the

trends are those shown in Figure 6. However, they greatly

affect the values of the extrema of the functions and, hence,

x and c; Figure 7 plots the functions x and c in the inter-

vals reported in Table 1.

Fig. 5. Bodies with variable cross section characterized by

different n. The smaller n, the more distributed compliance along

the axis of the body.

Table 1. Geometrical and material parameters of the notched

body.

Parameter Description Value/interval

n Tunes the length of the notch ½2, 16�
L Length of the body 100 mm
hM Maximum height of

the cross section
16 mm

hm Minimum height of
the cross section

½4, 14� mm

b Width of the cross section 10 mm
E Young’s modulus 1 MPa

Fig. 6. Notched body (top) with n = 10 and hm = 8 mm, its

function kf (x) (middle), and the derivative a(x) (bottom), whose

maximum and minimum are denoted by red dots.
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We observe that x ranges between 2.86 and 29.63 in the

considered domain and c varies between 0.05 and 0.16.

Combining the results shown in Figure 7, we gain a prelim-

inary understanding of how the SDI maps the notched bod-

ies to points belonging to the first quadrant of the complex

plane; Figure 8 provides some examples of this map, show-

ing nine bodies and their SDI on the complex plane. It can

be seen that a body having nearly uniform cross section,

body n.7, is characterized by lower values of x and c com-

pared with a body with a narrow and deep notch, body n.3.

5.2. Modeling

We study the deformation of this class of bodies owing to a

constant external moment M by using the four modeling

techniques listed in Section 4. The objective is to investi-

gate the advantages and drawbacks of these techniques

depending on the specific body, and to draw conclusions

concerning the convenience of the considered approaches.

For the motivations reported in Section 4.1, we assume

that the finite element technique provides the most accurate

estimation of the deformation, among all the techniques;

therefore, the results will be presented in terms of error

with respect to those obtained by FEA. The aim of the

work reported in this section is to assess whether it is possi-

ble to identify a particularly convenient modeling technique

depending on the distribution of the softness in the notched

body. We have analyzed a total of 21 bodies which differ in

n and hm=hM : the former assumes the values in the set

f2, 4, 6, 8, 10, 12, 14g and the latter in f0:25, 0:50, 0:75g.
Before showing the results, we describe the implementation

of the analyses. In all the cases, the system of coordinates

is the same as introduced at the beginning of this section: x

denotes the abscissa along the longitudinal axis of the body

and y the direction of the vertical displacement. The body

deflects in the plane (x, y). To obtain large displacement of

the free end of the body, the applied moment M varies

depending on the ratio hm=hM . We have set the moment

equal to 4.36 Nmm, 13.4 Nmm, and 39.3 Nmm for bodies

having hm=hM equal to 0.25, 0.5, and 0.75, respectively.

The reader should keep in mind that the investigation

carried out here is limited to linear elastic material.

Moreover, unlike FEM, the other methods do not account

for shear effects or warping of the cross-section. Further

discussion on these aspects is postponed to Section 8.

5.2.1. FEA. FEA is performed by means of the commer-

cial software ABAQUS Standard�. In all the cases consid-

ered, the body is discretized in 5,712 hexahedral elements

with reduced integration, for a total of 27,151 nodes. The

kind of element selected has 20 nodes. We have selected

hexahedral elements instead of tetrahedral, because in this

case they allow for the creation of a structured mesh. By

properly setting the element size, a subset of nodes can be

located at the neutral plane of the body. This is necessary to

extract results in terms of nodal displacements that can be

Fig. 7. Real part of the SDI versus n and hm=hM (top) and

imaginary part versus hm=hM (bottom).

Fig. 8. The SDI is computed for nine bodies whose notches are determined by different n and hm=hM (left) and denoted in the

complex plane by a dot (right).
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compared with those obtained by the other modeling tech-

niques adopted in this work, which are all relative to the

neutral plane. All the simulations account for large deflec-

tions and have been performed using an iterative solver.

The end moment load is gradually applied as a linear func-

tion of pseudo-time, in 100 steps. The material is consid-

ered linear elastic, with Young’s modulus E = 1 MPa and

Poisson ratio n = 0:45. The applied moment varies depend-

ing on the body; it is taken such that a non-negligible hori-

zontal displacement of the free end is obtained. As a

general comment, we have noticed that for bodies with low

n and low hm=hM it is easier for the simulation to converge,

compared with the case in which a body with high n and

hm=hM experiences the same displacement of the tip.

The results for each simulation are then exported and

imported into the MATLAB� environment, in which the

displacements of the nodes on the neutral plane are

extracted and plotted, to be compared with the results

obtained with the other modeling techniques.

5.2.2. NMSA. The structure is discretized into 6 beam ele-

ments having equal length Le = L=6, numbering the nodes

from 1 at x = 0 to 7 at x = L. Since the body is made of

one material, the Young’s modulus E is the same for all ele-

ments. Adopting the same approach used by Renda et al.

(2017), the area and moment of inertia of the cross section

of the ith element are calculated considering the average

value of the function h(x) in the interval (i� 1)Le, iLe½ �.
Node 1 is fully constrained (u1 = 0) and the end moment

load is applied on node 7, as a constant increment

DM = M=ns. The number of steps is 300. The stiffness

matrix is updated at each step, as explained in Appendix B.

5.2.3. EA. We study the deformation of a cantilever beam

with variable cross section subject to end moment load M ;

therefore, Equation (6) takes the form

du

ds
=

M

EJ sð Þ ð13Þ

and the boundary conditions are as follows:

u 0ð Þ= 0

x 0ð Þ= 0

y 0ð Þ= 0

ð14Þ

We compute the deformed configuration of the beam by

numerical integration of Equation (13) performed in

MATLAB� using the built-in function integral. We

discretize the interval 0, L½ � into 200 linearly spaced points;

we compute the rotation u sið Þ for i = 1, 2, . . . , 200 as

u sið Þ=
Z si

0

M

EJ ~sð Þ d~s ð15Þ

The Cartesian coordinates of the cross section si are found

by numerical integration of Equations (9) and (10).

5.2.4. LPs. The LPM uses the minimum number of para-

meters among the four considered techniques. In this work,

we model the deformation of the notched body by means of

the set of parameters defined as follows.

Let us denote by x1 = L 1
2
� 1

n

� �
and x2 = L 1

2
+ 1

n

� �
the

extrema of the notch (therefore, it is jx2 � x1j= Ln). The

cross section is uniform in the interval ½0, x1�. The flexural

stiffness of this part of the body is taken into account by

the quantity

kU =
EJM

x1

ð16Þ

where it is JM =
bh3

M

12
. The quantity above relates the

moment load and the rotation of the cross section at x = x1

according to the classical beam theory. Similarly, the flex-

ural stiffness of the notch is modeled by the parameter

kN =
EJm

leq

ð17Þ

The quantity leq is the length given by the expression

leq = jxF � xI j ð18Þ

being ½xI , xF � the interval in which it is

h xð Þł hm + 0:267 hM � hmð Þ ð19Þ

The multiplying factor 0.267 has been determined by

imposing that a notch with hm=hM = 0:25 and n = 16

behaves like a flexural pivot, setting that the position of its

free end section in the deformed configuration matches

with that computed by FEA. It can be seen as a correction

factor that accounts for the cosinusoidal profile of the

notch (as discussed in more detail later, the choice of the

numerical value of this factor is not trivial).

The stiffness coefficients defined previously are used to

compute the coordinates of points Q and S in Figure 9, in

which the body is represented as a broken line made of two

segments. In fact, the angles

uU =
M

kU

ð20Þ

uN =
M

kN

ð21Þ

are the relative rotations between sections at points P and

O, and between R and P, respectively; the relative rotation

between S and R is equal to uU as well, because the seg-

ments OP and RS have the same structural properties. Here,

P and Q denote the extrema of the notch, whereas Q is the

midpoint.

