

Deliverable Report D2.6

Reference OpenRiskNet system
available online

This project is funded by

the European Union

OpenRiskNet: Open e-Infrastructure to Support Data Sharing, Knowledge
Integration and in silico Analysis and Modelling in Risk Assessment

Project Number 731075

www.openrisknet.org

http://openrisknet.org/

OpenRiskNet - Deliverable 2.6

Project identification

Grant Agreement 731075

Project Name OpenRiskNet: Open e-Infrastructure to Support Data Sharing,
Knowledge Integration and in silico Analysis and Modelling in
Risk Assessment

Project Acronym OpenRiskNet

Project Coordinator Edelweiss Connect GmbH

Star date 1 December 2016

End date 30 November 2019

Duration 36 Months

Project Partners P1 Edelweiss Connect GmbH Switzerland (EwC)
P2 Johannes Gutenberg-Universität Mainz, Germany (JGU)
P3 Fundacio Centre De Regulacio Genomica, Spain (CRG)
P4 Universiteit Maastricht, Netherlands (UM)
P5 The University Of Birmingham, United Kingdom (UoB)
P6 National Technical University Of Athens, Greece (NTUA)
P7 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten

Forschung E.V., Germany (Fraunhofer)
P8 Uppsala Universitet, Sweden (UU)
P9 Medizinische Universität Innsbruck, Austria (MUI)
P10 Informatics Matters Limited, United Kingdom (IM)
P11 Institut National De L’environnement Et Des Risques,

France (INERIS)
P12 Vrije Universiteit Amsterdam, Netherlands (VU)

Page 2

OpenRiskNet - Deliverable 2.6

Deliverable Report
identification

Document ID and title Deliverable 2.6 Reference OpenRiskNet system available
online

Deliverable Type Demonstrator

Dissemination Level Public (PU)

Work Package WP2

Task(s) Task 2.6

Deliverable lead partner UU

Author(s) Ola Spjuth (UU), Tim Dudgeon (IM), Alan Christie (IM), Evan
Floden (CRG), Atif Raza (JGU), Thomas Exner (EwC)

Status Final

Version V1.0

Document history 2019-09-09 First draft
2019-11-15 Consolidated draft
2019-11-28 Final version

Page 3

OpenRiskNet - Deliverable 2.6

Table of Contents

SUMMARY 5

TASKS 5

OPENRISKNET E-INFRASTRUCTURE, VIRTUAL ENVIRONMENTS AND SERVICE
DEPLOYMENT 6

Updates to infrastructure during RP2 6
Automating deployment 6
OpenRiskNet Environments 6

Reference site 7
Development sites 8
Other VEs 8

Monitoring 8
Security environment 10
Service discovery and registry 12
Interconnecting with external infrastructures 14

Demonstrator 16
Documentation 16
Example 1: Deploying the VE 16
Example 2: Deploying a service in the VE 16
Example 3: Logging in to the VE 17
Example 4: Consuming a service 19
Example 5: Locating services 21
Example 6: Monitoring the usage 22

Contributions to e-infrastructure landscape 24
Issues and Challenges 25

RISKS AND MITIGATIONS 27

CONCLUSION 29

GLOSSARY 29

REFERENCES 30

Page 4

OpenRiskNet - Deliverable 2.6

SUMMARY
In this deliverable we present the availability of the OpenRiskNet reference system. The
system is online with operational functionality and demonstrated operations in the
OpenRiskNet case studies as well as within the Associated Partner Program. This
deliverable is in the form of a Demonstrator, and apart from describing the reference site
and examples of applications, it also summarises the recent developments in WP2 that
has not been reported earlier.

TASKS
The following is an overview and final status report of the tasks in WP2:

Task Activities/Status/Deviations

2.1: Creation of development
environment

A complete development environment was set up by
M6 and has been reported in D2.1 [1].

2.2: API specification and
semantic interoperability

This work was described and reported in D2.2 [2]
and D2.4 [3]. The recent updates regarding this task
are reported in this document (D2.6).

2.3: Establish security
environment

This work was described and reported in D2.3 [4].
The recent updates regarding this task are reported
in this document (D2.6).

2.4: Services discovery This work was described and reported in D2.3 [4].
The recent updates regarding this task are reported
in this document (D2.6).

2.5: Deployment of virtual
infrastructures and container
orchestration frameworks

This work was described and reported in D2.3 [4].
The recent updates regarding this task are reported
in this document (D2.6).

2.6: Establishment and
maintenance of OpenRiskNet
reference instance

This work was described and reported in D2.3 [4].
The recent updates regarding this task are reported
in this document (D2.6).

2.7: Interconnecting virtual
environment with external
infrastructures

This work was described and reported in D2.5 [5].
The recent updates regarding this task are reported
in this document (D2.6).

2.8: Federation between virtual
environments

This work was described and reported in D2.5 [5].

