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Abstract

Much of the blame for failed attempts to replicate reports of scientific findings has been

placed on ubiquitous and persistent misinterpretations of the p value. An increasingly popular

solution is to transform a two-sided p value to a lower bound on a Bayes factor. Another

solution is to interpret a one-sided p value as an approximate posterior probability.

Combining the two solutions results in confidence intervals that are calibrated by an estimate

of the posterior probability that the null hypothesis is true. The combination also provides a

point estimate that is covered by the calibrated confidence interval at every level of confidence.

Finally, the combination of solutions generates a two-sided p value that is calibrated by the

estimate of the posterior probability of the null hypothesis. In the special case of a 50% prior

probability of the null hypothesis and a simple lower bound on the Bayes factor, the calibrated

two-sided p value is about (1 - abs(2.7 p ln p)) p + 2 abs(2.7 p ln p) for small p. The

calibrations of confidence intervals, point estimates, and p values are proposed in an empirical

Bayes framework without requiring multiple comparisons.

Keywords: calibrated effect size estimation; calibrated confidence interval; calibrated p value;

replication crisis; reproducibility crisis



1 Introduction

The widespread failure of attempts to reproduce scientific results is largely attributed to the appar-

ently incurable epidemic of misinterpreting p values. Much of the resulting debate about whether

and how to test null hypotheses stems from the wide spectrum of attitudes toward frequentist and

Bayesian schools of statistics, as seen in the special issue of The American Statistician introduced

by (Wasserstein et al., 2019). For that reason, reconsidering the old probability interpretations that

lurk beneath the expressed opinions may lead to new insights for resolving the controversy.

The subjective interpretation of the prior probability provides guidance in the selection of prior

distributions even in practical situations in which it is not usually feasible to elicit the prior prob-

ability of any expert or other agent. In the case of reliable information about the value of the

parameter, the subjective interpretation serves as a benchmark that gives meaning to assigning

prior probabilities in the sense that they are interpreted as levels of belief that a hypothetical agent

would have in the corresponding hypothesis (Bernardo, 1997) or as an approximation of the agent’s

levels of belief. Likewise, in the absence of reliable information about the value of the parameter,

a default or reference prior is used either to determine the posterior probability distribution of a

hypothetical agent whose beliefs distribution matches the reference prior distribution or as an ap-

proximation of the belief distribution of one or more individuals. Such priors are sometimes called

“objective” in the sense that they are not purely individualistic since whole communities can agree

on their use.

That motivation for objective priors contrasts with the logical-probability position popularized

by Jaynes (2003) and called “objective Bayesianism” in the philosophical literature (Williamson,

2010). This school follows the students Jeffreys (1948) and Keynes (1921) of W. E. Johnson in

insisting on less subjective foundations of Bayesianism but has found little favor in the statistical

community due in part to the marginalization paradox (Dawid et al., 1973) and to the failure

of decades of research to find any genuinely noninformative priors (Kass and Wasserman, 1996).

While there are important differences between this school and that of traditional Bayesian statistics,

probability is viewed by both as a level of belief, whether of a real agent or of a hypothetical,

perfectly logical agent. Indeed, the difference is chiefly that of emphasis since the most influential

subjective Bayesians used probability to prescribe coherent behavior rather than to describe the

actual behavior of any human agent (Levi, 2008). (Carnap (1962, pp. 42-47; 1971, p. 13; 1980,

p. 119) observed that, like H. Jeffreys, subjectivists such as F. P. Ramsay, B. de Finetti, and L.

J. Savage sought normative theories of rational credence or decision, not ways to describe aspects
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of anyone’s actual state of mind or behavior, in spite of differences in emphases and misleading

uses of psychologizing figures of speech, which not even R. A. Fisher managed to avoid entirely

(Zabell, 1992).) Belief prescription, not belief description, is likewise sought in traditional Bayesian

statistics (e.g., Bernardo and Smith, 1994).

All of those Bayesian interpretations of prior and posterior probability fall under the broad

category of belief-type probability, which includes epistemic and evidential probabilities (e.g., Kyburg

and Teng, 2001) not associated with any actual beliefs (Hacking, 2001, Ch. 12). Frequentist

statisticians instead prefer to work exclusively with what Hacking (2001, Ch. 12) calls frequency-

type probability, some kind of limiting relative frequency or propensity that is a feature of the

domain under investigation, regardless of what evidence is available to the investigators. In short,

belief-type probability refers to real or hypothetical states of knowledge, whereas frequency-type

probability refers to real or hypothetical frequencies of events.

Seeking the objective analysis of data, frequentists avoid belief-type priors: “The sampling

theory approach is concerned with the relation between the data and the external world, however

idealized the representation. The existence of an elegant theory of self-consistent private behaviour

seems no grounds for changing the whole focus of discussion” (Cox, 1978). Many wary of using

Bayes’s theorem with belief-type priors would nonetheless use it with frequency-type distributions of

parameter values (Neyman, 1957; Fisher, 1973; Wilkinson, 1977; Edwards, 1992; Kyburg and Teng,

2001; Kyburg and Teng, 2006; Hald, 2007, p. 36; Fraser, 2011). In statistics, the random parameters

in empirical Bayes models, mixed-effects models, and latent variable models have frequency-type

distributions, representing variability rather than uncertainty. This viewpoint leads naturally to

the empirical Bayes approach of estimating a frequency-type prior from data (Efron, 2008); see

Neyman (1957)’s enthusiasm for early empirical Bayes work (Robbins, 1956).

