

D-JRP7-3.6 / Collection of data on survival of *Listeria monocytogenes* in soil microcosms. JRP7 - LISTADAPT V0.1 27/11/2019

Responsible Partner: IINRA Dijon France,

UMR1347 Agroécologie MERS Team

GENERAL INFORMATION

European Joint Programme full title	Promoting One Health in Europe through joint actions on foodborne zoonoses, antimicrobial resistance and emerging microbiological hazards
European Joint Programme acronym	One Health EJP
Funding	This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 773830.
Grant Agreement	Grant agreement n° 773830
Start Date	01/01/2018
Duration	60 Months

DOCUMENT MANAGEMENT

JRP Deliverable/Report number	D-JRP7-3.6
Join Integrative/Research Project	JRP7 – LISTADAPT
JRP Leader / Report main redactor	Sophie Roussel (Anses) / Pascal Piveteau (INRA)
Other contributors	
Due month of the deliverable	M22
Actual submission month	M24
Туре	R
R: Document, report	
DEC: Websites, patent filings, videos, etc.	
OTHER	
Dissemination level	Public
PU: Public	
CO: confidential, only for members of the	
consortium (including the Commission	
Services)	

Project report ListAdapt INRA Dijon France, UMR1347 Agroécologie MERS Team Eliette Ascensio, Géraldine Depret, Laurent Gal, Alain Hartmann, Dominique Garmyn, Pascal Piveteau.

WP 1: Constitution of a strain collection representative of the different reservoirs of Listeria monocytogenes

Abstract:

As part of the WP1, our team investigated a large sampling collection for the detection and the isolation of *Listeria* in the <u>environmental reservoir</u>.

Thanks to an optimized protocol for the detection of *Listeria* in environmental samples with a new real-time PCR assay (*note:* the final draft of a methodological paper is being written for submission to a peer-reviewed international journal), we analyzed more than 1150 samples from various types (soils, water, wastewater, agricultural inputs, wild life samples...).

These samples came from different sources:

- French nationwide soil quality monitoring network (INRA, RMQS) that provided us fresh soils samples from all the French territory

- Farm monitoring: 2 longitudinal studies (organic farming vegetables + cattle) with monthly sampling
- Broad sampling: one-time soil sampling performed by ourselves and by other members of the consortium.

We were able to detect and isolate 98 *Listeria* strains of which 19 *L. monocytogenes* isolates (See Table 1). We chose to sequence *Lm* but also other *Listeria* especially the ones found in the same samplings as *Lm*.

In addition to these strains, 26 other *Lm* soil isolates from previous sampling sessions performed by our team were added for the sequencing task (See Table 2). (for more information please see also Supplemental Data 1.)

Material and Methods:

- → Specific enrichment. 10 grams of each environmental sample were weighed in 180 mL pots. Processed samples were suspended in 90 mL of DifcoTM Listeria Enrichment Broth modified. After 24h of incubation at 30°C, the first enrichments were vortexed. One mL aliquots were used for DNA preparation by boiling. And other aliquots of 1 mL were transferred in 9 mL of DifcoTM UVM Modified Listeria Enrichment Broth for the second enrichment. After 48h of incubation at 30°C, the second enrichments were vortexed and 1 mL aliquots were also used for the DNA preparation by boiling.
- → DNA extraction. Bacterial DNA was prepared by boiling. One millilitre of the samples was centrifuged at 5800 x g for 3 minutes. The supernatant was eliminated and the pellet was resuspended in 1 mL of sterile water and centrifuged at 5800 x g for 3 minutes. The supernatant was eliminated and the pellet was resuspended in 1 mL of sterile water. An aliquot of 500 µL was used and subjected to boiling at 100°C in a water bath for 10 minutes, cooled at room temperature and

then centrifugated at 5800 x g 10 seconds before it was stored at -20°C. Boiled

enrichments were ten-fold diluted (1:10) and the dilutions were used as template for real-time PCR.