Page 5

https://paperpile.com/c/XCMAYA/wJMV
https://paperpile.com/c/XCMAYA/8pCd
https://paperpile.com/c/XCMAYA/PuTh
https://paperpile.com/c/XCMAYA/IYuD
https://paperpile.com/c/XCMAYA/IYuD
https://paperpile.com/c/XCMAYA/IYuD
https://paperpile.com/c/XCMAYA/IYuD
https://paperpile.com/c/XCMAYA/83UN
https://paperpile.com/c/XCMAYA/83UN

OpenRiskNet - Deliverable 2.6

OPENRISKNET E-INFRASTRUCTURE,
VIRTUAL ENVIRONMENTS AND
SERVICE DEPLOYMENT

Updates to infrastructure during RP2
The OpenRiskNet VE requires a virtual infrastructure to be instantiated on either a public
cloud (IaaS) provider or a local computer resource. A great deal of work has gone into
supporting a cloud-agnostic infrastructure. The resulting VE has been tested on Google
Cloud, Amazon Web Services, and on OpenStack.

Automating deployment
Deployment was initially described in D2.3 and has seen substantial updates during RP2.
The project has shifted to use OKD Orchestrator
(https://github.com/InformaticsMatters/okd-orchestrator) as the preferred tool for the
formation of the OpenRiskNet VE deployments. The role of the OKD Orchestrator is to
provide a simplified installation process that supports these types of deployments:

● simple one-server deployment for basic experimentation;
● standard availability allowing moderate scalability;
● high availability providing a high level of fault tolerance and scalability.

We initially aimed to support these infrastructures:

● OpenStack - for flexible use and deployment to in-house clusters
● Amazon AWS - for robust cloud production deployments
● Google CE - for robust cloud production deployments
● Bare Metal - for custom/on-premise infrastructure
● Scaleway - for low cost cloud deployments

Of these, OpenStack is the most tested option as the Swedish Science Cloud (SSC)
reference and development sites use it. Bare metal (e.g. physical servers with no
virtualisation) is also well tested as the JGU reference site (that replaced the one on SSC)
and the VE operated by Diamond Light Source run on machines (physical machines in the
case of Diamond, VMs in the case of the JGU site) provisioned by the infrastructure
provider.

We have performed ‘proof of principle’ deployments to AWS and GCE using the OKD
Orchestrator. In contrast, we decided not to investigate Scaleway further as, although it
provides a very cheap cloud hosting environment, it still does not provide all the necessary
features.

The OKD Orchestrator is documented on https://docs.informaticsmatters.com.

OpenRiskNet Environments
During this reporting period the OpenRiskNet environments underwent significant

Page 6

https://github.com/InformaticsMatters/okd-orchestrator
https://docs.informaticsmatters.com/

OpenRiskNet - Deliverable 2.6

reorganisation.

Reference site

This site (https://prod.openrisknet.org/), sometimes alternatively referred to as the
‘production’ site, was initially running on the Uppmax region of the SSC. During early 2019,
the OpenShift version was changed from 3.7 to 3.11. As this involved skipping several
versions, we decided to create a completely new cluster for this still running on the
Uppmax region of the SSC instead of upgrading the old one. For the new site we chose
not to deploy GlusterFS as it had proved problematic and instead used NFS volumes
which require manual setup but have proved to be more reliable.

The automation of the deployment (using OKD Orchestrator) made this a relatively straight
forward process, following which the partner applications were redeployed. Again,
because of the efforts to streamline deployments, this was a relatively straight forward
process.

The environment at Uppmax consisted of:

● 1 bastion node with 2 CPU cores and 4GB RAM
● 1 master node with 8 CPU cores and 16GB RAM
● 1 infrastructure node with 8 CPU cores and 16GB RAM
● 10 worker nodes with 8 CPU cores and 16GB RAM
● Storage supplied as OpenStack Cinder volumes

Towards the end of the project, due to the uncertainty of retaining resources at SSC and
because of issues with SSC resource provisioning, we looked for alternative options. The
BEAR cloud at UOB was considered, but security restrictions prevented that being viable,
and JGU offered access to servers at their site. Thus, the reference site was moved to
servers at JGU in early November 2019. This comprises:

● 1 bastion node with 4 CPU cores and 8GB RAM
● 1 master node with 8 CPU cores and 32GB RAM
● 1 infrastructure node with 8 CPU cores and 32GB RAM
● 3 worker nodes with 60 CPU cores and 96GB RAM
● Storage as attached physical volumes, exposed as NFS volumes

Although there are fewer machines, they are individually more powerful and the overall
compute performance is higher than on Uppmax.

The majority of the work to relocate to JGU took around 2 days and included:

● Transfer of data from the core PostgreSQL database, including
○ List of users in the Single Sign-On (SSO) system
○ Event logs from SSO (e.g. User login data)
○ Application data (e.g. Squonk, Modelling Web)

● Relocation of Jupyter notebook data of users
● Redeployment of partner and associated partner applications

JGU have committed to provide access to this infrastructure for a period of at least 2
years and to perform routine maintenance and patching to the servers and VMs. This
provides a significant period during which the project’s outputs can be sustained once the
project finishes. JGU should be recognised for providing this to the project free of charge,
as should the SSC for providing facilities during the project.

