#include #include #include static void compress(unsigned int *iv, const uint8_t *data); #define MASK_TWENTY_SEVEN 0x1b unsigned int _copy(uint8_t *to, unsigned int to_len, const uint8_t *from, unsigned int from_len) { if (from_len <= to_len) { (void)memcpy(to, from, from_len); return from_len; } else { return TC_CRYPTO_FAIL; } } void _set(void *to, uint8_t val, unsigned int len) { (void)memset(to, val, len); } /* * Doubles the value of a byte for values up to 127. */ uint8_t _double_byte(uint8_t a) { return ((a<<1) ^ ((a>>7) * MASK_TWENTY_SEVEN)); } int _compare(const uint8_t *a, const uint8_t *b, size_t size) { const uint8_t *tempa = a; const uint8_t *tempb = b; uint8_t result = 0; for (unsigned int i = 0; i < size; i++) { result |= tempa[i] ^ tempb[i]; } return result; } int tc_sha256_init(TCSha256State_t s) { /* input sanity check: */ if (s == (TCSha256State_t) 0) { return TC_CRYPTO_FAIL; } /* * Setting the initial state values. * These values correspond to the first 32 bits of the fractional parts * of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17 * and 19. */ _set((uint8_t *) s, 0x00, sizeof(*s)); s->iv[0] = 0x6a09e667; s->iv[1] = 0xbb67ae85; s->iv[2] = 0x3c6ef372; s->iv[3] = 0xa54ff53a; s->iv[4] = 0x510e527f; s->iv[5] = 0x9b05688c; s->iv[6] = 0x1f83d9ab; s->iv[7] = 0x5be0cd19; return TC_CRYPTO_SUCCESS; } int tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen) { /* input sanity check: */ if (s == (TCSha256State_t) 0 || data == (void *) 0) { return TC_CRYPTO_FAIL; } else if (datalen == 0) { return TC_CRYPTO_SUCCESS; } while (datalen-- > 0) { s->leftover[s->leftover_offset++] = *(data++); if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) { compress(s->iv, s->leftover); s->leftover_offset = 0; s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3); } } return TC_CRYPTO_SUCCESS; } int tc_sha256_final(uint8_t *digest, TCSha256State_t s) { unsigned int i; /* input sanity check: */ if (digest == (uint8_t *) 0 || s == (TCSha256State_t) 0) { return TC_CRYPTO_FAIL; } s->bits_hashed += (s->leftover_offset << 3); s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */ if (s->leftover_offset > (sizeof(s->leftover) - 8)) { /* there is not room for all the padding in this block */ _set(s->leftover + s->leftover_offset, 0x00, sizeof(s->leftover) - s->leftover_offset); compress(s->iv, s->leftover); s->leftover_offset = 0; } /* add the padding and the length in big-Endian format */ _set(s->leftover + s->leftover_offset, 0x00, sizeof(s->leftover) - 8 - s->leftover_offset); s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed); s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8); s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16); s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24); s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32); s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40); s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48); s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56); /* hash the padding and length */ compress(s->iv, s->leftover); /* copy the iv out to digest */ for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) { unsigned int t = *((unsigned int *) &s->iv[i]); *digest++ = (uint8_t)(t >> 24); *digest++ = (uint8_t)(t >> 16); *digest++ = (uint8_t)(t >> 8); *digest++ = (uint8_t)(t); } /* destroy the current state */ _set(s, 0, sizeof(*s)); return TC_CRYPTO_SUCCESS; } /* * Initializing SHA-256 Hash constant words K. * These values correspond to the first 32 bits of the fractional parts of the * cube roots of the first 64 primes between 2 and 311. */ static const unsigned int k256[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static inline unsigned int ROTR(unsigned int a, unsigned int n) { return (((a) >> n) | ((a) << (32 - n))); } #define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22)) #define Sigma1(a)(ROTR((a), 6) ^ ROTR((a), 11) ^ ROTR((a), 25)) #define sigma0(a)(ROTR((a), 7) ^ ROTR((a), 18) ^ ((a) >> 3)) #define