As the vertical deflection of point P due to the end

moment M is

yP =
Mx2

1

2EJU

ð22Þ
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the slope of the line passing through O and P can be calcu-

lated as arctan (yP=x1)= M=2kU = uU=2. Analog consid-

erations hold for segments PQ, PR, and RS. The three

springs represented in Figure 9 have stiffness coefficients

kO = kR = 2kU and kP = 2kN . The coordinates of Q and S

can be expressed as functions of uU and uN as follows:

xQ = x1 cos
uU

2
+ Ln

2
cos uU + uN

4

� �
yQ = x1 sin

uU

2
+ Ln

2
sin uU + uN

4

� � ð23Þ

xS = xR + (L� x2) cos uU + uN + uU

2

� �
yS = yR + (L� x2) sin uU + uN + uU

2

� � ð24Þ

being

xR = x1 cos
uU

2
+ Ln cos uU + uN

2

� �
yR = x1 sin

uU

2
+ Ln sin uU + uN

2

� � ð25Þ

5.3. Results

The results obtained by using the four techniques are here

reported and compared for the 21 bodies analyzed. Figure

10 shows the deformed configuration for the body with

n = 2 and hm=hM = 0:5 as computed by FEA; from this

configuration, only the nodes lying on the longitudinal axis

of the body are extracted and plotted in Figure 11 together

with the deformed axis computed by means of the other

techniques. The procedure is repeated for the remaining 20

bodies.

It is evident from the plot that, for the considered body,

all the techniques provide results that deviate from those

given by FEA; however, the error in the position p of the

free end section largely varies from case to case. A discus-

sion on the motivation for these discrepancies is given at

the end of this section. At the moment, we only present the

results for each case in terms of difference between the

position p
(ij)
FEA and the position p(ij)i computed by the tech-

nique T i. The superscripts i and j here denote the values of

n and hm=hM, respectively. The 2-norm of the displacement

of the free end is given by

d
(ij)
FEA = jjp(ij)FEA � p0jj ð26Þ

where p0 = fL 0gT
is the position vector in the undeformed

configuration. We compute the relative error for the tech-

nique T i as

e(ij)i =
jjp(ij)i � p

(ij)
FEAjj

d
(ij)
FEA

ð27Þ

Fig. 9. The beam is represented in two segments, denoted by the

dashed broken line; the coordinates of point S are calculated

accounting for the relative rotation between segments, which

depend on the lumped torsional springs at points O, P, and R.

Fig. 10. View on the (x, y) plane of the nodes in the undeformed

(blue) and deformed (red) configuration of the notched body

with n = 2 and hm=hM = 0:5 as computed by FEA. The nodes on

the neutral plane are highlighted in black.

Fig. 11. Results obtained by the four techniques for the body

with n = 2 and hm=hM = 0:5. The blue solid line corresponds to

the black line in Figure 10.
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and i denotes EA, NMSA, or LPM.

The plots in Figure 12 show the errors relative to bodies

with different n and ratio hm=hM equal to 0.25, 0.50, and

0.75, respectively. We observe that EA seems to provide

the most accurate results in all the cases except for

hm=hM = 0:25. NMSA turns out to be more accurate than

LPM for low values of n and hm=hM = 0:25, 0:50, and for

any n and hm=hM = 0:75. Based on these results, it is possi-

ble to sketch lines to divide the complex plane in regions

as shown in Figure 13. Each region includes a subset of

bodies, identified by their SDI, and corresponds to the

modeling technique that has provided the minimum error

in the modeling. We observe that, as expected, the bodies

with the narrower notch are better modeled by LPM than

by NMSA; these bodies are characterized by high values of

both x and c.

We observe that the SDI, as defined in Section 3, effec-

tively allows to identify regions of the complex plane that

correspond to a modeling technique. In Figure 13, the full

colored region indicates that the denoted technique has pro-

vided an error smaller than 10%; the other regions are rela-

tive to an error up to 20%. We also note that in some cases

two techniques overlap. FEA can provide highly accurate

results for any body, with the proper settings; hence, we

can consider that it covers the entire space represented in

the plot, and it is not displayed to make the figure more

readable.

The LPM as implemented in this work has been devel-

oped to model hinge-like notched bodies: the lowest eLPM

is obtained for notched bodies with hm=hM = 0:25 and high

values of n. The stiffness parameters adopted in the model

are constant and they have been defined based on the clas-

sical linear beam theory. Therefore, as expected, they might

not describe accurately the deformation of a body with gra-

dually distributed compliance, which is better described by

Fig. 12. Error ei for hm=hM equal to 0.25, 0.50, and 0.75

computed using EA (blue solid line), NMSA (red dashed line),

and LPM (yellow dash-dotted line).

Fig. 13. Rectangular region of C, covered by colored patches

that represent different modeling techniques. The fully colored

areas correspond to an error up to 10% if the denoted technique

(shown in the legend) is employed; the dotted or hatched regions

correspond to an error up to 20%. The lines that separate adjacent

regions are dashed, meaning that they have been sketched without

analysing all the infinite points on the plane (corresponding to an

infinite number of bodies), and therefore they cannot be

considered sharp boundaries between the regions. Numbers from

1 to 9 refer to the SDI for the nine bodies considered in Figure 8.
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EA and NMSA; however, these techniques have their lim-

itations as well. For instance, all the techniques as imple-

mented here do not account for warping of the cross

section, which is well captured by FEA, instead. As

observed in the literature, EA is usually employed to model

the deflection of slender, thin beams or leafsprings, having

uniform cross section. For this kind of structure, warping is

a negligible phenomenon; the technique produces accurate

results in those cases. Consistently, bodies characterized by

low values of c (\0.15) are better described by EA com-

pared with bodies with greater c. NMSA is affected by the

variability of the geometry: it is not easy to set the height

of cross section of the elements in order to obtain accurate

results for all the bodies. Therefore, the results are highly

affected by the discretization, which should be performed

carefully based on the specific case. For this reason,

NMSA might have a limited applicability for the structural

synthesis of soft mechanisms whose links have non-

uniform stiffness.

It is indeed worth keeping in mind that the plot in

Figure 13 is valid for the considered techniques in the way

we have employed them, and that different implementations

(e.g., an alternative set of LPs) would have provided differ-

ent results. Another important aspect is related to the ratio

between the amplitude of the displacement and the length

of the body. The higher the ratio, the higher the error for

any of the techniques that we have used in this article (later,

we provide the reader with some insight concerning this

aspect). However, the results that we have obtained are

meaningful for two reasons: on the one hand, they show

that the SDI can serve as a tool to relate a body to a tech-

nique; on the other hand, they provide at least a general

guideline for the choice of a modeling technique. It must

be clear that the SDI, at least at this stage of the work, does

not provide directions about the appropriate modeling

assumptions. Any technique, however accurate, leads to

poor results if used under incorrect assumptions or without

carefully checking the setup. This important matter is more

widely addressed in Section 8.

5.4. A further investigation on notched bodies

So far, we have compared the results obtained by four tech-

niques on bodies characterized by Equation (19). The defi-

nition of the SDI is based on the flexural stiffness, and

therefore should have general validity. However, we repeat

the study on bodies having a different profile. The aim is

to assess to which extent the results in Figure 13 are valid

in a case which differs from the one of cosinusoidal notch.

Therefore, here we consider bodies with rectangular

cross section having height which varies according to the

following expression:

h(x)= hM + f1(x) � H(�x� x) � H(x� �x + a01)

+ f2(x) � H(x� �x) � H(� x +�x + a02)
ð28Þ

in which

fi(x)= c � hM � 2�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� �xð Þ2

a2
i

s
ð29Þ

a0i = ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c � hM

2�a

� 	2
s

ð30Þ

for i = 1, 2. The notch obtained in this way is elliptical, with

smallest height at x =�x. If it is chosen as a1 6¼ a2, the notch

is not symmetrical with respect to �x. In fact, the two ellipses

share only the semiaxis �a:

�a =
1

2
1 + cð ÞhM � hm½ � ð31Þ

Figure 14 clarifies the meaning of the coefficients appear-

ing in the expressions above.

We report here the results concerning seven bodies that

in our opinion are particularly meaningful. All the bodies

considered are characterized by the numerical values listed

in Table 2, while they differ for those in Table 3, where

each body is denoted by a different capital letter.

The four techniques are implemented as described for

the previous set of bodies. The only difference consists of

the numerical coefficient that appears in Equation (19):

instead of 0.267, we use here 0.2. This choice is discussed

at the end of this section.

Table 4 summarizes the results of this investigation.