Example 1. Consider the posterior probability of the null hypothesis conditional on p, the observed

two-sided p value:

Pr (ϑ = θH 0
|P = p) =

Pr (ϑ = θH 0
) Pr (P = p |ϑ = θH0

)

Pr (P = p)
=

(
1 +

(
Pr (ϑ = θH 0

)

1− Pr (ϑ = θH 0
)
B

)−1
)−1

(1)

where ϑ and P are the parameter of interest and the p value as random variables, θH 0
is the

parameter value under the null hypothesis, the null hypothesis that ϑ = θH0
asserts the truth

of the null hypothesis to a sufficiently close approximation for practical purposes, and B is the

Bayes factor f (p |θ = θH 0
) / f (p |θ 6= θH 0

) based on f , the probability density function of P . When
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Pr (ϑ = θH 0
|P = p) is a frequency-type probability, it is known as the local false discovery rate

(LFDR) in the empirical Bayes literature on testing multiple hypotheses (e.g., Efron et al., 2001;

Efron, 2010) and on testing a single hypothesis (e.g., Bickel, 2017, 2019c,e). If the assumptions

of Sellke et al. (2001) hold for frequency-type probability distributions underlying LFDR, then its

lower bound is

LFDR =

(
1 +

(
Pr (ϑ = θH 0

)

1− Pr (ϑ = θH 0
)
B

)−1
)−1

; (2)

B = −e p ln p, (3)

where B denotes the corresponding lower bound on B .

LFDR is relevant not only for Bayesian inference but also for frequentist inference, given an

estimate of the value of the frequency-type prior probability Pr (ϑ = θH 0
) can be estimated. Such

an estimate of Pr (ϑ = θH 0
) may be obtained using the results of multiple hypothesis tests in a large-

scale data set or, when the data set does not have enough hypotheses for that, via meta-analysis.

For example, the estimate 10/11 is based on meta-analyses relevant to psychology experiments

(Benjamin et al., 2017). In that case, a frequentist may summarize the result of a statistical test

by reporting an estimate of LFDR rather than p in order to use the information in the estimate

of Pr (ϑ = θH 0
). That differs from estimating Pr (ϑ = θH 0

) to be the 50% default, which yields

LFDR ≈ B = −e p ln p when p is sufficiently small. N

But what if Pr (ϑ = θH 0
) = 0, as some maintain (e.g., Bernardo, 2011; McShane et al., 2019)?

Then LFDR = 0 regardless of the data, in which case reporting p would be much more informative,

as when deciding whether there is enough evidence to conclude that ϑ > θH 0
or that ϑ < θH 0

(Cox,

1977; Bickel, 2011). That highlights a gap in frequentism: there is no continuity between reporting

an estimate of LFDR in certain extreme cases and reporting p in other extreme cases. What should

be reported in less extreme cases such as those of the Pr (ϑ = θH 0
) = 1/100 or Pr (ϑ = θH0

) = 1/10

suggested by Hurlbert and Lombardi (2009)?

One answer is the LFDR-calibrated two-sided p value equal to pLFDR = (1− LFDR) p +2LFDR

according to a simple method proposed in this paper. In the extreme of a very low LFDR, that

calibrated two-sided p value is close to the uncalibrated p value
(
pLFDR ≈ p

)
. At the opposite

extreme, LFDR is much larger than p, resulting in a calibrated two-sided p value that is about

twice as large as LFDR
(
pLFDR ≈ 2LFDR

)
. Figure 1 displays pLFDR for various values of p and

Pr (ϑ = θH 0
), revealing little need to calibrate when Pr (ϑ = θH 0

) = 1/100 but much more when

Pr (ϑ = θH 0
) ≥ 1/2.
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Figure 1: The LFDR-calibrated two-sided p value as a function of the uncalibrated p value. The
three curves use Pr (ϑ = θH 0

) = 10/11 (dashed black), Pr (ϑ = θH 0
) = 1/2 (solid black), and

Pr (ϑ = θH 0
) = 1/100 (solid gray).

That formula for pLFDR emerges naturally under the empirical Bayes interpretation of confidence

levels offered in Section 2. Under that interpretation, each confidence level such as 95% estimates the

frequency-type posterior probability that the parameter lies within the symmetric 95% calibrated

confidence interval. That estimate only applies directly when Pr (ϑ = θH 0
) = 0 but also applies

indirectly conditional on ϑ 6= θH 0
, yielding symmetric and one-sided confidence intervals that are

calibrated by LFDR or by another estimate of LFDR. The symmetric 95% calibrated confidence

intervals tend to be much shorter than the corresponding 99.5% confidence intervals (Pace and

Salvan, 2019) inspired by the proposal of Benjamin et al. (2017) to test null hypotheses at the 0.5%

level.

Rejecting the null hypothesis whenever θH 0
is not in a symmetric 95% calibrated confidence

interval based on LFDR is equivalent to rejecting the null hypothesis whenever pLFDR is less than

0.05. A general statement of that result for estimates of LFDR other than LFDR and for levels of

confidence other than 95% is derived in Section 3. Its example estimates of LFDR include LFDR,

another lower bound on LFDR, and estimates that are not lower bounds.

Section 4 derives a point estimate of the parameter of interest from the symmetric 0% calibrated

confidence interval. Technical details on confidence levels as estimates of posterior probability and

on the empirical Bayes coverage of calibrated confidence intervals appear in Appendix A and in
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Appendix B, respectively.

2 Calibrating confidence intervals with empirical Bayes esti-

mation

Sections 2.1-2.3 define the preliminary concepts for Section 2.4’s empirical Bayes confidence intervals

in the absence of multiple comparisons.

2.1 Uncalibrated confidence intervals and p values

A typical (100%)γ confidence interval C (γ;Y ) is valid in the sense that

Pr (C (γ;Y ) ∋ θ|ϑ = θ) ≥ γ, (4)

where Y is a random sample of data distinguished from the observed sample y, and is nested in

the sense that every confidence interval of level γ strictly contains every confidence interval of a

confidence level less than γ.