→ Duplex real-time PCR detection of *Listeria* sp. and *Listeria monocytogenes*. SYBR®Green real-

time PCR assays were performed on ABI StepOneTM Real-time thermocycler (Applied BiosystemsTM, Thermo Fisher Scientific, France) with the following temperature program: 95°C for 5 minutes and 35 cycles at 95°C 15 seconds and 60°C for 1 minutes. Melt curves were generated with temperature increments of 0.1°C per cycle from 60 to 95°C. DNA was amplified in a 22 μ L PCR mix containing 11 μ L of Takyon SYBR®Green Low ROX 2X (Eurogentec, Belgium), 0.44 μ L of each primer, 2 μ L of template DNA diluted (1:10) and 7.24 μ L of PCR grade water. For detection of *Listeria* from environmental samples, 0.5 μ L of T4 Gene 32 Protein (Sigma Aldrich) was added to the PCR mix.

Two different primers pairs were used in duplex. One pair specific to *L. monocytogenes* was designed to target *inlA*. The second pair of primers is detecting all bacteria from the genus *Listeria* by targeting *prs2*.

→ Isolation of Listeria sp. Positive samples for the presence of Listeria were spread on RAPID'L.Mono plates (BioRAD, France). This medium specifically detects the phospholipase of L. monocytogenes and its inability to metabolize xylose. After 24h incubation at 37°C, L. monocytogenes forms characteristic blue colonies without a yellow halo. Colonies formed by other species of Listeria are white, with or without a yellow halo. L. ivanovii presents blue-green colonies with a yellow halo (xylose positive character). Moreover, the selective solution in the medium permits inhibition of most interfering flora.

Results:

Our procedure of detection by real-time PCR was used on a large scale of more than 1150 environmental samples. These samples were collected in different geographical areas in Austria,

France, Slovenia and Sweden. Most samples were soil (~85%), but mud, sediments,

water, silage, faeces, burrows and badgers' latrines were also processed. Among all these samples, members of the genus *Listeria* were detected in 98 samples (8.5 %), including 19 *L. monocytogenes* positive samples (1.7 %). The non-*L. monocytogenes* isolates were identified as *L. innocua* (54, 4.7 %), *L. welshimeri* (21, 1.8 %), *L. ivanovii* (2, 0.2 %) and *L. seeligeri* (2, 0.2 %). Details on positive samples are included Table 1. A total of 26 other soil isolates from the strain collection of UMR1347 were included in the sequencing effort for environmental isolates. Twenty six other isolates already sequenced were also included.

Strains	Species	Origin	Date	Samples	Sequencing status
12341	L. monocytogenes	Austria	May 2018	Soil near a little farm, pasture area for does	\checkmark
12342	L. monocytogenes	France	May 2018	Meadow	\checkmark
12345	L. monocytogenes	France	June 2018	Badger's burrow	\checkmark
12348	L. monocytogenes	France	-	Soil	\checkmark
12350	L. monocytogenes	France	March 2018	Soil	\checkmark
12351	L. monocytogenes	France	March 2018	Sediments	\checkmark
12353	L. monocytogenes	France	March 2018	Latrines for badgers	\checkmark
12354	L. monocytogenes	France	March 2018	Badger's burrow	\checkmark
12356	L. monocytogenes	France	March 2018	Latrines for badgers	\checkmark
12439	L. monocytogenes	Sweden	September 2018	Grass field	\checkmark
12461	L. monocytogenes	France	October 2018	Water from a well	In progress
12464	L. monocytogenes	France	October 2018	Water from a creek	\checkmark
12468	L. monocytogenes	Slovenia	October 2018	Pond mud	\checkmark
12469	L. monocytogenes	Slovenia	October 2018	Water from pond mud meadows cows	\checkmark
12727	L. monocytogenes	Slovenia	October 2018	Pond mud meadows cows	\checkmark
12733	L. monocytogenes	France	December 2018	Sludge from a waste treatment plant	\checkmark
13222	L. monocytogenes	France	April 2019	Soil from peas crop	In progress
12128	L. monocytogenes	France	July 2019	Water from a creek	In progress
12129	L. monocytogenes	France	-	Soil	In progress
12338	L. innocua	France	May 2018	Soil from spinach crop	\checkmark
12343	L. innocua	France	June 2018	Water from a waste treatment plant	\checkmark
12344	L. innocua	Austria	May 2018	Corn field	\checkmark
12347	L. innocua	France	July 2018	Rabbit feces in a grass field	\checkmark

