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Abstract

Recent methodological advances in both liquid chromatography–mass spectrometry (LC-MS) and gas
chromatography–mass spectrometry (GC-MS) have facilitated the profiling highly complex mixtures of
primary and secondary metabolites in order to investigate a diverse range of biological questions. These
techniques usually face a large number of potential sources of technical and biological variation. In this
chapter we describe guidelines and normalization procedures to reduce the analytical variation, which are
essential for the high-throughput evaluation of metabolic variance used in broad genetic populations which
commonly entail the evaluation of hundreds or thousands of samples. This chapter specifically deals with
handling of large-scale plant samples for metabolomics analysis of quantitative trait loci (mQTL) in order to
reduce analytical error as well as batch-to-batch variation.
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1 Introduction

The metabolites of the plant kingdom are extremely diverse; a
commonly quoted estimate is that plants produce somewhere in
the order of 200,000 unique chemical structures [1]. Recently,
there has been an increasing use the analytical technologies such
as metabolomics for comprehensive profiling of metabolites in
biological samples and its subsequent application in several related
research areas such as human nutrition, drug discovery and plant
breeding [2, 3]. Given the diversity of structural classes of metabo-
lites, ranging from primary metabolites such as carbohydrates,
amino acids, and organic acids to very complex secondary metabo-
lites such as phenolics, alkaloids, and terpenoids, there is no single
methodology that can measure the complete metabolome in one
step. It is, therefore, often necessary to combine different techni-
ques to detect (even a significant proportion of) all metabolites
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within a complex mixture [4]. Both liquid chromatography–mass
spectrometry (LC-MS) and gas chromatography–mass spectrome-
try (GC-MS) have been intensively used to profile a broad natural
variance in the form of recombinant inbred lines (RILs), introgres-
sion lines (ILs) and, more recently, genome-wide association
mapping panels in order to boost our understanding of the regula-
tion of plant primary and secondary metabolite levels [5–7].

In all metabolomics applications, it is important to understand
and control factors that contribute to sources of variation within
the datasets. The variability between samples can arise from multi-
ple sources including natural biological variation itself and that
which occurs on sample collection and storage [8, 9]. In addition,
analytical variation caused by suboptimal performance of the cho-
sen apparatus, and instrument drift over time, are two major issues
in large-scale metabolomics studies [10].

Batch-to-batch variation is a technical source of variation aris-
ing from the sum of both manual and robotic samples handling
[11]. The presence of batch-to-batch variation makes it difficult to
integrate data from independent batches of samples. This issue is
particularly problematic when dealing with large number of sam-
ples such as is the case when analyzing structured plant populations.

To counter this, several normalization methods have been
developed and suggested to overcome these issues and to minimize
nonbiological variation [11–13]. For example normalizations by a
single or multiple internal or external standard compounds based
on empirical rules, such as specific regions of retention time have
been used [2]. Similarly, isotope-labeled internal standard
approaches were developed to monitor analytical error
[14]. While there is no single best way to conduct metabolomics
studies, there are a number of pitfalls and known problems that
need to be carefully avoided. Detailed guidelines and normalization
protocols have been previously published for this purpose [15–17].

In this chapter, we describe a workflow to minimize analytical
errors and provide guidelines for handling large sample numbers
for the specific purpose of metabolic quantitative trait loci (mQTL)
approaches which utilize sources of broad natural genetic variance.
We solely concentrate on aspects pertinent to the large-scale analy-
sis of genetic populations and normalization aspects that need to be
adopted to ensure proper cross-sample comparability as well as the
downstream analysis of the data within the framework of quantita-
tive loci and association mapping analyses.

2 Experimental Design for Large-Scale mQTL Approaches

In order to correctly evaluate such large sample sets it is important
to manipulate variables under strictly controlled conditions while
taking precise measurements. Therefore, the precision of an
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experiment critically depends on the size of the experiment and the
homogeneity of experimental materials. In large genomics experi-
ments, the next step after choosing the population is to determine
the number of lines and associated biological replicates. This is then
followed by choosing the statistical approach to link genotype with
phenotype. Here we neither focusing on the choices of the number
of lines nor the population structure needed to obtain a complete
genotype-to-phenotype matrix to identify all possible QTL [18]
but rather on how many biological replicates are required per line
for acceptable statistical analysis and data normalization.