Since the probability distribution Pr is unknown, its probability statements about parameter

values must be estimated. For that, let the estimated posterior probability that ϑ ∈ C (γ; y) be the

confidence level of θ (γ;Y ) ≤ θ ≤ θ (γ;Y ), that is,

P̂r (ϑ ∈ C (γ; y) |P = p) = γ. (5)

Although the fiducial argument for equation (5) when the estimand Pr (ϑ ∈ C (γ; y) |P = p) is a

subjective probability has been discredited, equation (5) has support from the broadly applicable

approximation of one-sided p values to posterior probabilities (Appendix A). If C (γ;Y ) is exact

in the sense that formula (4) holds with equality, then the function P̂r is a probability distribution

known as a confidence distribution (Schweder and Hjort, 2002; Singh et al., 2005; Nadarajah et al.,

2015; Schweder and Hjort, 2016; Bickel, 2019b).

Examples in which equation (5) is practical include methods of (100%)γ nested and valid con-

fidence intervals of each of these forms:

Cτ (γ; y) = [τ (γ) ,∞[ = {θH 0
: p> (θH 0

) ≥ 1− γ} (6)

5



Cυ (γ; y) = ]−∞, υ (γ)] = {θH 0
: p< (θH 0

) ≥ 1− γ} (7)

where τ (γ) < υ (γ), p> (θH 0
) is a p value testing the null hypothesis that θ = θH 0

with θ > θH 0
as

the alternative hypothesis, and p< (θH 0
) is a p value testing the null hypothesis that θ = θH 0

with

θ < θH 0
as the alternative hypothesis.

The resulting p 6= (θH 0
) = 2min (p> (θH 0

) , p< (θH 0
)) is a two-sided p value testing the null

hypothesis that θ = θH 0
with θ 6= θH 0

as the alternative hypothesis. By equations (6) and (7), if

γ = 1− α/2, then

[τ (γ) , υ (γ)] = {θH 0
: τ (γ) ≤ θH 0

≤ υ (γ)}

= Cτ (γ; y) ∩ Cυ (γ; y)

= {θH 0
: p> (θH 0

) ≥ 1− γ, p< (θH 0
) ≥ 1− γ} .

∴ θH 0
/∈ [τ (γ) , υ (γ)] ⇐⇒ θH 0

/∈ {θH 0
: p> (θH 0

) ≥ 1− γ, p< (θH 0
) ≥ 1− γ}

⇐⇒ θH 0
∈ {θH 0

: p> (θH 0
) < 1− γ} ∪ {θH 0

: p< (θH0
) < 1− γ}

⇐⇒ min (p> (θH 0
) , p< (θH 0

)) < 1− γ

⇐⇒ p 6= (θH 0
) < 2 (1− γ) = α, (8)

which implies that θH 0
∈ [τ (1− α/2) , υ (1− α/2)] is equivalent to p 6= (θH 0

) ≥ α.

The confidence intervals [τ (γ) ,∞[, ]−∞, υ (γ)], and [τ (γ) , υ (γ)] are nested since τ (γ) and

υ (γ) are strictly monotonic as functions of γ for every γ between 0 and 1, with τ (γ) decreasing and

υ (γ) increasing with γ. Those confidence intervals are also valid since the probability that each

covers the fixed true value of the parameter over repeated sampling is at least γ.

2.2 Estimating the probability of coverage in the presence of a plausible

null hypothesis

Suppose the null hypothesis that ϑ = θH 0
is plausible enough that its frequency-type prior prob-

ability is not 0: Pr (ϑ = θH 0
) > 0. Then its LFDR, defined by LFDR = Pr (ϑ = θH 0

|P = p),

is also nonzero: LFDR > 0. That can strongly conflict with the confidence-based estimation of

Section 2.1, as can be seen by considering a confidence interval C (γ; y) that covers the null hy-

pothesis value θH 0
(that is, θH 0

∈ C (γ; y)) and that has a level of confidence much lower than the

LFDR (that is, γ ≪ LFDR). Then the default confidence-based estimate of Pr (ϑ ∈ C (γ; y) | y) is
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only P̂r (C (γ; y) | y) = γ, but Pr (ϑ ∈ C (γ; y) |P = p) must be at least Pr (ϑ = θH 0
|P = p) since

θH 0
∈ C (γ; y), with the result that γ is inaccurate as an estimator of Pr (ϑ ∈ C (γ; y) |P = p):

P̂r (ϑ ∈ C (γ; y) | y) = γ ≪ LFDR = Pr (ϑ = θH 0
|P = p) ≤ Pr (ϑ ∈ C (γ; y) |P = p) . (9)

For that reason, the default confidence-based estimate should be reserved for cases in which the

null hypothesis has 0 frequency-type prior probability (Appendix A). That suggests considering γ

as an estimate of Pr (ϑ ∈ C (γ; y) |ϑ 6= θH 0
,P = p), which is the posterior probability of coverage

conditional on the alternative hypothesis (ϑ 6= θH 0
) and on the observed p value.

Accordingly, P̂r (ϑ ∈ C (γ; y) |ϑ 6= θH 0
,P = p) = γ will denote the default confidence-based esti-

mate of Pr (ϑ ∈ C (γ; y) |ϑ 6= θH 0
,P = p). P̂r (ϑ ∈ C (γ; y) |P = p) will instead denote an estimate

of

Pr (ϑ ∈ C (γ; y) |P = p) = Pr (ϑ = θH 0
|P = p) Pr (ϑ ∈ C (γ; y) |ϑ = θH 0

,P = p)

+ Pr (ϑ 6= θH 0
|P = p) Pr (ϑ ∈ C (γ; y) |ϑ 6= θH 0

,P = p)

= LFDRχ (θH 0
∈ C (γ; y)) + (1− LFDR)Pr (ϑ ∈ C (γ; y) |ϑ 6= θH0

,P = p) ,

where χ (θH 0
∈ C (γ; y)) is 1 if θH 0

∈ C (γ; y) but is 0 if not. Then the natural estimate is

P̂r (ϑ ∈ C (γ; y) | p) = L̂FDRχ (θH0
∈ C (γ; y)) +

(
1− L̂FDR

)
P̂r (ϑ ∈ C (γ; y) |ϑ 6= θH 0

,P = p)

= L̂FDRχ (θH0
∈ C (γ; y)) +

(
1− L̂FDR

)
γ, (10)

where L̂FDR is an estimate of LFDR such as one of those in Section 2.3.