First, let us focus on EA: based on Figure 13, for bodies BA

and BB we should expect an error between 10% and 20%,

whereas for body BD we should expect an error close to

10%. Results confirm our expectations. This holds for all

the other bodies as well: for BF and BG the error is less than

Fig. 14. Body with elliptical notch. The notch is obtained from

two different ellipses, sharing the semiaxis �a. Point C is the

center of the ellipses. The coordinates of C are �x, c�hM

2

� �
. Below

the profile, the function a(x) is shown, for comparison with that

in Figure 6. Dimensions of the body are reported in Table 2 and

in Table 3, where the body is denoted by BA.
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10%; for BI , as expected, we obtain an error slightly greater

than 10%. It is worth noting, in particular, that the error is

very large for BC: this result suggests the existence of a

boundary of the hatched region for EA. The reader should

not be surprised from this result. In fact, in Figure 12, we

can see that for the body with hm=hM = 0:25 and n = 14,

EA is affected from an error slightly greater than 20%.

Proceeding with the analysis, we see that also results

obtained by NMSA are in accordance with Figure 13: there

is no need for detailed comments about this set of results.

In contrast, the case of LPM merits great attention. As we

stated in Section 5.3, the boundaries of the regions of the

complex plane that we can draw for a LPM strongly depend

on the specific set of LPs that we define and use. It is true

that LPM comes at relatively low computational cost; how-

ever, its drawback is that it is not always easy to assign the

value of the parameters. In particular, in cases such as those

investigated in this article, in which the flexural stiffness is

not constant along the axis of the bodies, the identification

of the equivalent length in Equation (18) may be tricky. A

small difference in a coefficient, such as the numerical

value in Equation (19), can relevantly increase or decrease

the accuracy. To give a flavour of this fact, we point out that

using the coefficient 0.25 instead of 0.20, allows the error

eLPM for body BC to be reduced from 11.98% to 4.09%.

Moreover, it is worth noting that for BG the error is 10%: in

some cases, LPM may perform with such accuracy also for

bodies with c;0:1. Consistently, going back to Figure 12,

we note in fact that LPM provided slightly better results for

bodies with hm=hM equal to 0.75 than for those with 0.5.

To conclude, we remark that the definition of the LPs turns

out to be a critical aspect of the modeling. A detailed dis-

sertation on the best criteria to assign a suitable set of para-

meters is beyond the scope of this work, and would require

a long and deep investigation.

6. SDI for particular cases

The results found so far suggest that the SDI may allow

bodies to be classified based on the distribution of the

structural properties. However, further considerations must

be made to prove its general validity: only the region of the

complex plane shown in Figure (13) has been explored so

far. In this section, we fill this gap by considering struc-

tures that turn out to be particularly meaningful for the pur-

pose of this work. First, we discuss the case of bodies

made of multiple materials; then, we introduce classes of

bodies for which x = 0, 0\x\1, and x\0; in addition,

the particular case of a continuum arm with uniform stiff-

ness is treated.

6.1. Body made of multiple materials

Let us consider a body made of two materials having dif-

ferent Young’s modulus: E1 6¼ E2. Let us consider a cross

section of the body in which both the materials are present.

Instead of the actual cross section, it is possible to consider

an equivalent cross section made of only one of the two

materials (see Beer et al., 2002). If we want to obtain the

equivalent section made of material with Young’s modulus

E1, the transformation depends on the ratio

m =
E2

E1

ð32Þ

that is used as a multiplying factor to transform the area of

the cross section in the direction parallel to the neutral axis:

in other words, the width of the region with E2 is contracted

(if m\1) or enlarged (if m.1). Once the section has been

transformed and the position of its neutral axis has been

found, the equivalent moment of inertia Je can be computed

and the flexural stiffness at that section can be expressed as

E1Je. Doing the same for all the cross sections, the function

kfe = E1Je(x) can be used to compute the SDI. Therefore,

Table 2. Geometrical and material parameters common to all the

notched bodies.

Parameter Description Value

c Multiplying factor in Equation (29) 0.3
L Length of the body 150 mm
hM Maximum height of the cross section 26 mm
b Width of the cross section 15 mm
E Young’s modulus 10 MPa
�x Abscissa at which it is h = hm 75 mm
a2 Semiaxis of the ellipse at the right of �x 5.2 mm

Table 3. Minimum height hm, semiaxis a1, applied moment M ,

and SDI for the seven bodies considered.

Body, B hm a1 M SDI

A. 6 mm 20.3 mm 160 Nmm 7.91+i0.171
B. 6 mm 15.1 mm 144 Nmm 10.57+i0.171
C. 6 mm 4.7 mm 210 Nmm 31.94+i0.171
D. 13 mm 20.3 mm 800 Nmm 8.32+i0.152
E. 13 mm 9.9 mm 800 Nmm 17.20+i0.152
F. 18 mm 20.3 mm 880 Nmm 8.75+i0.116
G. 18 mm 9.9 mm 1,040 Nmm 18.24+i0.116

Table 4. Error ei for the seven bodies listed in Table 3, obtained

by EA, NMSA, and LPM.

Body, B EA NMSA LPM

A. 11.42% 72.30% 23.90%
B. 14.44% 74.52% 17.15%
C. 30.19% 73.06% 11.98%
D. 9.53% 26.37% 17.23%
E. 12.21% 27.02% 16.69%
F. 3.33% 7.03% 15.50%
G. 4.23% 6.81% 10.00%
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the case of multiple materials can be treated as that of a uni-

form material and variable cross section.

6.2. Bodies with x = 0

A subset of bodies is characterized by x = 0. This condition

occurs if it is a(x)= a = const . An example is given by

the class of bodies made of one material and with rectangu-

lar cross section with width b and variable height

h xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1x + h2

3
p

ð33Þ

being h1 and h2 positive constant coefficients. In this case,

it is

kf (x)=
Eb

12
h1x + h2ð Þ ð34Þ

and, therefore,

a(x)=
Ebh1

12
= a ð35Þ

Under this condition, the first factor in the definition of x

is equal to zero; however, based on the provided definition,

also the term xM � xm is null. For this reason, x has been

defined to circumvent this singularity, mapping this class

of bodies to the imaginary axis of the complex plane. The

modeling technique for this kind of body depends therefore

only on the slenderness of the structure: bodies with high

values of c owing to high dM=L ratios are bulky; in most

applications, these bodies can be treated as rigid. In con-

trast, if the body is a slender long arm, then it can be mod-

eled by means of NMSA or EA. This is consistent with

what is found in the literature: the stiffness of continuum

arms and of slender soft links is modeled by the diagonal

matrix used in Cosserat rod theory-based approaches, as

mentioned in Section 1. A particular case is represented by

the class of continuum arms with uniform cross section

and single material. This case is discussed in the following.

6.3. Soft continuum arm with uniform cross

section

Let us consider a continuum arm, La = 150 mm long, with

circular cross section whose radius is ra = 2:5 mm and

made of linear elastic material with E = 1 MPa. The arm is

clamped at one end section and the moment Ma = 0:8
Nmm is applied at the free end section. As both the moment

and the flexural stiffness are constant along the arm, the

deformed configuration is circular. The deformation of the

arm is computed by nonlinear FEA with a hexahedral mesh

of 700 elements; similarly to the notched body, the body is

considered symmetric with respect to the XY plane. Using

NMSA, the structure is discretized into 10 segments, all

characterized by the same local stiffness matrix (82) with

Ei = E, Li = La=10, Ai = pr2
a, and Ji = pr4

a=4. The number

of steps is 300. When using EA, the same settings as used

for the notched body are adopted for consistency, although

the differential equation is easy to integrate analitically in

this case.

Figure 15 shows the arm, initially straight, in the

deformed configuration as computed by FEA, in compari-

son with the deformation obtained by applying EA and

NMSA. In this case, EA provides results that slightly differ

from those computed by FEA: it is, in fact, eEA = 0:003.

NMSA is affected by a greater error (eNMSA = 0:025), but

describes the deformation of the arm with reasonable accu-

racy. LPM is not implemented in this case: it would be pos-

sible to compute the position of the free end section of the

arm by defining an equivalent torsional spring as done by

Howell and Midha (1994); however, such an approach

would not model the distribution of the deformation along

the longitudinal axis.

For this class of bodies, a(x)= 0 because kf (x)= const:
Therefore, x = 0 and c = 0. Thus, the origin of the com-

plex plane represents all the bodies with uniform stiffness,

independently of their slenderness. This is the only case in

which the choice of the modeling technique should be

based on the stiffness only: the distribution of the structural

properties is uniform.