Table 1: Listeria isolates detected during sampling sessions.

12357	L. innocua	France	March 2018	Latrines for badgers	\checkmark
12380	L. innocua	France	August 2018	Water from a waste treatment plant	\checkmark
12441	L. innocua	France	October 2018	Water from a waste treatment plant	\checkmark
12466	L. innocua	Slovenia	October 2018	Remain of corn silage at farm	\checkmark
12467	L. innocua	Slovenia	October 2018	Waste silage	\checkmark
12470	L. innocua	Slovenia	October 2018	Pile of manure	\checkmark
12471	L. innocua	Slovenia	October 2018	Horse manure worms near the meadow	\checkmark
12472	L. innocua	Slovenia	October 2018	Mud from a dry pond	\checkmark
12473	L. innocua	Slovenia	October 2018	Agricultural land feces	\checkmark
12474	L. innocua	Slovenia	October 2018	Stable at farm, feces on the floor	\checkmark
12722	L. innocua	Slovenia	October 2018	Cultivated meadow soil	\checkmark
12724	L. innocua	Slovenia	October 2018	Waste material from the surroundings of a barn	V
12725	L. innocua	Slovenia	October 2018	Soil from a pasture in the proximity of the barn	$\mathbf{\nabla}$
12730	L. innocua	France	December 2018	Sludge from a waste treatment plant	\checkmark
12731	L. innocua	France	December 2018	Sludge from a waste treatment plant	\checkmark
12732	L. innocua	France	December 2018	Sludge from a waste treatment plant	\checkmark
12734	L. innocua	France	December 2018	Sludge from a waste treatment plant	\checkmark
12735	L. innocua	France	January 2019	Water from a well	\checkmark
12736	L. innocua	France	January 2019	Cow litter at the farm	\checkmark
12737	L. innocua	France	January 2019	Cow litter at the farm	\checkmark
12738	L. innocua	France	January 2019	Water from a creek	\checkmark
12741	L. innocua	France	February 2019	Breeding ground for salad culture	\checkmark
12744	L. innocua	France	March 2019	Water from a creek	\checkmark
12745	L. innocua	France	March 2019	Cow litter at the farm	\checkmark
12746	L. innocua	France	-	Soil	\checkmark
13208	L. innocua	France	April 2019	Digestate	NO
13209	L. innocua	France	April 2019	Digestate	NO
13210	L. innocua	France	April 2019	Digestate	NO
13211	L. innocua	France	April 2019	Cow manure	NO
13212	L. innocua	France	April 2019	Cow manure	NO
13214	L. innocua	France	April 2019	Post-digestate	NO
13216	L. innocua	France	April 2019	Cow manure	NO
13217	L. innocua	France	April 2019	Cow manure	NO
13218	L. innocua	France	April 2019	Cow manure	NO
13219	L. innocua	France	April 2019	Cow manure	NO
13221	L. innocua	France	April 2019	Breeding ground for peas culture	NO
13223	L. innocua	France	April 2019	Breeding ground for parsley cultre	NO
13224	L. innocua	France	April 2019	Pig manure	NO
13225	L. innocua	France	April 2019	Pig manure	NO
13226	L. innocua	France	April 2019	Digestate	NO
13227	L. innocua	France	April 2019	Digestate	NO
13228	L. innocua	France	April 2019	Digestate	NO
13280	L. innocua	France	April 2019	Breeding ground for basil culture	NO
13281	L. innocua	France	April 2019	Breeding ground for salad culture	NO