2.3 Estimating the local false discovery rate

Recall that L̂FDR denotes any estimate of the local false discovery rate, the posterior probability

defined in equation (1). While Bickel (2012b) used results of multiple tests to determine L̂FDR

for each test, as is usual in empirical Bayes testing (Efron, 2010; Bickel, 2019c), the following

examples of L̂FDR apply when testing a single null hypothesis given P̂r (ϑ = θH 0
), an estimate of

the frequency-type probability probability that the null hypothesis holds. Those versions of L̂FDR

are compared in Figure 2.

Example 2. Suppose L̂FDR = LFDR, where LFDR is Example 1’s lower bound on LFDR. One

reason for that choice of an estimate of LFDR is that the lower bound brings the estimate as
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close as possible to 0 (Bickel, 2019d), which is the value of the LFDR under a null hypothesis

known with certainty to be false, as some argue is the case for all point null hypotheses involving

continuous parameters (e.g., Bernardo, 2011; McShane et al., 2019). While the extreme form of that

position would be hard to sustain for many applications in fields as diverse as biomedicine, genomics,

genetics, particle physics, and psychology, a more moderate form is plausible. In particular, Hurlbert

and Lombardi (2009) argue that Pr (ϑ = θH 0
) is often much closer to 0 than to 1/2. In short, setting

L̂FDR = LFDR might be justified as a way to compensate for a positive bias in P̂r (ϑ = θH 0
).

Another reason for setting L̂FDR = LFDR is that LFDR is the maximum-likelihood estimate

(MLE) of LFDR under typical conditions (Held and Ott, 2018; cf. Bickel, 2014, 2019g; Bickel, 2019c,

chapter 7). Then the problem would be reduced to justifying the use of the MLE on the basis of a

single observed p value: since the effective sample size is 1, the usual asymptotic justifications do

not apply. Bickel (2017) used an MLE of LFDR to generate a Bayes-frequentist continuum between

the extremes of credible intervals and confidence intervals.

Further arguments for L̂FDR = LFDR appear in Bickel (2019e). N

Example 3. Different assumptions lead to different versions of B , the lower bound on the Bayes

factor (Held and Ott, 2018). Instead of the version given by equation (3), this example uses

B = e− z
2

, which Held and Ott (2016) call the universal lower bound, where z is the standard

normal quantile of a one-sided p value testing ϑ = θH 0
(Bickel, 2019g). Since that B may be too

low to be a reasonable estimate of the Bayes factor B , it might require some kind of averaging with

B , an upper bound on B . A readily available upper bound is 1 if the two-sided p value is small

enough that it can be assumed that the null hypothesis is not supported by the data. Given that the

Bayes factor is between the bounds B and B , the weighted geometric mean B1−cB
c

is a minimax-

optimal Bayes factor, where c is a degree of caution that is between 0 and 1 (Bickel, 2019f). For

this example, let c = 1/2, and let the resulting inferential Bayes factor
√

BB (Bickel, 2019f) serve

as B̂ , the estimate of the Bayes factor. By B = e− z
2

and B = 1, we have B̂ =
√
e− z2 × 1 = e−|z |

for a sufficiently small two-sided p value, that is, for a sufficiently large value of |z |. Then plugging

B̂ into B and P̂r (ϑ = θH 0
) into Pr (ϑ = θH 0

) in equation (1) results in the inferential LFDR as

L̂FDR, the estimate of the LFDR. N

Example 4. A lower bound similar to that of equation (3) is the normal-distribution bound

B = |z | e− z
2

−1

2 (Held and Ott, 2016), where z , assumed to satisfy |z | > 1, is defined in Example 3.

An interpretation of Occam’s razor (Bickel, 2019a) leads to increasing B by a factor of |z | (Bickel,

2019g). Then concerns about using a lower bound on B as an estimate of B may motivate instead
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Figure 2: Each local false discovery rate estimate L̂FDR as a function of the two-sided p value.
The three curves are the conventional lower bound on the LFDR (solid gray), the inferential LFDR
(dashed black), and the razor-based LFDR (solid black) as defined in Examples 2, 3, and 4, respec-
tively. The left and right plots are identical except that the left plot is logarithmic, and the right
plot is linear. The frequency-type prior probability estimate of P̂r (ϑ = θH 0

) = 1/2 is assumed here.

using B̂ = |z |B as the estimate of the Bayes factor. Substitutions of that and P̂r (ϑ = θH0
) in

equation (1) generate the razor-based LFDR as L̂FDR. N

2.4 Symmetric calibrated confidence intervals

In the framework developed in Sections 2.1-2.3, the symmetric 100 c% confidence interval is
[
θ (c; y) , θ (c; y)

]
, where

θ (c; y) = τ

(
1− 1− c

2

)
= τ

(
1 + c

2

)
(11)

θ (c; y) = υ

(
1− 1− c

2

)
= υ

(
1 + c

2

)
. (12)

Similarly, the symmetric 100 c% L̂FDR-calibrated confidence interval is
[
θ
L̂FDR

(c; y) , θ
L̂FDR

(c; y)
]
,

where

θ
L̂FDR

(c; y) =





τ (γ−) if c ≥ 2L̂FDR− 1, τ (γ−) < θH 0

τ (γ+) if c ≤ 1− 2L̂FDR, τ (γ+) > θH 0

θH 0
otherwise

(13)

θ
L̂FDR

(c; y) =





υ (γ+) if if c ≤ 1− 2L̂FDR, υ (γ+) < θH 0

υ (γ−) if c ≥ 2L̂FDR− 1, υ (γ−) > θH 0

θH 0
otherwise

(14)
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γ− =
(1 + c) /2− L̂FDR

1− L̂FDR

γ+ =
(1 + c) /2

1− L̂FDR
.