6.4. Bodies with 0\x\1

Here, we consider the classes of bodies characterized by

0\x\1. An example is given by conical bodies made of

a single material. Being conical, the radius of their circular

cross section varies linearly along the length. Denoting by

r0 and rL the radius at the first and the last section, respec-

tively, the radius at the generic abscissa x is

r xð Þ= r0 �
r0 � rL

L
x ð36Þ

where L is the length of the body and the origin of the coor-

dinate axis is such that r(0)= r0. The flexural stiffness is

the function

kf xð Þ= E
p

4
r4 xð Þ ð37Þ

Fig. 15. Continuum arm subject to end moment load. The blue

and red dots represent the nodes in FEA in the undeformed and

the deformed configuration, respectively. The solid black line

denotes the solution computed by EA and the dashed black line

the solution obtained by NMSA.
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The first derivative of the stiffness is

a xð Þ= � Ep
r0 � rL

L
r0 �

r0 � rL

L
x

� �3

ð38Þ

We observe that a(x) is a monotonically increasing function

in 0, L½ �. In fact, its first derivative

da(x)

dx
= 3Ep

r0 � rL

L

� �2

r0 �
r0 � rL

L
x

� �2

ð39Þ

is positive everywhere. Hence, it is a(L).a(0). In addition,

we note that:

� for rL\r0, a(x)\0 8x; therefore, a(L)= aM ,

a(0)= am, and jamj.jaM j, thus aM�am

jamj \1;
� for rL.r0, a(x).0 8x; therefore, a(L)= aM ,

a(0)= am, and jaM j.jamj, thus aM�am

jaM j \1.

In both cases, jxM � xmj= L. Hence, we conclude that it is

always 0\x\1. Figure 16 shows x and c as functions of

the ratio rL=r0 for conical bodies having E = 10 MPa,

r0 = 13 mm, and rL ranging in the interval 1, 26½ � mm. We

can see that for rL=r0 = 1 it is SDI = 0 + i0, consistently

with what was reported in the previous section for a soft

continuum arm with uniform cross section.

It is fairly intuitive that for this class of bodies, the most

suitable choice in terms of modeling technique is repre-

sented either by EA or NMSA. According to Figure 13, by

using EA we should compute the position of the free end

section with an error up to 10%. To verify that this is true,

we have used the techniques on 12 conical bodies. Material

and geometrical parameters for this study are listed in

Table 5, whereas the applied external moment at the free

end section is reported in Table 6.

Both techniques perform as expected. Figure 17 allows

a comparison of the results given by EA, NMSA, and FEA

for body C6. Table 7 summarizes the errors for the two tech-

niques, as well as the SDI, for each body analyzed. We

observe, in particular, that for C10 NMSA performs with an

Fig. 16. Plots of x and c for conical bodies versus rL=r0. The

curves are computed for bodies with E = 10 MPa, r0 = 13 mm,

and rL ranging in the interval 1, 26½ � mm.

Table 5. Geometrical and material parameters for conical

bodies.

Parameter Description Value

L Length of the body 200 mm
r0 Radius at section x = 0 f7, 9, 11, 13g mm
rL Radius at section x = L f2, 4, 6g mm
E Young’s modulus 10 MPa

Table 6. Moment M applied on conical bodies for varying rL

and r0. The conical bodies are denoted by Cg with g ranging from

1 to 12.

g r0 rL M

(mm) (mm) (Nmm)

1 7 2 12
2 4 50
3 6 200
4 9 2 16
5 4 120
6 6 280
7 11 2 16
8 4 150
9 6 300
10 13 2 20
11 4 150
12 6 340

Fig. 17. Deformation of a conical body having E = 10 MPa,

r0 = 9 mm, and rL = 6 mm under an applied moment at the free

end section M = 280 Nmm. The undeformed conical profile is

represented in blue, whereas the deformed as computed by FEA

is shown in red. The solid and dashed black lines represent the

deformed longitudinal axis as computed by EA and NMSA,

respectively.
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error equal to 10.4%. This suggests that the boundary that

we attempted to sketch for NMSA(0.1) in Figure 13 needs

correction. It is worth pointing out that, for this set of anal-

yses, we have used NMSA discretizing the structure into

six elements, as done in Section 5.2.2. A finer discretiza-

tion would lead to lower errors.

Conical bodies are not the only ones for which is it

0\x\1. Another example is represented by the class of

bodies with circular cross section whose radius varies

exponentially:

r(x)= R0eb�x=L ð40Þ

with x 2 0, L½ �. Here R0 is positive and the coefficient b is

either positive or negative. For these bodies, it is

kf (x)= E
p

4
R4

0e4b�x=L ð41Þ

a(x)=
b

L
EpR4

0e4b�x=L ð42Þ

da(x)

dx
= 4

b2

L2
EpR4

0e4b�x=L ð43Þ

As we observed for conical bodies, from Equation (43) we

infer that a(L).a(0), because a(x) monotonically increases

in ½0, L�. Moreover:

� for b\0, a(x)\0 everywhere; therefore, a(L)= aM ,

a(0)= am, and jamj.jaM j (because e�4jbj\1);
� for b.0, a(x).0 everywhere; therefore, a(L)= aM ,

a(0)= am, and jaM j.jamj (because e4b.1).

We reach the same conclusions drawn for conical bod-

ies. In addition, we can note that the case b = 0 is analogous

to the case rL=r0 = 1 discussed for the conical bodies: in

both cases, the radius of the cross section is constant along

the length. Figure 19 collects in the complex plane the

results shown in Figure 16. In the same figure, we report

the SDI computed for bodies with exponential profile with

R0 = 13 mm and b ranging in �1, 1½ �, while keeping the

same body length L and Young’s modulus E. For the sake

of brevity, we do not report here the results of a set of

analyses performed on this class of bodies, except the case

b = � 1 for which the body has SDI= 0:982 + i0:127. For

an applied moment M = 150 Nmm, we obtain eEA=1.9%

and eNMSA = 2.1%. Results are displayed in Figure 18.

6.5. Bodies with x\0

Finally, we provide an example of a class of bodies for

which it is x\0. Let us consider bodies made of a single

material with variable rectangular cross section whose

height is given by the function

h(x)= hM � hM � hmð ÞH x� L

3

� 	

+
1

2
hM � hmð Þ cos

n0p x� L
3
� L

n0

� �
L

� 1

� 	
�

H
L

3
� x

� 	
H x� L

3
+

L

n0

� 	 ð44Þ

Table 7. SDI, eEA, and eNMSA for conical bodies Cg.

g SDI eEA eNMSA

1 0.977+i0.069 1.2% 5.9%
2 0.814+i0.062 1.8% 2.0%
3 0.370+i0.032 2.2% 2.5%
4 0.990+i0.090 1.6% 8.3%
5 0.913+i0.086 0.5% 3.5%
6 0.704+i0.072 1.0% 2.1%
7 0.995+i0.110 2.9% 8.2%
8 0.953+i0.108 0.9% 4.3%
9 0.838+i0.100 1.5% 1.9%
10 0.997+i0.130 3.0% 10.4%
11 0.972+i0.129 1.5% 4.1%
12 0.902+i0.124 1.4% 1.7%

Fig. 18. Results obtained by FEA, EA (solid line), and NMSA

(dashed line) for a body with circular cross section the radius of

which decreases exponentially along the length.

Fig. 19. SDI for bodies with exponential profile (solid blue line)

and conical bodies (dashed red line). Numerical values of

material and geometrical parameters for which the curves are

computed are reported in the text.
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Again, H( � ) is the Heaviside function and the parameter n0

is used to tune the distribution of the softness of the link.

An example of bodies of this class is shown in Figure 20,

in which n0= 4, hM = 16 mm, hm = 6 mm, b = 10 mm, and

L = 100 mm.

In this case, x = � 12:21 and c = 0:15. The deforma-

tion of bodies of this class can be effectively modeled by

EA, same as the notched bodies characterized by

SDI= � x + ic; however, the partition of the complex

plane as shown in Figure 13 is not symmetric with respect

to the imaginary axis. The difference is that because the

considered body has no notch, but only a gradual mono-

tonic decreasing of the stiffness along the axis, there is no

hinge-like region to model by means of a LP. Consistently

with what was obtained for x.0, instead, NMSA is sug-

gested as a convenient technique for bodies having c lower

than ;0.11, such as the body represented in Figure 21,

which differs from the previous in that hm = 12 mm, result-

ing in SDI= � 9:47 + i0:09.