	* * * * * * * * *			é H	ne HEALTHEJP
13282	L. innocua	France	June 2019	Digestate	NO
13283	L. innocua	France	June 2019	Digestate	NO
13284	L. innocua	France	June 2019	Digestate	NO
13285	L. innocua	France	June 2019	Post-digestate	NO
13286	L. innocua	France	June 2019	Poultry manure	NO
12127	L. innocua	France	July 2019	Soil from a salad field	NO
12352	L. ivanovii	France	March 2018	Badger's burrow	\checkmark
12355	L. ivanovii	France	March 2018	Badger's burrow	\checkmark
12346	L. seeligeri	France	June 2018	Badger's burrow	
12381	L. seeligeri	Sweden	August 2018	Grass field	
12440	L. welshimeri	France	September 2018	Cow pasture	\checkmark
12442	L. welshimeri	France	October 2018	Breeding ground for salad culture	\checkmark
12462	L. welshimeri	France	October 2018	Feces cow	\checkmark
12463	L. welshimeri	France	-	Soil	\checkmark
12465	L. welshimeri	France	October 2018	Water from a creek	\checkmark
12475	L. welshimeri	Slovenia	October 2018	Pile of manure	\checkmark
12476	L. welshimeri	Slovenia	October 2018	Soil from a field with tal grass	\checkmark
12720	L. welshimeri	Slovenia	October 2018	Soil from a pasture	\checkmark
12721	L. welshimeri	Slovenia	October 2018	Mud sample and water plants	\checkmark
12723	L. welshimeri	Slovenia	October 2018	Feces, grass and silage remains	\checkmark
12726	L. welshimeri	Slovenia	October 2018	Pond mud and aquatic plants	\checkmark
12728	L. welshimeri	France	November 2018	Badger's burrow	\checkmark
12729	L. welshimeri	France	November 2018	Badger's burrow	\checkmark
12739	L. welshimeri	France	-	Soil	\checkmark
12740	L. welshimeri	France	February 2019	Soil from basil field	\checkmark
12742	L. welshimeri	France	-	Soil	\checkmark
12743	L. welshimeri	France	-	Soil	\checkmark
13207	L. welshimeri	France	April 2019	Sediments	NO
13213	L. welshimeri	France	April 2019	Post-digestate	NO
13215	L. welshimeri	France	April 2019	Water from a creek	NO
12126	L. welshimeri	France	-	Soil	NO

<u>Table 2</u> : Additionnal Lm isolates from previous samplings for the sequencing procedure.

Strains	Species	Origin	Date	Samples	Sequencing
5929	L. monocytogenes	France	-	-	\checkmark
5945	L. monocytogenes	-	November 2006	Compost	\checkmark
5948	L. monocytogenes	-	November 2007	Compost	\checkmark
6579	L. monocytogenes	France	December 2008	Soil	\checkmark
6701	L. monocytogenes	France	-	Manure	\checkmark
7145	L. monocytogenes	France	July 2011	Soil	\checkmark
7147	L. monocytogenes	France	July 2012	Soil	\checkmark
7151	L. monocytogenes	France	July 2011	Soil	\checkmark