The key to minimize technical sources of variation involves
designing an experiment whereby several samples are taken per
plant with multiple independent plants per parental genotype per
replicate. Multiple independent replicates are conducted and all
samples independently analyzed via metabolomics. Analysis of vari-
ance for this experiment will allow one to estimate the variation due
to spatial differences within a plant, from differences between
plants, from differences between replicate experiments and from
differences between genotypes as well as any interactions between
these different features. The optimum result is that most of the
variance is due to genetic factors with the rest of the error being
split between within replicates from the same plant or replicates
between plants of the same genotype. If this is the case, it is best to
take onemeasurement per plant with each line being represented by
two or more plants per replicate.

In QTL analysis the number of replicates profiled will have a
major influence on the reliability and reproducibility of the data and
consequently on the QTLmapping results. Therefore, the ability to
make broad conclusions or identify causal genes using quantitative
studies of metabolic variation is greatly influenced by the fact that
metabolic abundances measured in these studies are highly depen-
dent on the environmental, developmental, and genetic variations
present within the experiment as well as the experimental error. For
these reasons and based on our own experience, it is recommended
to use at least six independent biological replicates for each line
(genotype) and many more control plants in a completely rando-
mized design to overcome unavoidable effects associated with vari-
ation in microenvironmental factors such as light intensities,
temperature and air humidity. This should be planed carefully in
advance and he population size and time needed for collecting the
samples should also take into account in order to ensure that
harvesting is carried out in as homogeneous a manner as possible.

2.1 Plant Material

and Sampling

Plant sampling (harvesting) is a crucial step in sample preparation
for metabolomics, and much care needs to be afforded to it (see
Chapter 1). The total variation in the dataset is a function of
different sources of variation including variation introduced by
differences in sample collection. Large scale experiments with vast
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sample size and genotypes (e.g., ILs, RILs, or GWAS) which might
slightly different in their developmental age adding yet another
source of variation. However, the experimental design is key to
any metabolomics experiment and having a large number of
biological replicates is an essential means to minimize metabolite
variation during sample preparation. In the case of introgression
lines (ILs) a reasonable number of biological replicates is six inde-
pendent plants the best strategy being to collect several different
plant organs [3–5] per biological replicate pool them and treat
them as a single sample. In the case of other population such as
RILs, BILs and GWAs less replication is needed than in the ILs
since in these populations genetic variance is represented in multi-
ple lines, as opposed to a single line, within the population.

Most metabolomics studies are carried out in the laboratory
under highly controlled conditions. However, most mQTL studies
have been carried out for crop species such as maize, tomato, and
rice have been conducted in the field. For this reason and in order
to minimize the variation there are several crucial points to take into
consideration during harvest.

Given that the levels of metabolites vary through the day, and
that some experiments are too large to allow harvest in a single day
it is essential to harvest control samples for each temporally separate
harvest. Also as mentioned above plant metabolomics experiments
are generally performed at the organ level (developing fruit, whole
leaf, root, etc.), and it is recommended to have pooled samples per
replicate to reduce the level of within genotype variation. These
issues are especially important when the harvest sessions of a given
experiment are numerous or when each session requests several
people harvesting to limit its duration. The age, or preferably the
developmental stage, of the plants or their organs needs to be
defined relative to standardized growth conditions and/or phenol-
ogy descriptors, by using dedicated ontology’s (Plant Ontology at
http://www.plantontology.org/ for phenology) or reference arti-
cles for Arabidopsis [19] or tomato [20] when available.

2.2 Sample

Processing and

Extraction

After harvesting, plant organs (e.g., leaves, flowers, or fruits) or
dissected tissues, plant should be immediately frozen in liquid
nitrogen and stored at�80 �C, or immediately ground to a powder
and extracted. Sample grinding is usually required to optimize
solvent extraction and additionally aids in the homogenization of
the sample material [21]. It is recommended that all samples for a
given experiment follow exactly the same procedure before, during,
and after grinding. For further reading on extraction protocols
available for plant metabolomics we suggest the work of Shimizu
et al. (see Chapter 12) for LC-MS and the comprehensive work of
Osorio and colleagues for GC-MS [22].