Page 7

https://prod.openrisknet.org/

OpenRiskNet - Deliverable 2.6

Development sites

The OpenRiskNet development site (available at https://dev.openrisknet.org:8443/) is
running on the HPC2N region of the SSC and is used by project members for testing and
development purposes.

Like the reference site, it was running OpenShift 3.7 at the start of this reporting period
and was upgraded to 3.11 during 2019. This upgrade was a precursor and test for upgrading
the reference site.

We do not expect to need a development site once the project completes.

Other VEs

Some project partners have created additional VEs for their own use on different
environments such as AWS and GCE. A description of these is out of scope for this
demonstrator report and, thus, we will only exemplify here one such VE.

Of particular note is the VE that has been set up at the Diamond Light Source (an
associated partner). IM has provided assistance in setting this up and managing it. The site
operates on bare metal servers (OpenStack ‘Ironic’) running on the Verne Global cloud in
Iceland. The VE is used to support Diamond’s fragment screening follow up efforts, with
the key application being their ‘Fragalysis stack’ which can be accessed at
https://fragalysis.diamond.ac.uk. The site also includes deployment of some OpenRiskNet
partner applications, such as the Squonk Computational Notebook. The OpenRiskNet VE
concept was an excellent match to Diamond’s needs, with the chemical risk assessment
aspects of OpenRiskNet partner applications being an additional benefit.

Some pharmaceutical companies are now looking to deploy their own versions of
‘Fragalysis stack’, which should entail an OpenRiskNet VE (or the next iteration of the
concept) being deployed within pharmaceutical companies during 2020.

Monitoring
A basic setup of Prometheus for monitoring the VE was described in Deliverable 2.3 [4]
but little use had been made of this at this point of time.

The switch from OpenShift version 3.7 to 3.11 allowed a more functional deployment of
Prometheus that can be used to monitor the OpenShift environment and to send alerts
when certain metrics are outside their permitted ranges.

Prometheus can be used for monitoring the activity on the VE in a number of ways. One of
the simplest is by a series of dashboards. Some come already deployed whilst others can
be created for specific purposes. Here we will illustrate a couple of the generic
dashboards.

The first provides an overview of the cluster activity:

Page 8

https://dev.openrisknet.org:8443/
https://fragalysis.diamond.ac.uk/
https://paperpile.com/c/XCMAYA/IYuD

OpenRiskNet - Deliverable 2.6

CPU and memory utilisation for each of the cluster nodes are shown, but various other
information is also available.

This second screenshot shows utilisation for each Kubernetes namespace.

In addition to providing a wide range of metrics, Prometheus allows generation of alerts
when those metrics go outside the expected range. This is done through the Prometheus
“Alert Manager”. We have set up basic alerting using the built in alerts for Kubernetes and
direct these to a Slack channel used by the project. This way project members get notified
if problems occur in the cluster. The following shows a series of alerts in the Slack
channel:

Page 9

OpenRiskNet - Deliverable 2.6

At this stage, our usage of metrics and alerts is relatively basic, but the mechanism for
making this more sophisticated is completely in place.

Access to the Prometheus systems requires administrative privileges and is not available
to end users.

Security environment
This was initially described in D2.3 and has during RP2 been updated and maintained. The
main activity was upgrading the Keycloak (SSO server) to version 4.8.3.Final, which was
needed because of a change to the APIs used by the LinkedIn Identity Provider. As part of
this upgrade process, the deployment process was streamlined making it easier to
upgrade in the future. All data in the SSO server was retained during the upgrade. These
procedures can be found at
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-in
fra.

As an addition to LinkedIn and GitHub, the authentication mechanisms used by Elixir (AAI)
was added as an Identity Provider. This allows Elixir user to access the OpenRiskNet
environment using their Elixir credentials. The complete set of options for logging in to

Page 10

https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-infra
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments/openrisknet-infra

OpenRiskNet - Deliverable 2.6

OpenRiskNet is shown below, the user accounts stored in KeyCloak (typically
administrators) can be used on the left hand side, and any of the Identity Providers can be
used on the right hand side.

Keycloak provides a detailed event log allowing us to monitor, for instance, who logs in to
access services.

Page 11

OpenRiskNet - Deliverable 2.6

Service discovery and registry
This was initially described in D2.3 [4] and again in detail in D2.4 [3]. During RP2, work has
continued to improve the OpenRiskNet service registry. The source code is available at
https://github.com/openrisknet/registry. The most important improvements since D2.4 are
listed below.

One important enhancement was the ability to add external service definitions - this
enables the service registry to parse OpenRiskNet annotated OpenAPI service definitions,
not just of services running inside the same Virtual Research Environment (VRE), but also
of any other service deployed in the public Internet or other accessible network. This
allows services running on the public and that are not intended to be deployed inside a
VRE (e.g. because they come with large amounts of data that would be unfeasibly to
deploy into a VRE or that can’t be copied in such a form for legal reasons) to still be

Page 12

https://paperpile.com/c/XCMAYA/IYuD
https://paperpile.com/c/XCMAYA/PuTh
https://github.com/openrisknet/registry

OpenRiskNet - Deliverable 2.6

indexed and findable via the service registry using SparQL queries that target the semantic
annotations described in detail in D2.4. Examples of such services include e.g. ToxPlanet
and EdelweissData.