	*** * * * * *				ne HEALTHEJP
7158	L. monocytogenes	France	July 2012	Soil	\checkmark
7164	L. monocytogenes	France	July 2013	Soil	\checkmark
7167	L. monocytogenes	France	July 2014	Soil	\checkmark
10223	L. monocytogenes	France	April 2012	-	\checkmark
10257	L. monocytogenes	France	-	Mud	\checkmark
10259	L. monocytogenes	France	-	Soil	\checkmark
10281	L. monocytogenes	France	-	Fresh soil improve	r 🔽
10320	L. monocytogenes	France	October 2013	Compost	\checkmark
10321	L. monocytogenes	France	October 2013	Compost	\checkmark
10322	L. monocytogenes	France	October 2013	Compost	\checkmark
12319	L. monocytogenes	France	March 2018	-	\checkmark
12322	L. monocytogenes	France	March 2018	-	\checkmark
12333	L. monocytogenes	France	March 2018	-	\checkmark
M15B	L. monocytogenes	-	-	-	\checkmark
R10B	L. monocytogenes	-	-	-	\checkmark
R1B	L. monocytogenes	-	-	-	\checkmark
R2B	L. monocytogenes	-	-	-	\checkmark
R5A	L. monocytogenes	-	-	-	\checkmark

WP 3: Phenotypic characterization of Listeria monocytogenes strains

Abstract:

In the WP3, our team explored survival and persistence of *Lm* strains in soil. These strains were selected by the coordinator's lab in order to be representative of the diversity of the Listadapt strains collection.

The survival tests were performed in triplicate in a microtiter plate assay according to the protocol described in Supplemental Data 1.

We observe a wide range of survival rates with no correlation between the origin of the isolate and its phenotype.

GWAS on the whole set of data was inconclusive indicating than there is not a single mechanism of adaptation to survival in soil but several that are specific to clonal complexes. When conducted on isolates from the same Clonal Complex, presence/absence of genes statistically significant were identified.

First results were presented in a poster session at ISOPOL 2019 in Toronto (see Poster below)

Material and Methods:

→ Preparation of the microtiter plate. Add 0.5 g of soil in the wells of the first lane of the 24 weels microtiter plate. Incubate 24h at 25°C before inoculation.

→ Preparation of the inoculum.

Day 1: From frozen stock, inoculate 10 mL TSB and incubate 24h at 25°C. *Day 2:* Sub-culture in 10 mL TSB (1% inoculation) and incubate 16h at 25°C. *Day 3:* Pellet cells and suspend in sterile distilled water. Mesure OD to estimate the population density. Soil will be inoculated at 10^6 CFU/g dry soil. The total volume of inoculum must be calculated in order to reach a final water content of 60% of the Water Holding Capacity of the soil. Incubate at 25°C for 36h.

→ Quantification of the population of Lm.

Day 5: Add 2 mL of Trypton Salt (TS) in the wells filled with soil. With the multichannel automatic pipet, fill the remaining wells with 900 μL of TS. Agitate on the rotary shaker for 10 min at 350 rpm. With the multichannel automatic pipet, proceed with serial dilutions and spot inoculate (10 μL) on Rapid'L.mono agar plates. Incubate plates at 37°C for 24h.

Day 6: Read the results.

Results:

As shown Figure 1, the ability of *L. monocytogenes* to survive in soil was strain dependent. Survival ranged from zero to 22%.

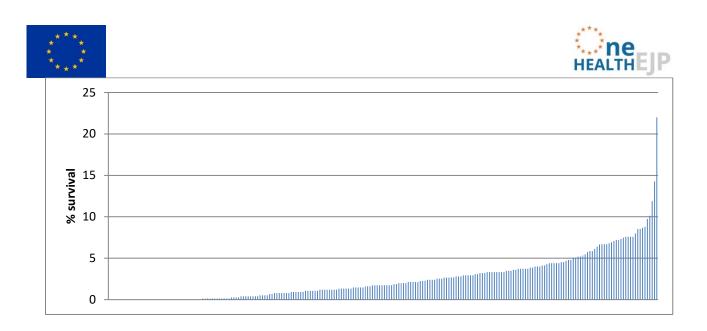


Figure 1. Soil survival phenotype of 230 isolates of *Listeria monocytogenes*.

Ascending Hierarchical Clustering clearly identified 3 groups of phenotypes (Figure 2), possibly indicating that some isolates may be better competitors in complex habitats such as soil. Further analysis was performed to investigate correlation between the phenotypes and the characteristics of the genomes of these isolates.