7. SDI for optimization

So far, we have observed that the SDI can lead to a consis-

tent partition of the complex plane, allowing us to draw

regions that we can link to one or more modeling tech-

niques. This encouraging result pushes us to investigate

another aspect: can the SDI be useful for design purposes?

Can it play a role in the structural optimization of a soft

link?

In this section, we present an optimization problem that

has helped us to better assess the validity and the usefulness

of the SDI. Thanks to its simplicity, the example reported

here shows how the SDI can guide us in the optimization.

7.1. Statement of the problem

Let us design a link of length L, clamped at one end and

subject to a load applied at the other end as shown in

Figure 22. By actuating the system with the moment Ma

we want not only to compensate for the deflection caused

by the load Fv, but also to displace the end section of the

link to the point Q denoted in figure. Then, the problem

consists of finding a link whose end tip undergoes the pre-

scribed displacement under the given loading and con-

straint conditions.

To work with a low number of design variables and sim-

plify the discussion, we assume that the body is made of a

single material that we treat as linear elastic. In addition, we

prescribe that the body has circular cross section whose dia-

meter can range between a minimum dm and a maximum

dM (for instance, for reasons related to the manufacturing

process).

7.2. Optimization

A very simple and intuitive model for this problem is repre-

sented in Figure 23: the body consists of two quasi-rigid

links connected by a thin, circular beam that behaves as a

flexural pivot and geometry of which has to be found. The

compliance of the body can be considered concentrated

Fig. 20. Body with variable cross section (top), characterized by

the negative real part of the SDI. The first derivative of the

flexural stiffness is plotted (bottom) and the minimum and the

closest maximum are highlighted by red dots.

Fig. 21. Body with decreasing height of the cross section (top)

similar to the body in the previous figure but with different ratio

hm=hM , which leads to a different value of the minimum of the

function a(x) (bottom) compared with the previous case.

Fig. 22. The body is clamped at the origin of the system of

coordinates and its free end P must be displaced to point Q,

under the loads Fv and Ma.
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between points T and S; for this reason, in the following

we refer to this model as a LPM. From now on, the dia-

meter d, the length l of this beam, and the distance D from

the clamped end will be the design variables in the optimi-

zation problem. We collect them in the vector

vLP = fD, l, dg ð45Þ

The two rigid links have given diameter dM. If dM is suf-

ficiently greater than d, the deformed configuration of the

body can be easily obtained by computation of the deflec-

tion of the thin, deformable beam. The computation is per-

formed with respect to the coordinate system shown in

Figure 23.

Unlike the body in Section 5.2.4, here the beam is sub-

ject to a non-constant moment, owing to the force Fv. We

note that the moment depends both on the abscissa x and

on the position of the free end of the body. Therefore, here

we follow an incremental procedure applying the load in a

number ns of steps. If we assume that the section at point T

is clamped, the vertical displacement of point S at the sth

step can be computed according to the classical beam the-

ory as

ySs
= ySs�1

+ ma + fva cos uSs�1
+ fvlð Þ l2

2EJ
� fvl3

6EJ
ð46Þ

with a = L� D� Lp, J = pd4=64, fv = Fv=ns, and

ma = Ma=ns. The rotation at point S is computed as

uSs
= uSs�1

+ ma + fva cos uSs�1
+ fvlð Þ l

EJ
� fvl2

2EJ
ð47Þ

The displacement of S along the x-axis is neglected here.

Therefore, xSi
= D + l for any i. The coordinates of point P

at the ith step are collected in the vector

ps = fxSs
, ySs
gT + fa cos uSs

, a sin uSs
gT ð48Þ

The objective of the optimization is to minimize the

distance between point P in the deformed configuration

and point Q. Therefore, the objective function is written

here as

f vð Þ= jjpns
� qjj ð49Þ

Here, we perform optimization in MATLAB environ-

ment by the fmincon built-in function, which requires the

assignment of an initial guess for the set of design variables.

Based on our intuition, a reasonable initial guess is the set

v0LP
= f2L

3
,

L

10
, dmg ð50Þ

Moreover, the solution is searched accounting for the

following set of constraints:

0\D\L ð51Þ

0\l\
L

2
ð52Þ

dm ł d ł dM ð53Þ

If we adopt the numerical values listed in Table 8, we

find that the solution is D = D(1) = 109:2 mm,

l = l(1) = 52:2 mm, and d = d(1) = 6 mm. In the following,

we denote the body having these dimensions as B1. The

final value of the objective function turns out to be 7.3

mm: according to the model, the coordinates of point P

under the given loads would be (176:3, 63:6), against the

prescribed (170, 60). Such error might seem acceptable, if

we consider that soft robotics applications do not generally

require high accuracy. Therefore, we might be tempted to

accept the solution and build the body based on it.

However, if we perform FEA using the commercial soft-

ware on the body having the optimized geometry, we real-

ize that the actual displacement of P is quite far from the

prescribed value: the coordinates of point P in the

deformed configuration are (143:5, 72:1) according to

FEA. Figure 24 shows this discrepancy, that is due to the

approximations by which the model is affected (primarily,

the displacement of point S along the x-axis is neglected).

Fig. 23. The body, initially straight, deforms under the applied

moment Ma and the force Fv, owing to the deflection of the

central segment between points T and S, having diameter d (here

not denoted).

Table 8. Geometrical and material parameters in the

optimization process.

Parallel Description Value

L Length of the body 200 mm
dM Maximum diameter of

the cross section
20 mm

dm Minimum diameter of
the cross section

6 mm

d0m Minimum diameter of
the cross section

6 mm

Fv Applied force at end tip �0.5 N
Ma Applied moment at end tip 100 Nmm
E Young’s modulus 50 MPa
P Coordinates at initial

configuration
(200, 0) mm

Q Prescribed coordinates (170, 60) mm
Q0 Prescribed coordinates (187, �60) mm
ns Number of steps 40
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The error evaluated as defined by Equation (27) is equal to

37.0%.

As the problem seems to require a larger computational

effort, let us try again using a different technique, setting

the optimization problem by using NMSA. The objective

function has still the form in Equation (49), but now it

depends on a different set of design variables:

vNMSA = fD, l1, l2, l3, d1, d2, d3g ð54Þ

whose meaning is clarified by Figure 25, which also shows

the global enumeration of the nodes of the discretization.

The structure is divided into five elements, serially con-

nected; the nodes are enumerated from 1 to 6, being the

first node clamped. As was done for the notched body, the

load is applied incrementally in ns steps. The stiffness

matrix of the structure depends on the design variables: in

fact, the lengths of all the elements are unknown (the only

condition is that the length of the fifth element must be

equal to L� D�
P

i li) as well as the areas and the

moments of inertia of the second, third, and fourth

elements.

The optimization is performed under the following

constraints:

0\D\
2L

3
ð55Þ

0\li\
L

3
for i = 1, 2, 3 ð56Þ

dm ł di ł dM for i = 1, 2, 3 ð57Þ

and from an initial guess based on the solution computed

by LPM:

v0NMSA
= fD(1),

l(1)

3
,

l(1)

3
,

l(1)

3
, d(1)

ave, d(1), d(1)
aveg ð58Þ

where d(1)
ave = (d(1) + dM )=2. The objective function takes

the value 7× 10�6 mm for D = D(2) = 104:8 mm,

l1 = l
(2)
1 =14:2 mm, l2 = l

(2)
1 =49:9 mm, l3 = l

(2)
1 =18:3 mm,

d1 = d
(2)
1 = 12:5 mm, d2 = d

(2)
3 = 6:0 mm, and d3 = d

(2)
3 =

7:6 mm. The result of this optimization will be hereafter

denoted by B2. We note that, unlike in the previous case,

the value of the objective function approaches zero.

Moreover, as visible in Figure 26, the difference between

the deformation computed by NMSA and by FEA is still

non-negligible, but smaller. From FEA, we see that the

coordinates of point P in the deformed configuration are

(150:9, 62:8). Therefore, by using NMSA, we obtain an

error equal to 21.9%.