To guard access to the service registry and to be able to monitor for more informative
usage statistics, the service registry was extended with Keycloak integration (the
OpenRiskNet single sign-on solution) for authentication and authorization. By utilizing
Keycloak via the OpenID Connect standard all the advanced features like federated logins
using Github and LInkedIn accounts are available for the service registry.

Automatic refresh was added to the registry so that services that generate their
OpenRiskNet-annotated OpenAPI definitions dynamically (i.e. changing at runtime) get
periodically refreshed. This allows services to update the semantic annotations at runtime
(e.g. if new datasets or models are added as endpoints on an existing service).

In anticipation of a growing number of services indexed by the service registry, several
performance tweaks were made, e.g. SparQL queries are now evaluated in parallel on all
services.

Page 13

OpenRiskNet - Deliverable 2.6

Interconnecting with external infrastructures
This was initially described in D2.5 [5] and during RP2, the updates have been related to
the ease-of-use improvements related to external infrastructure and how these can
connect with the reference VE. The launching of workloads into external infrastructure is
performed using the Nextflow workflow manager, which is a single-user, single-execution,
command-line application. For this improvement, we wanted target workloads that could
be launched externally, for example from institutional computing cluster, and monitored
from a centralised location hosted on the VE. This situation is common where large
datasets are located within one data centre and the resource intensive computation must
be performed in that location.

To achieve this goal of interconnecting with external infrastructures, we deployed
Nextflow Tower into the reference VE. Nextflow Tower is an open source monitoring and
managing platform for Nextflow workflows. It consists of a front-end service for the
monitoring of workflows that are launched from any infrastructure that has web access.
An API connects single Nextflow instances (workflow executions) to the centralised
service within the VE. A MySQL backend-database stores a complete history of all the
workflow executions. Information relating to each task, including requested and utilised
memory, cpu and time are recorded along with container information and efficiency.

Nextflow Tower users are authenticated via email address with a whitelist function
available to allow the pre-authorisation of organisational email domains. Users log in
through the login page and are greeted with a set of instructions on how they can deploy

Page 14

https://paperpile.com/c/XCMAYA/83UN

OpenRiskNet - Deliverable 2.6

workflows that can be monitored from the VE. It should be stressed that any existing
Nextflow workflow and execution environment is compatible with Nextflow Tower.

The application has been designed to be deployed as 2 microservices (web and backend).
This makes it particularly appealing for deployment within the OpenShift VE, which is
designed for containerised installation and management of services.

Page 15

OpenRiskNet - Deliverable 2.6

Demonstrator
The Demonstrator, in the form of the OpenRiskNet reference installation, is available on
https://home.prod.openrisknet.org/. The page provides links to the systems in the
reference site. Administrator rights will be needed to access some of these systems. Basic
usage instructions can be accessed from that page. Until 26th November 2019, there have
been 104 users of the reference site according to the statistics of the single-sign-on (SSO,
see above). This number should be seen as a lower bound since some of the tools don’t
need login into the SSO and, therefore, cannot be monitored this way. Another way of
monitoring the usage is the number of accesses of the starting page of the reference
instances. This was monitored by Google Analytics and gave 182 page views in the period
from 1 June to 26 November 2019. More details on the website accesses can be found in
Deliverable D3.5.

Documentation
The documentation for the project is primarily in GitHub projects owned by the
OpenRiskNet organisation (https://github.com/OpenRiskNet), most importantly the ‘home’
repo which can be found here: https://github.com/OpenRiskNet/home. The OpenRiskNet
Wiki (https://github.com/OpenRiskNet/home/wiki) also contains documentation for the
infrastructure. All these documents are publicly accessible under open licenses.
Of particular note are:

● Recipes - a set of ‘howto’ instructions for common tasks
● Deployments - a set of materials and instructions for deploying OpenRiskNet

partner applications
● Environments - a set of materials and instructions for provisioning an OpenRiskNet

VE
● OKD Orchestrator - the tooling used to deploy OpenRiskNet VEs
● Deployment Guidelines - best practices for application deployment to a VE
● Notebooks - collection of notebooks for consuming OpenRiskNet services

Example 1: Deploying the VE
Deploying a VE is a relatively complex process and needs administrative rights on the host
computers. It is not something that is easily demonstrated in real time. Instead we refer
to the recording of the webinar that was run to illustrate this process to the wider
community, where we walk through this procedure of creating a VE:

https://www.youtube.com/watch?v=qOiOC09XRIg

Example 2: Deploying a service in the VE
Extensive documentation on how to deploy services in OpenRiskNet VE is available in the
material created for the “Deploying applications” workshop held on 23 October 2019 in
Amsterdam. The workshop material can be found here:
https://github.com/OpenRiskNet/workshop/tree/master/wp2-deployment-workshop-2019

The topics covered were:

Page 16

https://home.prod.openrisknet.org/
https://github.com/OpenRiskNet
https://github.com/OpenRiskNet/home
https://github.com/OpenRiskNet/home/wiki
https://github.com/OpenRiskNet/home/tree/master/openshift/recipes
https://github.com/OpenRiskNet/home/tree/master/openshift/deployments
https://github.com/OpenRiskNet/home/tree/master/openshift/environments
https://github.com/InformaticsMatters/okd-orchestrator
https://github.com/OpenRiskNet/home/wiki/Deployment-Guidelines
https://github.com/OpenRiskNet/notebooks
https://www.youtube.com/watch?v=qOiOC09XRIg
https://github.com/OpenRiskNet/workshop/tree/master/wp2-deployment-workshop-2019

OpenRiskNet - Deliverable 2.6

● Setup - Instructions for getting started
● Tutorial 1 - Introduction to containers, Kubernetes and OpenShift
● Exercise A - Deploying the PySimple container using the web console
● Tutorial 2 - Description of key Kubernetes objects
● Exercise B - Deploying the PySimple container using the CLI
● Exercise C - Deploying Lazar - a real world application (a video tutorial for this

exercise is available (see below))
● Tutorial 3 - Introduction to persistent storage
● Exercise D - Deploying a persistent PySimple
● Tutorial 4 - Configuration
● Tutorial 5 - Probes and resource limits
● Tutorial 6 - Advanced deployment techniques

That workshop was based on the material from a previous webinar that was run for the
wider community with the purpose of illustrating application deployment to a VE. A
recording of the webinar is available on OpenRiskNet playlist in YouTube.

Deploying OpenRiskNet applications

tutorial https://youtu.be/qLgxaTPiKNc

Workshop Exercise C tutorial
https://youtu.be/llYIzdgbv7o

Example 3: Logging in to the VE
Several of the partner applications deployed to the reference environment require a login
to access. This is done through the SSO server (Keycloak) that is deployed as part of the
infrastructure.

To demonstrate this we illustrate how to login and access two applications, The Squonk
Computational Notebook and Jupyter Hub.

Step 1. Access the first application.

Go to https://squonk-notebook.prod.openrisknet.org/portal to access Squonk. As you will
not yet be authenticated you are redirected to the SSO server to log in.

Step 2. Login to SSO

You will see a login page like this:

Page 17

https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/setup/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/tutorial-1/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/exercise-a/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/tutorial-2/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/exercise-b/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/exercise-c/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/tutorial-3/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/exercise-d/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/tutorial-4/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/tutorial-5/README.md
https://github.com/OpenRiskNet/workshop/blob/master/wp2-deployment-workshop-2019/tutorial-6/README.md
https://youtu.be/qLgxaTPiKNc
https://youtu.be/llYIzdgbv7o
https://squonk-notebook.prod.openrisknet.org/portal

OpenRiskNet - Deliverable 2.6

Choose one of the Identity Providers on the right hand side, e.g. LinkedIn, and you will be
taken to the requested site and asked to login. In case of using LinkedIn, you will see
something like this:

Enter your username and password for that site (OpenRiskNet never sees your password)
and if successful you are redirected back to Squonk Computational Notebook running in
the OpenRiskNet reference environment. The LinkedIn site may ask for your permission to
grant OpenRiskNet access to your details like your name and email address.

Page 18

OpenRiskNet - Deliverable 2.6

Step 3. Accessing JupyterHub

Now try to access JupyterHub and run a Jupyter Notebook. To do this go here:
https://jupyter.prod.openrisknet.org/

As you are already logged in to SSO you can access this immediately and you should see a
screen like this:

Choose one of the notebook types (the first one should be fastest) and a short while later
you will have a Jupyter notebook session.

Alternative flow: Access Jupyter then Squonk

Had you chosen to access Jupyter first you would have been prompted to log in at that
stage, and then would be able to access Squonk without having to log in again.

Example 4: Consuming a service
OpenRiskNet services can be consumed in different ways, including from its API directly,
via specialized GUIs, programmatically via code e.g., in a Notebook.

Consuming services via OpenAPI

Services in OpenRiskNet are required to present a compatible API (as defined in
Deliverable 2.4) that conforms to OpenAPI definition. This presents all services with a
Swagger GUI that can be used to consume the individual service. Below, the
Swagger/OpenAPI user interface (left), where services can be consumed directly, and the
result of pasting in the SMILES for the drug Omeprazole and observing the result, in this
case the prediction of LogD (service running at https://cplogd.prod.openrisknet.org/) and a
rendering of individual atom’s contribution to the prediction (right), are presented:

Page 19

https://jupyter.prod.openrisknet.org/
https://cplogd.prod.openrisknet.org/

OpenRiskNet - Deliverable 2.6

Consuming services via GUI

If an OpenRiskNet service presents a GUI, this can also be used to consume the service.
The figure below shows the same service (for predicting LogD) in a dedicated GUI,
predicting LogD for the drug Omeprazole available at
https://cplogd.prod.openrisknet.org/draw/):

Page 20

https://cplogd.prod.openrisknet.org/draw/

OpenRiskNet - Deliverable 2.6

Consuming services programmatically

Services in OpenRiskNet can also be consumed programmatically via calling their API from
code. A popular way of doing so is via Notebooks. OpenRiskNet has made available a
number of different notebooks, available on https://github.com/OpenRiskNet/notebooks.
The figure below shows an example notebook consuming multiple predictive modeling
tools and performing a consensus modeling (notebook available at
https://github.com/OpenRiskNet/workshop/tree/master/ModelRX/Blood-brain%20barrier%
20-%20Consensus).