The equations are ready for use since τ (γ−), τ (γ+), υ (γ−), and υ (γ+) are generally available

in software given that 0 ≤ γ− ≤ 1 and 0 ≤ γ+ ≤ 1, which are respectively satisfied under the

c ≥ 2L̂FDR− 1 and c ≤ 1− 2L̂FDR conditions of equations (13)-(14).

Example 5. To get an 80% LFDR-calibrated confidence interval of a real-valued parameter that

is 0 under the null hypothesis (θH 0
= 0), first compute LFDR from equations (3) and (2) as per

Example 2. Suppose LFDR = 40%. Then 80% = c ≥ 2L̂FDR− 1 = −20% and γ− = 5/6 = 83%,

and equations (13)-(14) yield [min (τ (83%) , θH0
) ,max (υ (83%) , θH 0

)] as the 80% LFDR-calibrated

confidence interval, where τ (83%) and υ (83%) may be obtained from software as limits of two one-

sided 83% confidence intervals. N

If the estimated prior probability of the null hypothesis is 0, the estimated posterior probability

is also 0. In that degenerate case, γ− = γ+ = (1 + c) /2 since L̂FDR = 0, and
[
θ (c; y) , θ (c; y)

]

then reduces to [τ (γ−) , υ (γ−)], the symmetric 100 c% confidence interval of Section 2.1.

For any c between 0 and 1, an interval I is a 100 c% empirical Bayes interval if

P̂r (ϑ ∈ I|P = p) ≥ c . (15)

The symmetric 100 c% L̂FDR-calibrated confidence intervals are 100 c% empirical Bayes intervals,

as seen in Corollary 1 of Appendix B.

3 Calibrating p values with empirical Bayes estimation

Recall that p 6= (θH 0
) denotes a two-sided p value. Let p

6=

L̂FDR
=
(
1− L̂FDR

)
p 6= (θH 0

) + 2L̂FDR,

as illustrated in Section 1 for the L̂FDR = LFDR case.

Theorem 1. For any p 6= (θH0
) satisfying the conditions of Section 2.1, p

6=

L̂FDR
≥ α if and only if

θH 0
∈
[
θ
L̂FDR

(1− α; y) , θ
L̂FDR

(1− α; y)
]
, the symmetric (100%) (1− α) L̂FDR-calibrated confi-

dence interval.

Proof. By equations (13) and (14), θH 0
/∈
[
θ
L̂FDR

(1− α; y) , θ
L̂FDR

(1− α; y)
]

if and only if both
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1− α ≤ 1− 2L̂FDR (i.e., 2L̂FDR ≤ α) and

υ
(
γ+
)
< θH0

or τ
(
γ+
)
> θH 0

; (16)

γ+ =
1− α/2

1− L̂FDR
.

Disjunction (16) is equivalent to this statement according to equations (6) and (7):

θH 0
∈
]
−∞, υ

(
γ+
)[

∪
]
τ
(
γ+
)
,∞
[

=
{
θ : p> (θ) < 1− γ+

}
∪
{
θ : p< (θ) < 1− γ+

}

=
{
θ : min (p> (θH0

) , p< (θH 0
)) < 1− γ+

}

=
{
θ : p 6= (θ) < 2

(
1− γ+

)}
,

which holds if and only if

p 6= (θH 0
) < 2

(
1− γ+

)
= 2

(
1− 1− α/2

1− L̂FDR

)
=

α− 2L̂FDR

1− L̂FDR

(
1− L̂FDR

)
p 6= (θH0

) + 2L̂FDR < α

p
6=

L̂FDR
< α.

Assembling the above statements of equivalence, we have

θH 0
/∈
[
θ
L̂FDR

(1− α; y) , θ
L̂FDR

(1− α; y)
]
⇐⇒ 2L̂FDR ≤ α and p

6=

L̂FDR
< α

⇐⇒ p
6=

L̂FDR
< α

since p
6=

L̂FDR
< α =⇒ 2L̂FDR ≤ α. In other words,

θH 0
∈
[
θ
L̂FDR

(1− α; y) , θ
L̂FDR

(1− α; y)
]
⇐⇒ p

6=

L̂FDR
≥ α.

Theorem 1 justifies calling p
6=

L̂FDR
the L̂FDR-calibrated two-sided p value. It may be interpreted

by noting that p
6=

L̂FDR
/2 is an estimate of the posterior probability of a sign error or directional

error (Bickel, 2019e). In addition, p
6=

L̂FDR
estimates a special case of an extended evidence value

(Bickel, 2019b), which is a generalization of the evidence value proposed by Pereira and Stern

11



(1999). Related extended evidence values are the likelihood-ratio posterior probability defined by

Aitkin (2010, p. 42), the strength of evidence defined by Evans (2015, p. 114), and the two-sided

posterior probability defined by Shi and Yin (2020).

4 Calibrating point estimates with empirical Bayes estima-

tion

A simple L̂FDR-based point estimate of θ is the estimated posterior mean given by

θ̂
(
L̂FDR

)
=

(
1−

p
6=

L̂FDR

2

)
θ̂ +

(
L̂FDR

)
θH 0

+

(
p
6=

L̂FDR

2
− L̂FDR

)
θH 0

=

(
1−

p
6=

L̂FDR

2

)
θ̂ +

p
6=

L̂FDR

2
θH 0

,

where θ̂ is the maximum-likelihood estimate or another estimate of the posterior mean conditional

on the alternative hypothesis (Bickel, 2019e). However, θ̂
(
L̂FDR

)
is almost never equal to θH 0

, the

value of the parameter under the null hypothesis, even when L̂FDR, the frequency-type posterior

probability of the null hypothesis, is very high. To overcome that drawback, an alternative estimate

will be derived from the L̂FDR-calibrated confidence intervals of Section 2.4.