However, there are some important points at which these pro-
tocols should be adapted when handling the large number of plant
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samples required for QTL analysis. First, quality control (QC) is
necessary throughout the entire sample preparation process, from
the field to the sample storage location and through distribution to
chemical analysts for data normalization to reduce the analytical
errors. The quality control (QC) samples should qualitatively and
quantitatively representative the entire collection of samples
included in the study, providing an average of all of the metabo-
lomes analyzed in the study. Sample prepared by pooling aliquots of
individual study samples, either all or a subset representative for the
study. The QC sample has (should have) an identical or a very
similar (bio) chemical diversity as the study samples. The QC
samples are evenly distributed over all the batches and are extracted,
derivatized, and analyzed at the same time as the individual study
samples as part of the total sequence order. The data from the QC
samples is used to monitor drift, separate high- and low-quality
data, equilibrate the analytical platform, correct for drift in the
signal and allow the integration of multiple analytical experiments.
The data analysis technique such as principal component analysis
can be used to quickly assess the reproducibility of the QC samples
in an analytical run. The QC samples are used to determine the
variance of a metabolite feature.

Before extraction QC samples should prepared by pooling
aliquots of individual study samples, the QC samples should then
be distributed across all machine-batches and aliquots thereof
should be extracted, derivatized, and analyzed at the same time as
the individual study samples (Fig. 1).

2.3 MS-Based

Metabolomics

Analysis (LC-MS,

GC-MS)

Once the extraction has been made, extracts must be subsequently
prepared for MS-based analysis. In the case of LC-MS, once the
samples are extracted aliquots of the extract can be directly intro-
duced into the LC-MS apparatus (see Shimizu et al., Chapter 12).
In GC-MS-based metabolomics, however, additional preparation
steps are necessary to confer volatility to the metabolites via silyla-
tion and to simplify chromatography of sugars via methoxyamina-
tion [16, 17, 22]. We recommend dividing the samples in batches
so that each batch contains 50–80 samples with ample QC samples
distributed across the sequence run (Fig. 1). Metabolite profiling
via GC-MS involves several general steps [23]. After derivatization,
automated sample injection robotics and separated in GC in highly
standardized conditions of gas flow, temperature programming,
and standardized capillary column material. Electron impact
(EI) is the most widely used ionization technique applied in
GC-MS. Mass separation and detection is achieved preferably by
TOF detectors that can be tuned to fast scanning rates, and finally
acquisition and evaluation of GC–MS data files.

In the case of LC-MS-based metabolomics approaches, the
most frequently used protocols use C18-based reversed phase col-
umns coupled to soft ionization techniques, such as electrospray
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ionization (ESI) or atmospheric pressure chemical ionization
(APCI), resulting in protonated (in positive mode) or deproto-
nated (in negative mode) molecular ions. Modern high resolution
instruments with exact mass detection, such as TOF-MS, ion cyclo-
tron FT-MS, or Orbitrap FT-MS, nowadays enable the profiling of
hundreds to thousands of compounds in plant extracts, combined
with elemental formulae calculations of the detected masses
[24, 25].

Fig. 1 Flowchart of the metabolomics study in plants. Left panel represent the different steps for experimental
design, sample preparation and process for QTL experimental study. The left panel shows sample organization
and suggested sequence running in GC-MS or LC-MS
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3 Data Processing

Once samples are analyzed, automatic data processing tools are
required for peak picking and mass peak alignment. In GC-MS
several tools, software and databases have been established and
used for this purpose [23, 26, 27]. For further details on data
processing from LC-MS metabolomics data see Shimizu et al.
(Chapter 12). Chromatograms obtained from e.g., UPLC-FT-MS
runs can be analyzed and processed with REFINER MS® 10.0
(GeneData, http://www.genedata.com), where molecular masses,
retention time (RT), and associated peak intensities for each sample
are extracted from the .raw files. The chemical noise is subtracted
automatically. The chromatogram alignments are performed using
a pairwise alignment-based tree using m/z windows of five points
and RT windows of five scans within a sliding frame of 200 scans.
Further processing of the MS data includes isotope clustering,
adduct detection, and library searches. Resulting data matrices
with peak ID, RT, and peak intensities in each sample are gener-
ated. However, for both LC- and GC-MS methods, manual check-
ing of peaks is strongly recommended.

4 Data Normalization

The goal of metabolomics as a phenotyping platform depends on its
ability to detect biologically related metabolite changes in complex
biological samples. As with any high-throughput technology, sys-
tematic biases are often observed in LC-MS and GC-MS metabo-
lomics data [26, 27]. As the number of samples in the dataset
increases there is a corresponding time-dependent variation in the
metabolite data. The variability in samples can arise from multiple
sources including physiological differences and variability from the
analytical method itself. Removing platform-specific sources of
variability such as systematic errors is one of the top priorities in
metabolomics data preprocessing. However, metabolite diversity
leads to different responses to variations at given experimental
conditions, making normalization a very demanding task
[27]. For the effective elimination of different sources of analytical
variation, preprocessing steps should follow a specific sequence.