Example 5: Locating services
A listing of the services available in the reference instance can be retrieved by querying
the service registry, via a GUI available at http://registry.prod.openrisknet.org/ or
programmatically. The figure below shows a notebook for querying the registry for
services that accept a chemical structure in SMILES format as input (notebook available at
https://github.com/OpenRiskNet/notebooks/blob/master/OpenRiskNetRegistry/registry.ipy
nb). See also section ‘Service discovery and Registry’ above.

Page 21

https://github.com/OpenRiskNet/notebooks
https://github.com/OpenRiskNet/workshop/tree/master/ModelRX/Blood-brain%20barrier%20-%20Consensus
https://github.com/OpenRiskNet/workshop/tree/master/ModelRX/Blood-brain%20barrier%20-%20Consensus
http://registry.prod.openrisknet.org/
https://github.com/OpenRiskNet/notebooks/blob/master/OpenRiskNetRegistry/registry.ipynb
https://github.com/OpenRiskNet/notebooks/blob/master/OpenRiskNetRegistry/registry.ipynb

OpenRiskNet - Deliverable 2.6

For further description on running and using applications, please refer to Deliverable D4.3.

Example 6: Monitoring the usage
Metrics for the Kubernetes cluster are collected by Prometheus and stored in a time
series database. They can be viewed either in Prometheus or using Grafana dashboards.
Both require admin rights so we illustrate the process here in more detail since standard
users cannot access these on the reference VE.

For viewing metrics using Grafana:

1. Connect to Grafana at https://grafana-openshift-monitoring.prod.openrisknet.org/
2. Login as one of the OpenRiskNet administrators
3. Select one of the available dashboards

Page 22

https://grafana-openshift-monitoring.prod.openrisknet.org/

OpenRiskNet - Deliverable 2.6

4. Analyse the available metrics

Page 23

OpenRiskNet - Deliverable 2.6

For viewing alerts:

1. Connect to the Prometheus Alert Manager at
https://alertmanager-main-openshift-monitoring.prod.openrisknet.org/#/alerts

2. Login as one of the OpenRiskNet administrators
3. View the current alerts. This screenshot shows only one alert firing, the “Dead

man’s switch” which should always be firing and can be used to check that the
alerting system is active

4. As mentioned previously, alerts are also sent to the project’s Slack channel so that
admins are quickly alerted of any issues. Other mechanisms such as email can also
be configured.

Contributions to e-infrastructure landscape
A lot of the contributions from WP2 are not only valuable within the OpenRiskNet project
but are also contributions to the general advancements of e-infrastructures in Europe and
the rest of the world.

● All software tools developed and code produced within the project is openly
available from Github, meaning it will be available for the future and can be
directly used in other settings.

● The tools in OpenRiskNet are based around the use of containers and targeted at
deployment though Kubernetes, which has become a standard approach over the
life of the project, meaning they will be readily deployable to future environments.

● Many of the design documents produced and communicated can serve as
blueprints and good examples for other projects adopting service-oriented and
especially microservice architectures.

● The semantic annotation of APIs is general can easily be extended into other
domains, and the implementations for discoverable APIs together with the registry
are important and domain-agnostic solutions provided to the community.

● The cloud agnostic virtual environments can be directly reused in other domains
and settings, there is by design a clear border between general solutions and
OpenRiskNet-specific developments.

● The developed OKD-Orchestrator greatly simplifies robust deployment of

Page 24

https://alertmanager-main-openshift-monitoring.prod.openrisknet.org/#/alerts

OpenRiskNet - Deliverable 2.6

OpenShift and VEs on different types of infrastructures.

Issues and Challenges
Creating and maintaining the infrastructure encountered a number of challenges. Formost
in this was fragility in the underlying OpenStack infrastructure on the SSC. This included:

● Large scale server shutdown because of loss of cooling
● Large scale server shutdown because of a lightning strike
● Sporadic networking problems
● Failure of VMs

We worked intensively with the SSC staff to fix these problems as best we could, but they
resulted in some downtime and a greater than expected amount of maintenance effort.

IM has also seen similar fragility on other OpenStack environments which they use in
other projects. Even if this shows that this problem is not unique to SSC, the decision was
made to move to another, easily sustainable hosting environment controlled by one
OpenRiskNet partner. Up to the date of this writing (November 2019), the infrastructure at
JGU has proven to be robust for the 2 months it has been in use.

Additionally there was fragility in the OpenShift software stack, which compounded the
problems. Key issues included:

● Problems with provisioning caused by failure of installing the Software Defined
Network (SDN). This was reported to the OpenShift team but never fully resolved.
The result was that provisioning sometimes failed and had to be repeated.