The main idea is to define a point estimate that would be in the symmetric 100 c% L̂FDR-

calibrated confidence interval for every value of c, in agreement with the argument for 0% confidence

intervals reviewed by Pace and Salvan (1997, Appendix D). Since the intervals are nested, that

requirement is equivalent to the requirement that the point estimate be in the symmetric 0%

L̂FDR-calibrated confidence interval, which is
[
θ
L̂FDR

(0; y) , θ
L̂FDR

(0; y)
]
, where

θ
L̂FDR

(0; y) = τ
L̂FDR

(1/2) =





τ
(

1/2−L̂FDR

1−L̂FDR

)
if L̂FDR ≤ 1

2
, τ
(

1/2−L̂FDR

1−L̂FDR

)
< θH 0

τ
(

1/2

1−L̂FDR

)
if L̂FDR ≤ 1

2
, τ
(

1/2

1−L̂FDR

)
> θH 0

θH 0
otherwise

θ
L̂FDR

(0; y) = υ
L̂FDR

(1/2) =





υ
(

1/2

1−L̂FDR

)
if L̂FDR ≤ 1

2
, υ
(

1/2

1−L̂FDR

)
< θH 0

υ
(

1/2−L̂FDR

1−L̂FDR

)
if L̂FDR ≤ 1

2
, υ
(

1/2−L̂FDR

1−L̂FDR

)
> θH 0

θH 0
otherwise

according to equations (13) and (14) with c = 0.

12



It can be seen that if P̂r (ϑ = θH 0
) > 0, then L̂FDR > 0, and θ

L̂FDR
(0; y) = θ

L̂FDR
(0; y)

could only occur if θH 0
= θ (0; y) = θ (0; y), which does not happen since θH 0

does not depend

on y . By contrast, in the degenerate case that P̂r (ϑ = θH 0
) = 0, we have L̂FDR = 0, and

[
θ
L̂FDR

(0; y) , θ
L̂FDR

(0; y)
]
is the confidence interval

[
θ (0; y) , θ (0; y)

]
, often enabling θ

L̂FDR
(0; y) =

θ
L̂FDR

(0; y) since the limits of typical 0% confidence intervals from continuous data are equal to

each other (e.g., Pace and Salvan, 1997, Appendix D). In cases of P̂r (ϑ = θH 0
) > 0, an additional

condition is needed to uniquely define a point estimate. To exercise caution in case the null hy-

pothesis holds, the L̂FDR-calibrated point estimate is the value in
[
θ
L̂FDR

(0; y) , θ
L̂FDR

(0; y)
]

that

is closest to θH 0
:

θ̂
L̂FDR

=





υ
(

1/2

1−L̂FDR

)
if L̂FDR ≤ 1

2
, υ
(

1/2

1−L̂FDR

)
< θH 0

τ
(

1/2

1−L̂FDR

)
if L̂FDR ≤ 1

2
, τ
(

1/2

1−L̂FDR

)
> θH 0

θH 0
otherwise

.

A less cautious but also less biased approach instead takes the midpoint of θ
L̂FDR

(0; y) and

θ
L̂FDR

(0; y) as the point estimate. The L̂FDR-calibrated point estimate resembles the posterior

median that Bickel (2012b) applied to genomics data using a version of L̂FDR developed for multiple

testing.
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A Confidence levels as estimates of frequency-type probabil-

ities

Confidence intervals are often interpreted as interval-valued estimates of parameter values. The idea

has been extended to entire confidence distributions as distribution-valued estimates of parameter

values (Singh et al., 2007; Xie and Singh, 2013). But what does the confidence level of a confidence

interval estimate? For example, given an observed 95% confidence interval [θ (2.5%) , θ (97.5%)],

what is the number 95% an estimate for? One answer is that it estimates the indicator of whether

θ, the true value of the parameter, is in the confidence interval, where the value of the indicator is

13



1 if θ ∈ [θ (2.5%) , θ (97.5%)] but is 0 if θ /∈ [θ (2.5%) , θ (97.5%)] (Bickel, 2012a). While that may

work for a fixed parameter value, it needs to be generalized to cases in which a random parameter

ϑ has an unknown frequency-type distribution.

How can the confidence level help us estimate the the frequency-type posterior probability

that the parameter lies within the observed confidence interval? If very little is known about

that distribution, it may be reasonable to estimate the posterior probability with an estimator

that is higher for higher confidence levels. That is, the estimated posterior probability that the

parameter is in the observed confidence interval increases when, for example, the confidence level

is increased from 95% to 99% since that results in a wider interval. For example, an estimator

P̂r ([τ (γ) , υ (γ)] |P = p) of the frequency-type posterior probability Pr ([τ (γ) , υ (γ)] |P = p) that

increases monotonically with the confidence level γ of the observed confidence interval [τ (γ) , υ (γ)].