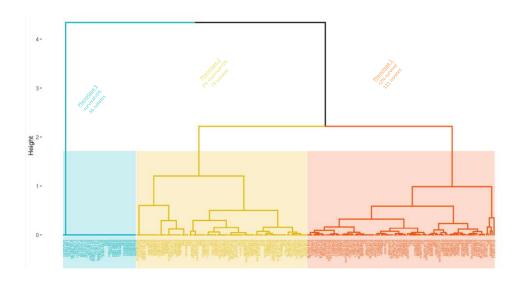


Figure 2. Ascending Hierarchical Clustering of soil survival data.

Abstract ISOPOL 2019:

Investigation of genome characteristics underlying fitness of Listeria monocytogenes in soil

Ascensio-Schultz E, Gal L, Garmyn D, Szymczak B, Karpiskova R, Pietzka A, Ruppitsch W, Boysen M, Pomilio F, Torresi M, Camma C, Dipasquale A, Mateja P, Skjerdal T, Sevellec, Y., Felix B, Guillier L, Piveteau P.

The One Health European Joint Programme (OHEJP) is an EU initiative to reinforce collaboration between European institutes involved in the fields of emerging threats, antimicrobial resistance and foodborne zoonoses. Listadapt is a Joint Research Project funded by OHEJP. Acclaimed food, veterinary and medical laboratories and institutes dealing with *Listeria monocytogenes* hazards across Europe joined efforts to gain insight into the ecology and biology of *Listeria monocytogenes*. A unique collection of outdoors, animals and food isolates was built and over 4000 genomes were sequenced. In order to gain insight in the specific adaptation, evolution and genetic make-up of *Listeria monocytogenes* strains driving fitness in specific outdoor environmental niches, a selection of 219 isolates representative of various habitats (outdoors, animals, food) and covering the genomic diversity of the collection was screened for soil survival and the results were integrated in a Genome Wide Association Study.

Hierarchical clustering identified three groups of strains differing in their ability to survive in soil. With a majority of isolates, a sharp decline was observed and less than 2% of the initial population was detected after 36 h of incubation in soil while a minority of isolates had survival rates of over 5%. GWAS was applied to these phenotypical results in order to identify genetic features directly connected to the enhanced fitness of some isolates in soil.

Investigation of genome characteristics underlying fitness of *Listeria monocytogenes* in soil

Ascencio-Schultz¹ E, Gal¹ L, Garmyn¹ D, Szymczak² B, Karpiskova³ R, Pietzka⁴ A, Ruppitsch⁴ W, Boysen⁵ M, Pomilio⁶ F, Torresi⁶ M, Camma⁶ C, Dipasquale⁶ A, Pate⁷ M, Skjerdal⁸ T, Sevellec⁹ Y., Felix⁹ B, Guillier⁹ L, Pietzeau¹ P.

1. Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, France; 2. Department of Applied Microbiology and Biotechnology, West Pomeranian University of Technology; 3. Veterinary Research Institute, Czech Republic; 4. AGES - Institute of Medical Microbiology and Hygiene, Austria; 5. Swedish University of Agricultural Sciences, Sweden; 6. Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise G. Caporale, Italy; 7. Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Slovenia; 8. Norwegian Veterinary Institute, Oslo, Norway; 9. Maisons-Alfort Laboratory for Food Safety, University Paris-Est, ANSES, France

Results

Introduction

Soil is a central habitat in the transmission routes of *L. monocytogenes* from the farm environment to foodstuff. Little information is available on the genetic feautures underlying its fitness in this complex habitat. The aim of this study was to investigate genome characteristics linked to fitness in soil. Soil survival was assessed in a large collection of strains isolated from soil, water, animals and foodstuff. Genome Wide Association Study (GWAS) was performed in order to identify genes connected to soil fitness.