● Problems with GlusterFS storage. GlusterFS appeared to be the ideal storage
solution, but the version that shipped with OpenShift 3.7 had a number of bugs and
other issues (recognised by Red Hat) which were partly resolved during 2019 by
upgrading to version 3.11. The result was that a considerable amount of time was
needed to maintain the storage system, though the redundancy provided by
GlusterFS meant that there was never any data loss.

● Problems with certificate renewal. We use Let’s Encrypt certificates as they are
widely used and free. However they have a lifetime of 3 months so need to be
renewed frequently. In principle, this renewal process for the API server
certificates is straight forward but in practice each time certificates were renewed
it caused some failures in the GlusterFS storage and other OpenShift components
that needed manual resolution.

A log of the work performed maintaining the reference site was created and can be found
here . 1

Despite these issues, OpenShift proved to be a robust environment in most aspects and
we fully believe that Kubernetes is the platform of choice for a flexible, highly available
infrastructure. Adoption of containerization and Kubernetes in almost all relevant
infrastructures, including the European Open Science Cloud (EOSC) confirms the decisions
on the technology made at the beginning and throughout the project and will facilitate the
harmonization and integration with these larger initiatives.

In future projects, purchasing a support contract (e.g. for OpenShift through Red Hat)

1
https://docs.google.com/document/d/1Mk4_z9tOWRw5q8M_kMsFef7ObdEsxQEfsKi6ryxZCP
Q/edit

Page 25

https://docs.google.com/document/d/1Mk4_z9tOWRw5q8M_kMsFef7ObdEsxQEfsKi6ryxZCPQ
https://docs.google.com/document/d/1Mk4_z9tOWRw5q8M_kMsFef7ObdEsxQEfsKi6ryxZCPQ/edit
https://docs.google.com/document/d/1Mk4_z9tOWRw5q8M_kMsFef7ObdEsxQEfsKi6ryxZCPQ/edit

OpenRiskNet - Deliverable 2.6

should be considered, as that should make the management of the infrastructure easier.
Alternatively, the research infrastructures could be deployed on basic infrastructures as
provided, e.g. by EOSC, which was not an option since these did not exist when
OpenRiskNet started. We are in contact with the EOSC-hub service providers how such a
solution could be established through their early adopter programme.

Another consideration is the complexity of the entire stack, from the physical hardware,
through to the OpenStack Virtual Machines, the OpenShift/Kubernetes container
orchestration layer and the partner applications. Knowledge is needed to handle this, and
project members not having a strong Ops or DevOps background needed assistance in
deploying their applications. To do this we:

● Created extensive documentation and examples in the GitHub repository and Wiki
● Created the “OKD Orchestrator” to significantly simplify the definition and

formation of OpenSHift v3 clusters
● Organised several internal knowledge dissemination clinics
● Organised public webinars
● Organised an ‘application deployment’ workshop at the final GA meeting

We consider these efforts as ‘ongoing work’, and the knowledge and material generated in
this project should be of great benefit to future projects. Additionally, this might also
result in opportunities for SMEs to offer the deployment and hosting of OpenRiskNet
virtual environments as a consulting service contributing to the sustainability efforts as
outlined in more detail in the Dissemination and Exploitation plan.

Page 26

https://github.com/InformaticsMatters/okd-orchestrator

OpenRiskNet - Deliverable 2.6

RISKS AND MITIGATIONS
From the OpenRiskNet DoA and D2.3, the Risks that are deemed relevant to the current
deliverable are R5, R6, R10, R11, and R12. In the table below, we comment upon these.

Table 2. Description of risk and proposed risk mitigation measures

Description of risk

(level of likelihood: Low/Medium/High)
Proposed risk mitigation measures

R5 : Technical advantages in computer hardware
and software concepts will render the
proposed concepts (micro services and
containerisation) obsolete (medium to high)

We will constantly monitor the state- of -the- art
of available deployment and virtualisation
solutions and select the most suitable ones. If
necessary, the infrastructure will be adapted to
the changing standards.

Update at M18 : Micro services and
Containerisation continue to be highly
important components in modern
e-infrastructures. If anything, their importance
has increased during M1-18.

Update at M36 : This risk did not surface.

R6 : Virtualisation options will not work with
future hardware and software concepts (low)

Even if the underlying technology might change,
the concepts of microservices and
containerised applications are expected to be
valid for the foreseeable future. Specific tools
like DOCKER and MANTL can then easily be
substituted with newer approaches, when
these become available.

Update at M18 : Docker is still the most widely
used containerisation implementation, but
MANTL has been discontinued and OpenRiskNet
has changed to use Kubernetes/OpenShift that
has the highest momentum and is backed by
Google and RedHat.

Update at M36 : This risk did not surface.

R10 : Reference instance unstable due to
national cloud providers not production-grade

We will work together with national cloud
providers to pinpoint problems. We will also
develop contextualisation protocols to
overcome potential infrastructure stability
gaps. We will also make the entire deployment
process portable to allow for moving between
cloud providers where we have sufficient
resources.