That can be made more definite using the observation that one-sided p values tend to closely

approximate posterior probabilities corresponding to certain prior probability density functions

that are diffuse (Pratt, 1965, §7) or impartial (Casella and Berger, 1987, §2); see Shi and Yin

(2020). Accordingly, in the notation of Section 2.1, let the estimators of Pr (ϑ ≥ θH 0
|P = p) and

Pr (ϑ ≤ θH 0
|P = p) be

P̂r (ϑ ≥ θH0
|P = p) = p< (θH 0

) (17)

P̂r (ϑ ≤ θH0
|P = p) = p> (θH 0

) (18)

for any θH 0
, where the inequalities may be replaced by strict inequalities since P̂r (ϑ = θH 0

|P = p) =

0. The fact that

Pr
(
θ ≤ ϑ ≤ θ|P = p

)
= 1− Pr (ϑ < θ|P = p)− Pr

(
ϑ > θ|P = p

)

for any interval
[
θ, θ
]

of parameter values suggests estimating that probability by

P̂r
(
θ ≤ ϑ ≤ θ|P = p

)
= 1− P̂r (ϑ < θ|P = p)− P̂r

(
ϑ > θ|P = p

)
. (19)

Theorem 2. If p> (θH 0
) = 1−p< (θH 0

) is a bijective function of θH 0
, then the observed confidence

intervals of Section 2.1 satisfy

P̂r (ϑ ∈ [τ (γ) ,∞[ |P = p) = γ (20)

P̂r (ϑ ∈ ]−∞, υ (γ)] |P = p) = γ (21)

14



P̂r

(
ϑ ∈

[
τ

(
1 + γ

2

)
, υ

(
1 + γ

2

)]
|P = p

)
= γ

for any γ ∈ [0, 1].

Proof. From equations (18), (6), and p> (θH 0
) = 1− p< (θH 0

),

P̂r (ϑ ∈ [τ (γ) ,∞[ |P = p) = p< (τ (γ))

= p< (inf {θH0
: p> (θH 0

) ≥ 1− γ})

= p< (inf {θH0
: p< (θH 0

) < γ})

= p<

(
p−1
< (γ)

)
= γ, (22)

where equation (22) follows from the bijectivity condition. Analogously, from equations (17), (7),

and p> (θH 0
) = 1− p< (θH 0

),

P̂r (ϑ ∈ ]−∞, υ (γ)] |P = p) = p> (υ (γ))

= p> (sup {θH 0
: p< (θH 0

) ≥ 1− γ})

= p> (sup {θH 0
: p> (θH 0

) < γ})

= p>

(
p−1
> (γ)

)
= γ, (23)

with equation (23) from bijectivity. By equation (19) and the now proved equations (20)-(21),

P̂r

(
ϑ ∈

[
τ

(
1 + γ

2

)
, υ

(
1 + γ

2

)]
|P = p

)
= 1− P̂r

(
ϑ < τ

(
1 + γ

2

)
|P = p

)
− P̂r

(
ϑ > υ

(
1 + γ

2

)
|P = p

)

= 1−
(
1− P̂r

(
ϑ ≥ τ

(
1 + γ

2

)
|P = p

))

−
(
1− P̂r

(
ϑ ≤ υ

(
1 + γ

2

)
|P = p

))

= 1−
(
1− 1 + γ

2

)
−
(
1− 1 + γ

2

)
= 1− 2 + 1 + γ = γ.

That justifies equation (5)’s estimating Pr (ϑ ∈ C (γ; y) |P = p) by γ for diffuse or impartial

prior distributions. On the other hand, estimating Pr (ϑ ∈ C (γ; y) |P = p) with the confidence-

based estimate P̂r (ϑ ∈ C (γ; y) |P = p) = γ can be highly inaccurate when it is plausible that

the null hypothesis that ϑ = θH0
is approximately true, for in that case the prior distribution

flagrantly violates the regularity conditions of Pratt (1965) and Casella and Berger (1987) since
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Pr (ϑ = θH 0
) > 0; see equation (9). How to apply confidence-based estimation to that setting is the

topic of Section 2.2.

It is well known from studies of fiducial probability that P̂r (ϑ ∈ C (γ; y) |P = p) = γ can break

rules of probability in the sense that P̂r (ϑ ∈ C (γ; y) |P = p) is not necessarily an exact posterior

probability (e.g., Lindley, 1958), but minor violations need not cause concern, for estimators need

not satisfy the properties of the quantities they estimate. That is why Wilkinson (1977, §6.2)

considered γ as an estimated level of belief (Bickel, 2019d,e). Here, it is instead considered as an

estimated frequency-type probability in the sense of Section 1 on the basis of Theorem 2.

B Calibrated confidence intervals

For any confidence levels γ1 and γ2 such that 1 ≤ γ1 + γ2 ≤ 2, a generalization of the symmetric

(100%) (γ1 + γ2 − 1) L̂FDR-calibrated confidence intervals of Section 2.4 is the (100%) (γ1 + γ2 − 1)

L̂FDR-calibrated confidence interval given by
[
τ
L̂FDR

(γ1) , υL̂FDR
(γ2)

]
, where

τ
L̂FDR

(γ1) =





τ
(

γ1−L̂FDR

1−L̂FDR

)
if γ1 ≥ L̂FDR, τ

(
γ1−L̂FDR

1−L̂FDR

)
< θH 0

τ
(

γ1

1−L̂FDR

)
if γ1 ≤ 1− L̂FDR, τ

(
γ1

1−L̂FDR

)
> θH 0

θH 0
otherwise

(24)

υ
L̂FDR

(γ2) =





υ
(

γ2

1−L̂FDR

)
if γ2 ≤ 1− L̂FDR, υ

(
γ2

1−L̂FDR

)
< θH 0

υ
(

γ2−L̂FDR

1−L̂FDR

)
if γ2 ≥ L̂FDR, υ

(
γ2−L̂FDR

1−L̂FDR

)
> θH 0

θH 0
otherwise

. (25)

That is an empirical Bayes interval as defined by Section 2.4’s equation (15).