Materials and Methods

230 strains of *Listeria monocytogenes* were collected. All strains were sequenced and grouped in Clonal Complexes. Soil survival was assessed in quadruplicate :

1. inoculation of soil microcosms (10^6 CFU/g) 2. incubation 36 h at 25°C 3. numeration on Rapid'L mono. The pan-genome was extracted with the software Roary V. 3.12.0 and Genome Wide Association Study (GWAS) was performed with Scoary V. 1.6.16 (1, 2) to extract the matrix of presence/absence of genes in the phenotypes clustered in three groups (phenotype 1, 2 and 3) after Ascending Hierarchical Clustering. The genes with significant association (p < 0.05) were reported.

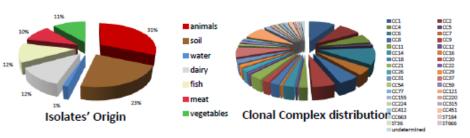


Figure 1. Origin and phylogenetic distribution of the collection of isolates of L. monocytogenes.

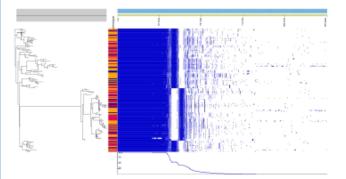


Figure 3. Representation of the pan-genome (3) of the collection according to the phylogenetic position of the isolate. Annotation of the survival potential is also given.

The presence and absence of core and accessory genes is consistent with the phylogenetic tree, discriminating lineage 1 from lineage 2 isolates.

However, the analysis was not discriminant regarding the phenotype. Indeed, low sensitivity or specificity (<50%) were recorded in the matrix.

Then, the analysis was performed within CCs.

Listadapt

Beference: 1. Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuber, S., Holden, M. T., ... & Parihill, J. (2015). Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 31(22), 3893-3893.
2. Brynlibrud, O., Bohlin, J., Scheffer, L., & Ekblohn, V. (2016). Regid sconing of genes in microbial pan-genome-wide sanocistion studies with Scoary. Genome biology, 17(1), 238.
3. Healfield, J., Occuber, N. J., Goster, R., J., Abdusha, K., Asenarano, D. M., & Jartin, S.R. (2017). Phandango: an interactive viewer for bacterial population genomics. Bioinformatics, 34(2), 392

Figure 2. Ascending Hierarchical Clustering of the survival data. 3 groups were identified and further used for GWAS.

BIOR

Table 1. Summary of the GWAS Scoary results for CC6 isolates

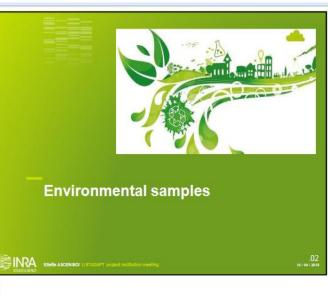
	Absence	presence
Phenotype 3	5 phage-related genes	in/H variant
Phenotype 2	clpC, ctsR	4 genes coding hypothetical proteins
Phenotype 1	-	6 phage-related genes

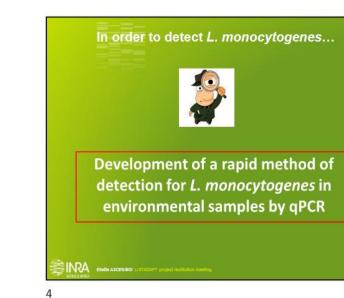
Conclusions

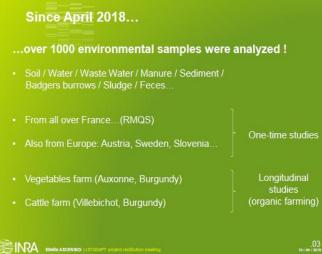
- ✓ The fitness of L. monocytogenes in soil showed large intra-specific diversity.
- No direct correlation between the origin and the phenotype could be found.
- ✓ GWAS on the whole set of data was inconclusive indicating than there is not a single mechanism of adaptation to survival in soil but several that are specific to clonal complexes
- When conducted on isolates from the same Clonal Complex, presence/absence of genes statistically significant were identified.
- For example within CC6 the analysis suggests that phage insertion affects fitness in soil while surface protein variants may have an adaptive advantage in soil.