Based on the results reported previously, we might con-

clude that the LPM is not suitable at all, and that we should

have recurred to NMSA from the beginning, possibly with

a number of elements greater than five, to further reduce

the error. However, this would be a mistake. We prove this

with a simple example. Let us consider a similar problem,

with a different prescribed point Q 0 (reported in Table 8)

and only the force Fv applied. We search the solution by

using the same LPM; under a new set of constraints

0\D\L ð59Þ

0\l\
7L

100
ð60Þ

d0m ł d ł dM ð61Þ

and starting the search from the initial guess

Fig. 24. Deformation of body B1 computed by FEA (blue dots

represent the nodes of the mesh) and by LPM (black full line).

FEA simulations reported in this section have been performed

with a tetrahedral mesh.

Fig. 25. Schematic representation of the model based on

NMSA. Nodes are numbered from 1 (clamped) to 6 (on which

the loads are applied). The diameter and the length of elements

between nodes 2 and 5 are treated as design variables, together

with the distance D between nodes 1 and 2.

Fig. 26. Deformation of body B2 computed by NMSA (full

black line) in comparison with the result obtained by FEA (blue

dots represent the nodes of the mesh).
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v0 =
L

3
,

L

20
, d0m

� 

ð62Þ

we find that the objective function takes the value

2:8× 10�5 mm for D = 55:0 mm, l = 13:5 mm, and

d = 5:4 mm. As done previously, let us perform FEA on a

body having these dimensions. Figure 27 shows the com-

parison between the results obtained by FEA and by LPM.

The deflection computed by LPM nearly overlaps with that

obtained by FEA: the position of the free end is found to

be Q0 and (185:0, � 63:4) with the two methods, respec-

tively, resulting in an error equal to 6.0%.

It is evident that, in the last case, the LPM represents a

good candidate for the optimization process. Compared

with NMSA, it is easier to implement and requires famil-

iarity with the classical beam theory only. In addition, it

makes the optimization process notably faster than that

involving NMSA, owing to the lower number of design

variables. In fact, the price that we pay for a more accurate

model is related to the computational cost: to find the geo-

metry of B2, we have performed a search in a seven-

dimensional space, but for B1 and B3 we searched in a

three-dimensional space. To provide the reader with at least

a rough idea about the difference, we report that the geo-

metries of B1 and B3 have been found in less than 0.05

seconds, whereas the search for B2 has taken 4.8 seconds

on the same machine. Although it may seem not of great

importance here, we should consider that the examples pre-

sented above are extremely simple: the optimization is per-

formed on a single body, prescribing the displacement of a

single point, and keeping the number of design variables as

low as possible; in addition, let us remark that we are

accepting what probably is a local minimum as a solution,

and we are not verifying whether it is the global minimum

of the objective function. The matter assumes importance

for more complex optimization problems, and becomes

crucial when searching in high-dimensional spaces.

These results show that the suitability of the modeling

technique should be evaluated for each specific case. Can

the SDI help us to assess whether we have chosen an appro-

priate technique, without verifying the results by FEA or

other computationally expensive methods?

7.3. The role of SDI in optimization

We now recapitulate all the results found in the previous

section, and we compare the bodies B1, B2, and B3 in terms

of their SDI. Before starting, we note that for all the bodies

under considerations, jump discontinuities of the cross-

section occur along the longitudinal axis: from a rigorous

mathematical viewpoint, this represents an issue in view of

our purpose, because we want to compute the first deriva-

tive of the flexural stiffness (however, such discontinuity

would not occur in a physical prototype, because perfectly

sharp edges are a pure abstraction in mechanics). To obtain

the SDI in these cases, we suggest to compute the function

a xð Þ recurring to finite differences. In the following, we

discretize the interval 0, L½ � with 1,000 evenly spaced points

and we approximate

a(xi)=
Dkfi

Dx
=

kfi + 1
� kfi

xi + 1 � xi

ð63Þ

Figure 28 shows the profile of the three bodies and the

function a(x), while Table 9 lists the computed errors and the

SDI for each body. Let us now recall the entire optimization

process, to comment on it in view of these values. The process

started by using a LPM, which returned as a result a body

with SDI= 7:6 + i0:0992; from the sketch in Figure 13, it

seems that the use of a LPM is not suggested in this case, and

that a more accurate technique should be employed. In fact,

by implementing NMSA with a coarse discretization, we

found a smaller error. In contrast, in the third optimization

problem we found a body with SDI= 31:4 + i0:0995: for

bodies having such high values of the real part of the SDI and

c;0:1, LPMs may be a suitable option as shown in Section

5.4. The relatively small error (6.0%) seems a confirmation of

this conclusion. Therefore, the SDI could have driven us in

the appropriate choice of the technique. The role played by

the SDI can be twofold, indeed: (i) helping in the modeling of

an already existing body; and (ii) suggesting how to set up an

optimization problem to find a body that fulfills prescribed

requirements.

Concerning the latter, we provide in the following a fur-

ther example of optimization, based on a different approach.

The aim is to show that it is possible to choose a modeling

technique a priori and use it for a constrained optimization

whose constraints are written based on the SDI.

7.4. Optimization constraints based on SDI

Let us return again to the geometry used in Section 5. This

time, the objective is to design a notched body that

Fig. 27. Deformation of body B3 computed by FEA (blue dots

represent the nodes of the mesh) and by LPM (black full line).

Table 9. Summary: SDI and error computed for each body.

Body SDI Error

B1 7:6 + i0:0992 37.0% by LPM
B2 4:5 + i0:0992 21.9% by NMSA
B3 31:4 + i0:0995 6.0% by LPM
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undergoes the vertical displacement yP = 35 mm under an

external moment M . Compared with the previous optimiza-

tion problem, here we assign the technique to be used. As

we have seen, each technique cannot be considered reliable

in general: provided results are reasonably accurate depend-

ing on the specific distribution of the stiffness of the body.

In this optimization problem, we treat the parameters n

and hm as design variables, that is, we tune the length and

the depth of the notch. The variables are collected in

w= fhm, ng: ð64Þ

Numerical values of all other parameters are assigned as

reported in Table 1 and we adopt the same system of coor-

dinates used so far. We choose to implement the model

using the EA, with the same settings described in Section

5.2.3; the applied moment is M = 8 Nmm. Hereafter, we

denote by yf the displacement along the vertical axis that

the free end section of the body undergoes under the

applied load. The objective here is to minimize the absolute

value of the function

u(w)= yf � yP ð65Þ

and we perform the optimization imposing the following

constraints:

hM

10
\h\

9hM

10
ð66Þ

2\n\14 ð67Þ

starting the search from

w
(1)
0 =

3hM

20
, 8

� 

ð68Þ

The solver succeeds to find a local minimum while satisfy-

ing the assigned constraints: at the point

w(1) = f4:84, 7:68g the value of the objective function is

1:7× 10�7 mm.

However, we see from Figure 29a that there is a discre-

pancy between results obtained by EA and by FEA: the

coordinates of the end point of the neutral axis of the body

are 84:96, 39:07ð Þ according to FEA, whereas we compute

87:90, 35:00ð Þ by EA. The error is equal to 12.0%. Can we

obtain a more accurate result? Owing to the nature of the

prescribed requirement, it is fairly intuitive that the objec-

tive function is null at more than one point of the search

space. Let us perform again the optimization process, start-

ing the search from a different point:

w
(2)
0 =

hM

4
, 11:5

� 

ð69Þ

We find that the value of the objective function for

w(2) = f4:06, 11:79g is 1:9× 10�7 mm. As done before, we

compare the results obtained by EA with those provided by

FEA. In this case, we obtain the coordinates 80:89, 42:55ð Þ
by FEA, against 87:78, 35:00ð Þ computed by EA. We con-

clude that w
(2)
0 is a more unfortunate initial guess than w

(1)
0 :

by this second optimization, we obtain an error equal to

21.9%.

Fig. 28. Profiles of the bodies B1, B2, and B3, from top to

bottom. Below each body, the corresponding function a is shown.
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From what has been reported above, we draw two con-

clusions: (i) as expected, the problem admits more than one

solution, i.e., there is more than one body fulfilling the pre-

scribed requirement; and (ii) solutions may largely differ in

terms of error eEA. Figure 30 discourages us from repeating

the optimization with a different initial guess: the function

u as computed by EA is characterized by a wavy trend and

its intersection with the plane z = 0 consists of several

curves (we show u, rather than its absolute value, for a

mere convenience of display). Therefore, we try a different

approach, involving the SDI. Let us add, indeed, an

additional constraint to the set introduced above. We

require that for the body the following inequality must

hold:

c wð Þ\0:15 � H x wð Þ � 6ð Þ ð70Þ

and we perform again the optimization starting the search

from w
(3)
0 =w

(1)
0 . This time, we find that the objective func-

tion takes the value 1:2× 10�7 mm at w(3) = f6:31, 4:00g
while satisfying all the assigned constraints. The body is

characterized by x = 5:85 and c = 0:15. The inequality

constraint (70) has been written based on the sketched lines

in Figure 13 to guarantee that the SDI of the body resulting

from optimization lies inside the blue region. In other

words, such constraint allows us to be confident about the

choice of the modeling technique used for the optimization.