Update at M36 : The national cloud provider SSC
(Sweden) has caused problems to the project
due to issues with stability. Because of our

Page 27

OpenRiskNet - Deliverable 2.6

efforts in portability, the transfer of the
reference implementation from SSC to JGU
was smooth.

R11 : Momentum in community shifts from
OpenShift towards Kubernetes

OpenShift adds a layer on top of Kubernetes,
we e.g. use the CI/CD in OpenShift and the
KeyCloak service provided by RedHat. There is
no conflict between OpenShift and Kubernetes,
and in case OpenShift is discontinued we can
shift towards Kubernetes.

Update at M36 : While Kubernetes has more
momentum and a larger community than
OpenShift, they are both active projects with
large community support.

R12 : The OpenRiskNet software stack becomes
complex, the level of technical expertise
needed is high, having an impact on
sustainability.

Kubernetes is becoming more and more
mainstream, and the pool of people using it
continues to grow. This means that more
information is made available online, and more
examples and experienced people are available.
Further, many tools and frameworks that
simplify the ecosystem is emerging. We will
stay updated on the recent developments in
the field, educate the partners in the
consortium, and document our infrastructure
and setup for easier maintenance and
sustainability.

Update at M36 : The stack is somewhat
complex, but the documentation, automation
and tools made available, such as the OKD
Orchestrator, simplifies a lot and reduces the
impact on sustainability.

Page 28

OpenRiskNet - Deliverable 2.6

CONCLUSION
This document presents the Reference OpenRiskNet system together with the updates in
WP2 during RP2. The system is deployed at the Johannes Gutenberg Universität Mainz
and is available at https://prod.openrisknet.org/. Users can log into this reference virtual
environment (VE) using LinkedIn, GitHub or Elixir credentials removing the need of creating
a new account. This gives access to the infrastructure and the deployed OpenRiskNet
services. Specific accounts and access rights are needed only for administrative tasks.

Sustainability of the reference VE is guaranteed for at least 2 years and negotiations with
other cloud infrastructure providers are ongoing to extend this time of operations (BEAR
cloud solution at the University of Birmingham). Additionally, the availability of the
sources, documentation and tutorials, as well as containers for the basic infrastructure
and OpenRiskNet applications running on them is secured based on standard solutions like
GitHub and OpenAire and in an increasing extent the EOSC-hub and marketplace.

GLOSSARY
The list of terms or abbreviations with the definitions, used in the context of OpenRiskNet
project and the e-infrastructure development is available:

https://github.com/OpenRiskNet/home/wiki/Glossary

Page 29

https://prod.openrisknet.org/
https://github.com/OpenRiskNet/home/wiki/Glossary

OpenRiskNet - Deliverable 2.6

REFERENCES
1. Dudgeon T, Spjuth O, Bois F, Bachler D. Development infrastructure online

(Deliverable D2.1). 2018. doi:10.5281/zenodo.1479139

2. Rautenberg M, Karwath A, Kramer S, Dudgeon T, Spjuth O, Bachler D, et al.
Initial API version provided to providers of services (Deliverable 2.2). 2018.
doi:10.5281/zenodo.1479444

3. Bachler D, Dokler J, Dudgeon T, Willighagen E, Karatzas P, Lynch I, et al. Final
API available for internal and external service providers (Deliverable 2.4). 2019.
doi:10.5281/zenodo.2597061

4. Spjuth O, Dudgeon T, Bachler D, Gebele D, Rautenberg M, Alvarsson J, et al.
Report on deployment of virtual infrastructures with service discovery and
container orchestration (Deliverable 2.3). 2018. doi:10.5281/zenodo.1479475

5. Floden E, Lloret-Villas A, Di Tommaso P, Spjuth O, Farcal L, Dudgeon T, et al.
Compute and data federation (Deliverable 2.5). 2019.
doi:10.5281/zenodo.3256306

Page 30

http://paperpile.com/b/XCMAYA/wJMV
http://paperpile.com/b/XCMAYA/wJMV
http://dx.doi.org/10.5281/zenodo.1479139
http://paperpile.com/b/XCMAYA/8pCd
http://paperpile.com/b/XCMAYA/8pCd
http://paperpile.com/b/XCMAYA/8pCd
http://dx.doi.org/10.5281/zenodo.1479444
http://paperpile.com/b/XCMAYA/PuTh
http://paperpile.com/b/XCMAYA/PuTh
http://paperpile.com/b/XCMAYA/PuTh
http://dx.doi.org/10.5281/zenodo.2597061
http://paperpile.com/b/XCMAYA/IYuD
http://paperpile.com/b/XCMAYA/IYuD
http://paperpile.com/b/XCMAYA/IYuD
http://dx.doi.org/10.5281/zenodo.1479475
http://paperpile.com/b/XCMAYA/83UN
http://paperpile.com/b/XCMAYA/83UN
http://paperpile.com/b/XCMAYA/83UN
http://dx.doi.org/10.5281/zenodo.3256306