The first step in data normalization is using an internal standard
(IS); a compound added to the sample before a critical step in the
analysis. An IS is not necessarily an isotope-labeled version of an
analyte. However, it can be structurally related to one or more
analytes, but not naturally occurring in the samples of interest.
This normalization step reduces the differences in sample extrac-
tion (which can be caused by slight differences in the composition
of the samples and also differences in the volumes injected). The
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second step is the removal of between-batch and within-batch
variations and machine drifts. The final steps consist of the combi-
nation of data from replicate sample analysis and removal of noise
and biomass correction. The biomass correction neutralizes differ-
ences in response due to sample weight or volume.

Here the QC samples are of key importance, and these are best
prepared by pooling equal volumes of material from all of the
biological samples to be analyzed. Alternatively, a chemically
defined mixture of authenticated reference compounds [28] that
mimics the metabolic composition of the investigated biological
material can be employed. Both the synthetic mixtures and
biological QC samples are then subjected to the same sample
extraction, instrumental analyses (ideally distributed across the ana-
lytical run), and data processing, thus providing quality checks for
technical and analytical error, and quantitative calibration to elimi-
nate batch effects for the final processed data. This normalization is
a crucial step for minimizing the batch-to-batch data variability
across extended periods. As such this is a crucial requirement for
large-scale phenotyping and facilitates interbatch data integration.

5 QTL Mapping

The principle of quantitative trait locus (QTL) mapping is based of
detecting association of molecular genetic markers with the pheno-
type of interest in the resultant offspring [29]. Markers are used to
partition the mapping population into different genotypic groups
based on the presence or absence of a particular marker locus and to
determine whether significant differences exist between groups
with respect to the trait being measured [27]. If a QTL is linked
to a marker locus, then the individuals with different marker locus
genotypes will have different mean values of the quantitative trait.
In plants, the use of such mapping populations is highly useful since
the use of stable populations permits the growth of clonal replicates
and, additionally, multiple analyses of genetically identical indivi-
duals across multiple harvests. There are several structural popula-
tions and methods have been used to detect the QTL and mapping.
Therefore, choosing the proper population for such experiments is
a key determinant in the success of any given project. There are
several factors influencing the detection of QTL detections that
should be considered in advance of planning such experiments.

Factors influencing QTL mapping: the genetic properties of
QTL controlling traits include the magnitude of the effect of
individual QTL. Only QTL with sufficiently large phenotypic
effects will be detected; and the QTL with small effects may fall
below the significance threshold of detection. Another genetic
property is the distance between linked QTL; QTL that are closely
linked will usually be detected as a single QTL in typical population
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sizes (<500) [30–32]. The environmental effects may have a large
influence on the expression of quantitative traits. The size of the
population used in the mapping study is also highly important; the
larger the population, the more accurate the mapping study and the
more likely it is to allow detection of QTL with smaller effects.

Owing to the factors and variations described above, QTL
mapping studies should be independently confirmed or validated.
Such confirmation studies (referred to as validation or replication
studies) can be achieved by repeating the experiment and the QTL
mapping at different sites, seasons, or years. The conserved
detected QTL throughout several repeated experiment most likely
the QTL that have strong genetic effect (high heritability) and that
can be chosen as a region to focus on in further analysis. A second
type of validation may involve independent populations con-
structed from the same parental genotypes or closely related geno-
types used in the primary QTL mapping study. Once an association
between a particular SNP and variation in a trait of interest has been
established, a crucial but yet too often overlooked step is to repli-
cate the association in an independent mapping population. As the
number of studies documenting significant associations between
SNPs and variation in quantitative traits of interest accumulates,
increasing emphasis should be placed on replicating studies to
validate effects of significant associations. In the following sections
we briefly define some of the commonly used structural populations
for the QTL mapping.