Conclusion

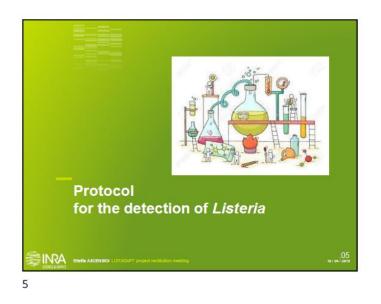
Our results confirmed that bacteria from the genus Listeria can be found in soil. However, the percentage of detection is rather low. Moreover, less than 2% of the samples were positive for the presence of *Listeria monocytogenes*. These figures are in agreement with the data from the literature.

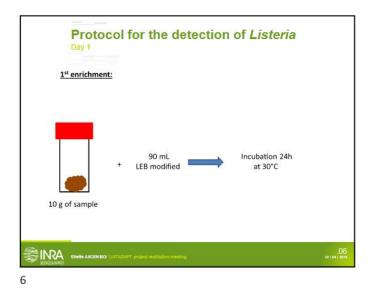

Strong phenotypic heterogeneity was observed regarding soil survival but direct correlations with the origin of the strain nor lineage could not be found. Genome Wide Association Study was inconclusive when tested on the whole panel of strains. This is a consequence of the large intraspecific biodiversity of the species *Listeria monocytogenes*. However, when GWAS was performed on closely related strains, significant correlations could be evidenced and putative mechanisms important for soil survival were highlighted.

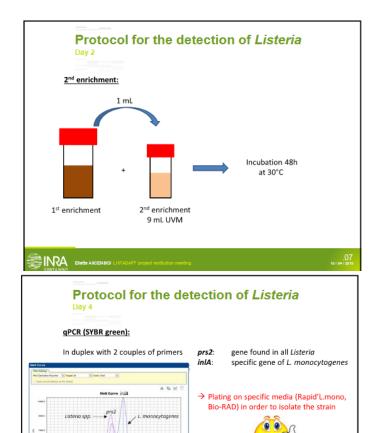


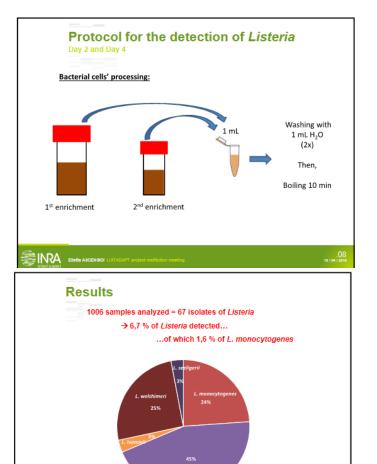


Suppl. Data 1: Presentation EJP April 2019 Maisons-Alfort

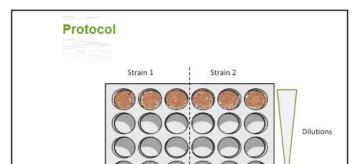


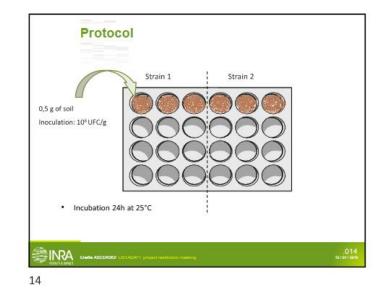






Survival of L. monocytogenes in soil


What kind of soil ?


non-sterile clay loamy soil from Epoisses (Burgundy, France)

Which strains of L. monocytogenes ?

- ~ 200 clinical and food-borne strains from ANSES (sequenced)
- 20 strains from Switzerland (sequenced)
 30 strains from our collection of field strains (sequenced and in progress)

13