According to Figure 13, in this case the error should be less

than 10%. In fact, from FEA we find that the coordinates

of the end point of the axis are 86:70, 37:65ð Þ, against

88:24, 35:00ð Þ, resulting in an error equal to 7.7%. Figure

29c shows the comparison between the results obtained by

the two techniques.

It is also worth pointing out that the bodies in Figure

29a and (b) have SDI equal to 11:05 + i0:1555 and

16:58 + i0:1573, respectively. Consistently, for the former

we have obtained an error slightly greater than 10%; for the

latter, an error around 20%. Concerning the latter, from

Figure 12 we would predict an error around 18%. However,

the external load applied here is greater than the one

reported in Section 5. We remark, as previously, that the

discrepancy between FEA and any technique tends to

increase drastically as the external load increases, owing to

the increasingly relevant effect of phenomena such as warp-

ing of the cross section.

8. Discussion

As stated in Section 2, the choice of a convenient modeling

technique is crucial not only when analysis must be

(a)

(b)

(c)

Fig. 29. Comparison between FEA and EA for the three bodies

obtained by optimization: (a) n = 7:68 and hm = 4:84 mm; (b)

n = 11:79 and hm = 4:06 mm; (c) n = 4:00 and hm = 6:31 mm.

Blue and red dots denote the nodes of the mesh for the

undeformed and deformed body, respectively. The black line

denotes the deformed axis of the body as computed by EA.

Fig. 30. Function in Equation (65). The plot is found by means

of implementation of EA as described in Section 5. The black

transparent patch denotes the plane z = 0.
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performed, but especially when it must be used for synth-

esis. For analysis, the choice depends of course on the spe-

cific phenomenon or condition that has to be modeled. For

instance, finite elements are powerful when the mechanical

stress and strain must be computed, or when contact

between bodies (or even self-contact within the same body)

occurs. However, if the objective of the analysis is the com-

putation of the deformed configuration under an external

load, or the preliminary design of a soft body, finite ele-

ments are not necessarily needed. We have shown that

accurate results can be obtained, in some cases, by using

alternative techniques, at a much lower computational cost

and in a way at the reach of our intuition. In the case of

synthesis, we believe that the choice of a technique has a

non-negligible influence on our understanding of the work-

ing principles of soft robots and, in general, of all the sys-

tems. Not without reason, in fact, several soft robots and

actuators have been built based on the researchers’ intui-

tions and qualitative considerations: in our opinion, this is a

consequence of the lack of adequate modeling approaches.

The SDI proposed in this article allows to classify bodies

based on the distribution of their structural properties. To

summarize, it helps in the choice of a modeling technique

based on such distribution; it can be considered as a tool to

gain a hint on the number of parameters and on the technique

needed to model the softness of a robotic link with a given

accuracy. Let us consider a body such as that described in

Section 5, with the same length but with two equal notches.

The SDI would be equal to that computed with the same

body with a single notch: this means that the SDI suggests

the same technique for both the bodies. In fact, if the body

with the single notch can be effectively modeled by LPM,

then the body two notches also can: the difference is that an

additional LP is needed in the model. If we consider, instead,

a long continuum arm with uniform cross section except for

the presence of a narrow notch, the real part of the SDI

would assume a great value (depending on the length of the

arm) and the imaginary part would be small. This is consis-

tent with the plot in Figure 13: the arm should be modeled

by EA or NMSA. Possibly, a hybrid technique including also

a LP to model the notch could be adopted.

The SDI introduced in this article accounts for the distri-

bution of the flexural stiffness. However, this is not the

only important quantity to consider. Soft bodies for robotic

applications may be, in general, intended not only to bend,

but also to stretch, to undergo torsion, inflation, under com-

bination of loads that act simultaneously (point forces, dis-

tributed loads, and moments). It will be necessary to define

additional indices to fully classify soft-bodied robots and

develop a comprehensive set of tools to be used for analy-

sis and synthesis purposes. The path ahead is still long.

Another important aspect concerns the assumptions on

which a given modeling technique is based. In this article,

for instance, we have neglected the shear effects when

implementing LPM, EA, and NMSA; however, in some

cases it is needed to introduce shear correction factors that

depend on the geometry of the body (as explained by

Timoshenko beam theory). Another assumption, widely

employed in soft robotics, is that segments of the body

bend with constant curvature; in some works, researchers

have shown that this assumption has led to acceptable

results, but this does not mean that the assumption could

always be adopted. In some works, it is assumed that the

cross-section does not change with the deformation (see,

e.g., Renda et al., 2017: in which the area and the moment

of inertia of the cross section are constant). However, warp-

ing of the section, local deformations and high local strains

may play a big role. In Section 7.3, we have seen that for

body B2, NMSA with five elements performs with eNMSA =

21.9%. Based on the SDI of the body, we would have

expected a better performance from NMSA. Unfortunately,

NMSA as implemented in this work does not account for

local peaks of strain, which occur at every abrupt change

of the diameter of the cross section. A more sophisticated

implementation, comprehensive of correction factors to

account for this phenomenon, would have provided more

accurate results.

To summarize, the assumptions on which a model can

be based are numerous. A further aim of our future work

will be to identify criteria that encourage or discourage the

use of the commonly used assumptions, based on the distri-

bution of the structural properties of the system. To reach

this goal, the first derivative of kf (x) will be a valuable ally,

together with its higher-order derivatives. Concerning the

bending, this will allow a clearer definition of the partition

of the complex plane (at the moment, merely sketched). We

clarify that even a comprehensive set of SDIs will never

serve as a substitute of the researcher’s skill in using the

various techniques. The greatest caution should be exer-

cised even when implementing the most accurate method:

to give an example among several, finite elements with

inappropriate aspect ratio can cause inaccurate results. The

SDI represents our contribution to the creation of a frame-

work to model soft-bodied robots: we believe, indeed, that

such framework cannot be built without accounting for the

distribution of the structural properties of the huge variety

of soft bodies that can be used. A possible approach con-

sists in discretizing the soft robotic structure in parts and

compute the SDI for each part: in this way, one can operate

a quantitative distinction between segments with highly dis-

tributed compliance from others whose modeling is possi-

ble with few parameters. We insist particularly on the fact

that considerations made on the softness distribution of a

robot, or body, should be quantitative and not only qualita-

tive. Our intuition is powerful, indeed, but limited: it can

push the development of the field up to an appreciable

boundary, but mathematical tools are needed to cross the

limit and achieve the design of efficient soft-bodied robots.

We leave the reader with an open question, indeed: are we

fully exploiting the potential offered by the structural prop-

erties of soft-bodied systems?
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9. Conclusions

The main objective of this work has been to highlight the

importance of the distribution of the structural properties in

a body undergoing large deformation and that such distri-

bution is related to the choice of a modeling technique. We

have proposed a novel index, called SDI, that accounts for

the structural properties of a body performing bending.

In order to carry out a quantitative investigation, we

have modeled the bending of soft bodies recurring to dif-

ferent techniques and we have shown that it is possible to

map bodies to the complex plane using the SDI. The com-

plex plane has been divided into regions, each correspond-

ing to one or more modeling techniques suitable for the

body under investigation, showing that the provided defini-

tion of the SDI makes a classification possible.

The achievement of a unified framework for the modeling

of soft robots will require further work from the soft robotics

community. We believe that this framework should include

all the modeling techniques employed so far by the research-

ers, possibly developing hybrid techniques that could com-

bine the use of FE, MSA, Cosserat rod theory, elastica theory,

LPs, and different assumptions (for instance, the piecewise

constant curvature, frequently recalled in the literature), to be

selected based on the SDI of the body. We do not claim that

the proposed SDI represents a fully developed and tested tool

to solve the problem completely; in contrast, we believe that

additional efforts are required from the soft robotics commu-

nity to achieve a complete classification of soft bodies based

on the distribution of their properties, and the corresponding

choice of a modeling approach. We believe that other indices

should be defined to account for other typical deformation

modes of soft robots (for instance, tension and compression,

squeezing). In this article, we have provided evidence that it

is possible to find a relation between bodies and modeling

techniques by means of a mathematical tool.
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Appendix A: Invariance of SDI under

inversion of x-axis

Let us consider the function kf for a generic body at a

given coordinate ~x in a system of reference such as that in

Figure 2. By inversion of the x-axis and shifting the origin

at the opposite end section, we operate the transformation

x! x0= L� x and it is kf (x)= k0f (x
0)= k0f (L� x).