5.1 RIL Mapping In plant species, the uses of immortal mapping populations con-
sisting of homozygous individual have been used to map loci for
complex traits. Recombinant inbred lines (RILs) (Fig. 2) can be
obtained relatively easily and are produced by successively selfing
the progeny of individual F2 plants (single seed descent method),
from which the F8 generation and onward are practically homozy-
gous lines that will produce further progeny that is essentially
identical to the previous generation. Such a population can also
be produced by induced chromosomal doubling of haploids, such
as for doubled haploids (DHs) [33–35]. RILs are likely advanta-
geous over DHs since they are characterized by a higher frequency
of recombination within the population, resulting from multiple
meiotic events occurred during repeated selfing [36]. Candidate
mutations (such as a SNP, illustrated by the red dots) are then
identified.

5.2 IL Mapping Another type of immortal population consists of introgression lines
(IL) (Fig. 2) which are obtained through repeated backcrossing and
extensive genotyping. These can also be referred to as near isogenic
lines (NILs) [37] or backcross inbred lines (BILs) [38, 39];
although the latter are slightly different in nature. These lines
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contain a single or a small number of genomic introgression frag-
ments from a donor parent into an otherwise homogeneous genetic
background.

5.3 GWAs Mapping The IL and RILs have historically been the most common types of
experimental populations used for the analysis of quantitative traits
and powerful method to identify regions of the genome that cose-
gregate with a given trait. However, they suffer from some limita-
tions; only allelic diversity that segregates between the parents of
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the particular F2 cross or within the RIL population can be assayed
[27], and second, the amount of recombination that occurs during
the creation of the RIL population places a limit on the mapping
resolution [40]. The basic principle of genome-wide association
studies (GWAS) (Fig. 2), which was initially developed for use in
medical genetics, is that the incidence of nucleotide polymorphisms
is associated with the presence of variance is overcome the limita-
tions of using the IL and RILs. This approach has several major
advantages over conventional QTL mapping. First, a much larger
and more representative gene pool can be surveyed. Second, it
bypasses the expense and time of mapping studies and enables the
mapping of many traits in one set of genotypes. Third, a much finer
mapping resolution can be achieved, resulting in small confidence
intervals of the detected loci compared to classical mapping, where
the identified loci need to be fine-mapped. Finally, it has the poten-
tial not only to identify and map QTLs but also to identify the
causal polymorphism within a gene that is responsible for the
difference in two alternative phenotypes [27]. A major issue with
association studies is false positives, and the main sources of such
false positives are linkage between causal and noncausal sites
[41, 42].

QTL analysis is predicated by looking for associations between
the quantitative trait and the marker alleles segregating in the
population. Classical mapping approaches use segregating popula-
tions, such as recombinant inbred lines (RIL) and introgression
lines (IL), to shed light on the genetic contributions to diverse
phenotypes. Both are obtained from a cross (F1) of two parental
accessions (P1 and P2), through repeated selfing (RIL) or back-
crossing of the initial hybrid with one of its parents (IL) followed by
a selfing until a homozygous state is reached. Alternate alleles at loci
in homozygous lines with distinct genetic basis in such structured
populations potentially influence the trait of interest and allow to
map the genomic loci responsible for the observed intraspecific or
interspecific variation (Fig. 2a).

GWASmakes use of natural genotypic variation and enables the
analysis of associations between hundreds of thousands of single
nucleotide polymorphisms (SNPs) and specific traits. For Identifi-
cation of QTL; DNA obtained from hundreds of natural genetic
accessions and tested for genetic variations, like SNPs. If certain
SNPs are found significantly more frequently in group of genotypes
(accessions) with a certain phenotype (trait) than in the general
population, the mutations are said to be “associated” with the trait.
The GWAS analysis, represented in a Manhattan plot with signifi-
cance (�log10 (P value) on the y-axis, and genomic position shown
as chromosomes in the x-axis, is done to look for genetic variants
that are associated with certain trait in a group of genotypes (leaf
color for example) but not found among the other group. Signifi-
cant variants (positive z-scores) are represented by the red dots. The
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dot that rises above background variation and is significantly asso-
ciated with the phenotype is represented in the Manhattan plot at
chromosomal position (Fig. 2b).

6 Conclusions

Both GC-MS and LC-MS are widely used analytical tools for
profiling highly complex mixtures of primary and secondary meta-
bolites. High-throughput use of these techniques is faced with a
large number of potential sources of nonbiological variation that
can compromise the interpretation of the results. However, by
following several recommendations prior to and during the con-
ductance of large-scale genomics and QTL mapping experiments
such problems can be circumvented in a relatively facile manner.
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