Theorem 3. For every γ1 ∈ [0, 1] and γ2 ∈ [0, 1] satisfying 1 ≤ γ1+γ2 ≤ 2,
[
τ
L̂FDR

(γ1) , υL̂FDR
(γ2)

]

is a (100%) (γ1 + γ2 − 1) empirical Bayes interval. In the special case that P̂r (ϑ = θ) = 0,
[
τ
L̂FDR

(γ1) , υL̂FDR
(γ2)

]

is the valid (100%) (γ1 + γ2 − 1) confidence interval

[τ0 (γ1) , υ0 (γ2)] = [τ (γ1) , υ (γ2)] . (26)
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Proof. By equation (24),

P̂r
(
ϑ < τ

L̂FDR
(γ1) | p

)
= P̂r (ϑ = θH 0

|P = p) P̂r
(
ϑ < τ

L̂FDR
(γ1) |ϑ = θH 0

, p
)
+ P̂r (ϑ 6= θH 0

|P = p) P̂r
(
ϑ < τ

L̂FDR
(γ1)

= L̂FDRχ
(
τ
L̂FDR

(γ1) > θH 0

)
+
(
1− L̂FDR

) (
1− τ−1

(
τ
L̂FDR

(γ1)
))

=





L̂FDR× 0 +
(
1− L̂FDR

)(
1− τ−1

(
τ
(

γ1−L̂FDR

1−L̂FDR

)))
if γ1 ≥ L̂FDR,

τ
(

γ1−L̂FDR

1−L̂FDR

)
< θH 0

L̂FDR× 1 +
(
1− L̂FDR

)(
1− τ−1

(
τ
(

γ1

1−L̂FDR

)))
if γ1 ≤ 1− L̂FDR,

τ
(

γ1

1−L̂FDR

)
> θH 0

L̂FDR× 0 +
(
1− L̂FDR

) (
1− τ−1 (θH 0

)
)

otherwise

=





1− γ1 if γ1 ≥ L̂FDR, τ
(

γ1−L̂FDR

1−L̂FDR

)
< θH 0

1− γ1 if γ1 ≤ 1− L̂FDR, τ
(

γ1

1−L̂FDR

)
> θH 0

(
1− L̂FDR

) (
1− τ−1 (θH 0

)
)

otherwise

,

which in all cases is 1 − γ1 or lower, yielding P̂r
(
ϑ < τ

L̂FDR
(γ1) | p

)
≤ 1 − γ1. Likewise, equation

(25) gives

P̂r
(
ϑ ≤ υ

L̂FDR
(γ2) | p

)
= L̂FDRχ

(
υ
L̂FDR

(γ2) ≥ θH 0

)
+
(
1− L̂FDR

)
υ−1

(
υ
L̂FDR

(γ2)
)

=





L̂FDR× 0 +
(
1− L̂FDR

)
υ−1

(
υ
(

γ2

1−L̂FDR

))
if γ2 ≤ 1− L̂FDR, υ

(
γ2

1−L̂FDR

)
< θH 0

L̂FDR× 1 +
(
1− L̂FDR

)
υ−1

(
υ
(

γ2−L̂FDR

1−L̂FDR

))
if γ2 ≥ L̂FDR, υ

(
γ2−L̂FDR

1−L̂FDR

)
> θH 0

L̂FDR× 1 +
(
1− L̂FDR

)
υ−1 (θH 0

) otherwise

=





γ2 if γ2 ≤ 1− L̂FDR, υ
(

γ2

1−L̂FDR

)
< θH 0

γ2 if γ2 ≥ L̂FDR, υ
(

γ2−L̂FDR

1−L̂FDR

)
> θH 0

L̂FDR +
(
1− L̂FDR

)
υ−1 (θH 0

) otherwise

,

which in all cases is γ2 or higher, yielding P̂r
(
ϑ ≤ υ

L̂FDR
(γ2) | p

)
≥ γ2. The two inequalities give

P̂r
(
ϑ ∈

[
τ
L̂FDR

(γ1) , υL̂FDR
(γ2)

]
| p
)
= 1− P̂r

(
ϑ < τ

L̂FDR
(γ1) | p

)
− P̂r

(
ϑ > υ

L̂FDR
(γ2) | p

)

= 1− P̂r
(
ϑ < τ

L̂FDR
(γ1) | p

)
−
(
1− P̂r

(
ϑ ≤ υ

L̂FDR
(γ2) | p

))

= P̂r
(
ϑ ≤ υ

L̂FDR
(γ2) | p

)
− P̂r

(
ϑ < τ

L̂FDR
(γ1) | p

)
≥ γ2 − (1− γ1) .
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That satisfies equation (15), establishing the claim that
[
τ
L̂FDR

(γ1) , υL̂FDR
(γ2)

]
is a (100%) (γ1 + γ2 − 1)

empirical Bayes interval.

In the special case that P̂r (ϑ = θ) = 0, we have L̂FDR = 0 by Bayes’s theorem, and equation

(26) follows by substitution. Since [τ (γ;Y ) ,∞[ = [τ (γ) ,∞[ and ]−∞, υ (γ;Y )] = ]−∞, υ (γ)] are

valid confidence intervals,

Pr (τ (γ1;Y ) ≤ θ ≤ υ (γ2;Y ) |ϑ = θ) = 1− Pr (τ (γ1;Y ) > θ|ϑ = θ)− Pr (υ (γ2;Y ) < θ|ϑ = θ)

≥ 1− (1− γ1)− (1− γ2) = (γ1 + γ2 − 1)

holds for all θ, establishing the validity of [τ (γ1) , υ (γ2)] as a (100%) (γ1 + γ2 − 1) confidence in-

terval.

The (100%) (γ1 + γ2 − 1) L̂FDR-calibrated confidence interval
[
τ
L̂FDR

(γ1) , υL̂FDR
(γ2)

]
is es-

sentially the (100%) (γ1 + γ2 − 1) marginal confidence interval of Bickel (2012b), with the main

difference being that the latter requires the choice of an empirical Bayes estimator of LFDR that

is based on data across multiple comparisons.

Corollary 1. For every c ∈ [0, 1], the symmetric 100 c% L̂FDR-calibrated confidence interval

[
θ
L̂FDR

(c; y) , θ
L̂FDR

(c; y)
]

of Section 2.4 is a 100 c% empirical Bayes interval.

Proof. Substituting γ1 = γ2 = (1 + c) /2 into equations (24)-(25) yields equations (13)-(14). The

claim then follows from Theorem 3.
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