sigma1(a)(ROTR((a), 17) ^ ROTR((a), 19) ^ ((a) >> 10)) #define Ch(a, b, c)(((a) & (b)) ^ ((~(a)) & (c))) #define Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))) static inline unsigned int BigEndian(const uint8_t **c) { unsigned int n = 0; n = (((unsigned int)(*((*c)++))) << 24); n |= ((unsigned int)(*((*c)++)) << 16); n |= ((unsigned int)(*((*c)++)) << 8); n |= ((unsigned int)(*((*c)++))); return n; } static void compress(unsigned int *iv, const uint8_t *data) { unsigned int a, b, c, d, e, f, g, h; unsigned int s0, s1; unsigned int t1, t2; unsigned int work_space[16]; unsigned int n; unsigned int i; a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3]; e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7]; for (i = 0; i < 16; ++i) { n = BigEndian(&data); t1 = work_space[i] = n; t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i]; t2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } for ( ; i < 64; ++i) { s0 = work_space[(i+1)&0x0f]; s0 = sigma0(s0); s1 = work_space[(i+14)&0x0f]; s1 = sigma1(s1); t1 = work_space[i&0xf] += s0 + s1 + work_space[(i+9)&0xf]; t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i]; t2 = Sigma0(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d; iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h; } static void rekey(uint8_t *key, const uint8_t *new_key, unsigned int key_size) { const uint8_t inner_pad = (uint8_t) 0x36; const uint8_t outer_pad = (uint8_t) 0x5c; unsigned int i; for (i = 0; i < key_size; ++i) { key[i] = inner_pad ^ new_key[i]; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i]; } for (; i < TC_SHA256_BLOCK_SIZE; ++i) { key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad; } } int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key, unsigned int key_size) { /* Input sanity check */ if (ctx == (TCHmacState_t) 0 || key == (const uint8_t *) 0 || key_size == 0) { return TC_CRYPTO_FAIL; } const uint8_t dummy_key[TC_SHA256_BLOCK_SIZE]; struct tc_hmac_state_struct dummy_state; if (key_size <= TC_SHA256_BLOCK_SIZE) { /* * The next three calls are dummy calls just to avoid * certain timing attacks. Without these dummy calls, * adversaries would be able to learn whether the key_size is * greater than TC_SHA256_BLOCK_SIZE by measuring the time * consumed in this process. */ (void)tc_sha256_init(&dummy_state.hash_state); (void)tc_sha256_update(&dummy_state.hash_state, dummy_key, key_size); (void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE], &dummy_state.hash_state); /* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */ rekey(ctx->key, key, key_size); } else { (void)tc_sha256_init(&ctx->hash_state); (void)tc_sha256_update(&ctx->hash_state, key, key_size); (void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE], &ctx->hash_state); rekey(ctx->key, &ctx->key[TC_SHA256_DIGEST_SIZE], TC_SHA256_DIGEST_SIZE); } return TC_CRYPTO_SUCCESS; } int tc_hmac_init(TCHmacState_t ctx) { /* input sanity check: */ if (ctx == (TCHmacState_t) 0) { return TC_CRYPTO_FAIL; } (void) tc_sha256_init(&ctx->hash_state); (void) tc_sha256_update(&ctx->hash_state, ctx->key, TC_SHA256_BLOCK_SIZE); return TC_CRYPTO_SUCCESS; } int tc_hmac_update(TCHmacState_t ctx, const void *data, unsigned int data_length) { /* input sanity check: */ if (ctx == (TCHmacState_t) 0) { return TC_CRYPTO_FAIL; } (void)tc_sha256_update(&ctx->hash_state, data, data_length); return TC_CRYPTO_SUCCESS; } int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx) { /* input sanity check: */ if (tag == (uint8_t *) 0 || taglen != TC_SHA256_DIGEST_SIZE || ctx == (TCHmacState_t) 0) { return TC_CRYPTO_FAIL; } (void) tc_sha256_final(tag, &ctx->hash_state); (void)tc_sha256_init(&ctx->hash_state); (void)tc_sha256_update(&ctx->hash_state, &ctx->key[TC_SHA256_BLOCK_SIZE], TC_SHA256_BLOCK_SIZE); (void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE); (void)tc_sha256_final(tag, &ctx->hash_state); /* destroy the current state */ _set(ctx, 0, sizeof(*ctx)); return TC_CRYPTO_SUCCESS; }