By definition, the first derivative of kf at ~x is

a(~x)= lim
Dx!0

kf (~x + Dx)� kf (~x)

Dx
ð71Þ

Let Dx.0 and ~x such that it holds

kf (~x� Dx)\kf (~x)\kf (~x + Dx) ð72Þ
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that is, the function kf is increasing at ~x (it is a(~x).0).

Using the aforementioned transformation, this condition

can be rewritten as

k0f (~x
0+ Dx0)\k0f (~x

0)\k0f (~x
0 � Dx0) ð73Þ

Therefore, the difference quotient

k0f (~x
0+ Dx0)� k0f (~x

0)

Dx0
ð74Þ

is negative. Computing the limit for Dx0 ! 0, we conclude

that

a(~x)= � a0(~x0) ð75Þ

If x1 and x2 are the coordinates at which a(x) is maxi-

mum and minimum, respectively, it is a(x1).a(x2). Under

the coordinate transformation and considering the condition

(75), we have

a0(x01)\a0(x02) ð76Þ

that is, the function k0f (x
0) is maximum at x02 and minimum

at x01.

As it holds

maxfja(x1)j, ja(x2)jg= maxfja0(x01)j, ja0(x02)jg ð77Þ

according to the definition of x given k0(x0), if the SDI is

invariant it must be

a0(x02)� a0(x01)

x02 � x01
=

a(x1)� a(x2)

x1 � x2

ð78Þ

The condition above is satisfied. In fact, it is

a0(x02)� a0(x01)= � a(x2)+ a(x1) ð79Þ

and

x02 � x01 = L� x2 � L + x1 = x1 � x2 ð80Þ

It follows that x is invariant under the considered coordi-

nate transformation. Moreover, because the maximum and

minimum value of kf do not depend on the choice of the

coordinate system, the imaginary part c of the SDI is invar-

iant. We conclude that the SDI does not depend on the

orientation of the coordinate axis.

Appendix B: NMSA

Same as for the FEM, the order in which the DOFs are

listed is arbitrary. In our work, following the common prac-

tise, we define the vector of nodal displacements of the ith

beam element in the local system of coordinates (j(i) and

h(i)) (shown in Figure 31) as

uli = fj
(i)
1 h

(i)
1 g

(i)
1 j

(i)
2 h

(i)
2 g

(i)
2 g

T ð81Þ

In this work, the nodal rotations g
(i)
1 and g

(i)
2 are considered

positive if counter-clockwise.

Coherently, the local stiffness matrix Kli 2 R
6× 6 is writ-

ten as

Kli =
Ei

Li

Ai 0 0 �Ai 0 0

0
12Ji

L2
i

6Ji

Li

0 � 12Ji

L2
i

6Ji

Li

0
6Ji

Li

4Ji 0 � 6Ji

Li

2Ji

�Ai 0 0 Ai 0 0

0 � 12Ji

L2
i

� 6Ji

Li
0

12Ji

L2
i

� 6Ji

Li

0
6Ji

Li

2Ji 0 � 6Ji

Li

4Ji

2
66666666666664

3
77777777777775
ð82Þ

in which Ei is the Young’s modulus, Ai the area of the cross

section, Li is the length, and Ji is the moment of inertia of

the cross section of the ith element.

The local nodal displacements are expressed in the glo-

bal system of coordinates by means of the transformation

ui =Qiuli ð83Þ

where Qi denotes the rotation matrix, that can be written as

Qi =
~Qi 03× 3

03× 3
~Qi

� �
ð84Þ

in which it is

~Qi =

cos uið Þ � sin uið Þ 0

sin uið Þ cos uið Þ 0

0 0 1

2
664

3
775 ð85Þ

being ui the angle between the ji-axis and the global x-axis,

measured positive in the counter-clockwise direction.

The strain energy for the ith element can be written as

Vi =
1

2
uT

li
Kliuli ð86Þ

using the local quantities, or as

Fig. 31. Local system of coordinate for the ith beam element.

The origin is located at node 1 of the element.
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Vi =
1

2
uT

i Kiui ð87Þ

as a function of the nodal displacements and the stiffness

matrix expressed in global coordinates. As the strain energy

is invariant under coordinate transformation, it must be

1

2
uT

li
Kliuli =

1

2
uT

i Kiui ð88Þ

from which follows that

Ki =QiKliQ
T
i ð89Þ

by substitution of Equation (83).

The stiffness matrix derived so far belongs to R
6× 6. If

N is the total number of nodes of the structure, the size of

the global stiffness matrix is 3N × 3N ; therefore, each

matrix Ki must be expanded to match the global dimen-

sions of the problem. Such expansion is performed by

means of the Boolean localization 6× 3N matrix

Bi = B(jk)
ik

 �
=

1 if (i, k) 2 f(1, 3j� 2), (2, 3j� 1), (3, 3j)g
1 if (i, k) 2 f(4, 3k � 2), (5, 3k � 1), (6, 3k)g
0 elsewhere

8><
>:

ð90Þ

where j and k are the numbers of node 1 and 2, respectively,

in the global enumeration of the discretization. The trans-

formation has the form

Ke
i =BT

i KiBi ð91Þ

and the full stiffness matrix in global coordinates is then

computed as the sum of all the extended matrices:

K=
X

i

Ke
i ð92Þ

Similarly, all the nodal displacements in global coordi-

nates are collected in a vector u; a vector F contains the

nodal forces. It must be stated now that the obtained stiff-

ness matrix has determinant equal to zero (i.e., it is not

invertible): this is due to the fact that all nodes are consid-

ered, so far, both free and constrained. In order to account

for the constraint conditions, the order of the DOFs should

be manipulated such that it is possible to separate free from

constrained quantities and write the following equation:

Kff Kfc

Kcf Kcc

� �
uf
uc

� 

=

Ff

Fc

� 

ð93Þ

where the subscripts f and c refer to free and constrained

DOFs, respectively; the vector Fc contains the components

of the reaction forces and moments. In our work, it is

uc = 0. Therefore, it is Kffuf =Ff. For a given set of exter-

nal nodal forces, the nodal displacements are computed as

uf =K�1
ff Ff ð94Þ

which is the very well-known Hooke’s law. In order to

account for large displacements, several approaches can be

adopted (see McGuire and Gallagher, 1979); here, we apply

the external load in a finite number of steps ns, as a con-

stant increment DFf =Ff=ns, computing the increment of

nodal displacements at the sth step as

Duf(s) =K�1
ff(s)DFf ð95Þ

where the stiffness matrix Kff(s) is updated based on the

nodal displacements computed at step (s� 1)th. In our

implementation, the stiffness matrix is updated at each step.

The low number of elements in the discretization helps to

keep low the computational cost; on the other hand, a high

number of steps is generally required.

In the initial configuration of the bodies considered in

Sections 5.2.2 and 6.3, the orientation of the ith local sys-

tem of coordinates and the one of the global system are

coincident. Therefore, at the first step, the rotation matrix in

Equation (85) is the identity matrix. At all the other steps,

the stiffness matrix is updated based on the computed dis-

placements; at the end sth step, the global coordinates of

the jth node are given by

x
(s)
j = x

(s�1)
j + Dx

(s)
j

y
(s)
j = y

(s�1)
j + Dy

(s)
j

ð96Þ

and the orientation of the ith element is computed as

u
(s)
i = arctan

y
(s)
i + 1 � y

(s)
i

x
(s)
i + 1 � x

(s)
i

ð97Þ

being, in the global enumeration adopted, j = i. This angle

is used to update the stiffness matrix used in the subsequent

step:

K
(s + 1)
i =Qi(u

(s)
i )K

(s)
i Qi(u

(s)
i )T ð98Þ

(for a matter of convenience, the subscript f has been

dropped in the expression above).
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