pyeo.validaion¶
A small set of functions for producing validation points from maps
-
pyeo.validation.
allocate_category_sample_sizes
(total_sample_size, user_accuracy, class_total_sizes, variance_tolerance, allocate_type='olofsson')¶ Allocates a number of pixels to sample per class that will fulfil the parameters given
- Parameters
total_sample_size (The total number of validation points requested (from cal_total_sample_size)) –
user_accuracy (Dictionary of estimated user accuracies for classes in map (between 0 and 1)) –
class_total_sizes (Dictionary of total pixels for each class in user_accuracy) –
variance_tolerance (Acceptable vairance between the sample accuary and the data accuracy with a certain sample size) –
allocate_type (The allocation strategy to be used. Can be 'equal', 'prop' or 'olofsson'.) –
- Returns
- Return type
A dictionary of classes and no. pixels per class.
-
pyeo.validation.
build_class_dict
(class_array, no_data=None)¶ Returns a dict of coordinates of the following shape: [class, coord]. WARNING: This will take up a LOT of memory!
-
pyeo.validation.
cal_total_sample_size
(desired_standard_error, user_accuracy, total_class_sizes, type='simple')¶ Calculates the number of sample points for a map to get a specified standard error. :param desired_standard_error: :type desired_standard_error: The desired standard error (between 0 and 1) :param user_accuracy: :type user_accuracy: A dictionary of user accuracies from apriori knowledge :param total_class_sizes: :type total_class_sizes: The total number of pixels for each class :param type: :type type: whether to use the simple approximation or the full expession from Olofsson eq 13
- Returns
- Return type
The total number of sample points to achieve the specified error
-
pyeo.validation.
calc_minimum_n
(expected_accuracy, variance_tolerance)¶ Calculates the rminimum number of points required to achieve the specified accuracy :param expected_accuracy: :type expected_accuracy: Between 0 and 1 :param variance_tolerance:
-
pyeo.validation.
count_pixel_classes
(map_path, no_data=None)¶ Counts pixels in a map. Returns a dictionary of pixels. :param map_path: :type map_path: Path to the map to count :param no_data: :type no_data: A value to ignore
- Returns
A dictionary of class
- Return type
count
-
pyeo.validation.
part_fixed_value_sampling
(pinned_sample_numbers, class_total_sizes, total_sample_size)¶ - Parameters
pinned_sample_numbers –
class_total_sizes –
total_sample_size –
-
pyeo.validation.
produce_stratified_validation_points
(map_path, out_path, class_sample_counts, no_data=None, seed=None, produce_csv=False)¶ Produces a set of stratified validation points from map_path
-
pyeo.validation.
save_point_list_to_shapefile
(class_sample_point_dict, out_path, geotransform, projection_wkt, produce_csv=False)¶ Saves a list of points to a shapefile at out_path. Need the gt and projection of the raster. GT is needed to move each point to the centre of the pixel. Can also produce a .csv file for CoolEarth
-
pyeo.validation.
save_validation_maifest
(out_path, class_counts, sample_size, class_sample_counts, target_standard_error, user_accuracies)¶ Creates a json file containing the parameters used to produce this validation set
-
pyeo.validation.
stratified_random_sample
(map_path, class_sample_count, no_data=None, seed=None)¶ Produces a stratified list of pixel coordinates. WARNING: high mem!