#include #include #include #include #include #include #include #define MASK_TWENTY_SEVEN 0x1b #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif int default_CSPRNG(uint8_t *dest, unsigned int size) { /* input sanity check: */ if (dest == (uint8_t *) 0 || (size <= 0)) return 0; int i; for (i = 0; i < size; ++i) { dest[i] = rand(); } return 1; } static const uint8_t sbox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const uint8_t inv_sbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; static inline unsigned int rotword(unsigned int a) { return (((a) >> 24)|((a) << 8)); } #define subbyte(a, o)(sbox[((a) >> (o))&0xff] << (o)) #define subword(a)(subbyte(a, 24)|subbyte(a, 16)|subbyte(a, 8)|subbyte(a, 0)) #define mult8(a)(_double_byte(_double_byte(_double_byte(a)))) #define mult9(a)(mult8(a)^(a)) #define multb(a)(mult8(a)^_double_byte(a)^(a)) #define multd(a)(mult8(a)^_double_byte(_double_byte(a))^(a)) #define multe(a)(mult8(a)^_double_byte(_double_byte(a))^_double_byte(a)) #define triple(a)(_double_byte(a)^(a)) int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k) { const unsigned int rconst[11] = { 0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000 }; unsigned int i; unsigned int t; if (s == (TCAesKeySched_t) 0) { return TC_CRYPTO_FAIL; } else if (k == (const uint8_t *) 0) { return TC_CRYPTO_FAIL; } for (i = 0; i < Nk; ++i) { s->words[i] = (k[Nb*i]<<24) | (k[Nb*i+1]<<16) | (k[Nb*i+2]<<8) | (k[Nb*i+3]); } for (; i < (Nb * (Nr + 1)); ++i) { t = s->words[i-1]; if ((i % Nk) == 0) { t = subword(rotword(t)) ^ rconst[i/Nk]; } s->words[i] = s->words[i-Nk] ^ t; } return TC_CRYPTO_SUCCESS; } int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k) { return tc_aes128_set_encrypt_key(s, k); } static inline void add_round_key(uint8_t *s, const unsigned int *k) { s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16); s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]); s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16); s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]); s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16); s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]); s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16); s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]); } static inline void sub_bytes(uint8_t *s) { unsigned int i; for (i = 0; i < (Nb * Nk); ++i) { s[i] = sbox[s[i]]; } } static inline void inv_sub_bytes(uint8_t *s) { unsigned int i; for (i = 0; i < (Nb * Nk); ++i) { s[i] = inv_sbox[s[i]]; } } static inline void mult_row_column(uint8_t *out, const uint8_t *in) { out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3]; out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3]; out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]); out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]); } static inline void multD_row_column(uint8_t *out, const uint8_t *in) { out[0] = multe(in[0]) ^ multb(in[1]) ^ multd(in[2]) ^ mult9(in[3]); out[1] = mult9(in[0]) ^ multe(in[1]) ^ multb(in[2]) ^ multd(in[3]); out[2] = multd(in[0]) ^ mult9(in[1]) ^ multe(in[2]) ^ multb(in[3]); out[3] = multb(in[0]) ^ multd(in[1]) ^ mult9(in[2]) ^ multe(in[3]); } static inline void inv_mix_columns(uint8_t *s) { uint8_t t[Nb*Nk]; multD_row_column(t, s); multD_row_column(&t[Nb], s+Nb); multD_row_column(&t[2*Nb], s+(2*Nb)); multD_row_column(&t[3*Nb], s+(3*Nb)); (void)_copy(s, sizeof(t), t, sizeof(t)); } static inline void mix_columns(uint8_t *s) { uint8_t t[Nb*Nk]; mult_row_column(t, s); mult_row_column(&t[Nb], s+Nb); mult_row_column(&t[2 * Nb], s + (2 * Nb)); mult_row_column(&t[3 * Nb], s + (3 * Nb)); (void) _copy(s, sizeof(t), t, sizeof(t)); } /* * This shift_rows also implements the matrix flip required for mix_columns, but performs it here to reduce the number of memory operations. */ static inline void shift_rows(uint8_t *s) { uint8_t t[Nb * Nk]; t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15]; t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3]; t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7]; t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11]; (void) _copy(s, sizeof(t), t, sizeof(t)); } /* * This inv_shift_rows also implements the matrix flip required for inv_mix_columns, but performs it here to reduce the number of memory operations. */ static inline void inv_shift_rows(uint8_t *s) { uint8_t t[Nb * Nk]; t[0] = s[0]; t[1] = s[13]; t[2] = s[10]; t[3] = s[7]; t[4] = s[4]; t[5] = s[1]; t[6] = s[14]; t[7] = s[11]; t[8] = s[8]; t[9] = s[5]; t[10] = s[2]; t[11] = s[15]; t[12] = s[12]; t[13] = s[9]; t[14] = s[6]; t[15] = s[3]; (void)_copy(s, sizeof(t), t, sizeof(t)); } int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s) { uint8_t state[Nk * Nb]; unsigned int i; if (out == (uint8_t *) 0) { return TC_CRYPTO_FAIL; } else if (in == (const uint8_t *) 0) { return TC_CRYPTO_FAIL; } else if (s == (TCAesKeySched_t) 0) { return TC_CRYPTO_FAIL; } (void)_copy(state, sizeof(state), in, sizeof(state)); add_round_key(state, s->words); for (i = 0; i < (Nr - 1); ++i) { sub_bytes(state); shift_rows(state); mix_columns(state); add_round_key(state, s->words + Nb*(i+1)); } sub_bytes(state); shift_rows(state); add_round_key(state, s->words + Nb*(i+1)); (void)_copy(out, sizeof(state), state, sizeof(state)); /* zeroing out the state buffer */ _set(state, TC_ZERO_BYTE, sizeof(state)); return TC_CRYPTO_SUCCESS; } int tc_aes_decrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s) { uint8_t state[Nk*Nb]; unsigned int i; if (out == (uint8_t *) 0) { return TC_CRYPTO_FAIL; } else if (in == (const uint8_t *) 0) { return TC_CRYPTO_FAIL; } else if (s == (TCAesKeySched_t) 0) { return TC_CRYPTO_FAIL; } (void)_copy(state, sizeof(state), in, sizeof(state)); add_round_key(state, s->words + Nb*Nr); for (i = Nr - 1; i > 0; --i) { inv_shift_rows(state); inv_sub_bytes(state); add_round_key(state, s->words + Nb*i); inv_mix_columns(state); } inv_shift_rows(state); inv_sub_bytes(state); add_round_key(state, s->words); (void)_copy(out, sizeof(state), state, sizeof(state)); /*zeroing out the state buffer */ _set(state, TC_ZERO_BYTE, sizeof(state)); return TC_CRYPTO_SUCCESS; }