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Supplementary Note 1: Reaction pathway for the formation of the GNR junctions

Supplementary Figure 1 shows a plausible mechanism for the formation of the GNR junctions.
First, CH activation would form the corresponding sigma-radicals which could evolve by C-
C coupling followed by cyclodehydrogenation to obtain a five-membered ring (in red). Then,
fragmentation of a benzene ring, followed by H migration could lead to a terminal alkyne (in
blue). Finally, isomerization of a double bond, followed by cyclization of the terminal alkyne
with a bay region of the GNR, could afford the final GNR junction.

Supplementary Figure 1. Proposed reaction pathway for the formation of the graphene
nanostructures.
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Supplementary Note 2: Statistics of different types of junctions

In the main text we studied three different nanostructure junctions (Figs. 1 and 2). Here we
show the frequency statistics of the three types. From the 45 different junctions studied, 30 of
them are identified as Type 3 junctions, while 9 and 5 of them are identified as Type 1 and Type
2 junctions respectively (Supplementary Figure 2a). From this statistics, we deduced that the
ZZ sites are more favorable to incorporate an extra hydrogen atom and get passivated, becoming
Type 1 junctions (22% of the radicals). The PC sites had an extra atom only in 13% of the cases,
thus appearing as Type 2 junctions. The overall percentage of H-passivation observed here is
comparable to the value found at the termination of armchair GNRs1, which happened in 15%
of the occasions.

In one case out of the 45 nanostructures studied, the junction appeared with same back-
bone structure as the other, but with neither bright sites, nor zero-bias features in the spectra.
Supplementary Figure 2b shows a constant height current image of that junction. The ring struc-
ture can be now nicely resolved, following the sketch in Fig. 1d of the main text. The absence
of spins here is attributed to the passivation of both radical sites by two extra H atoms.

Type 1 Type 2 Type 3
0

5

10

15

20

25

30
 

 

C
ou

nt
s 

Type 4a b

Supplementary Figure 2. Statistics of different types of junctions. a, Bar plot of the number
of three types of junctions studied in the main text. b, Constant-height current image (V = 2
mV, scale bar 0.5 nm) shows another type of junctions with both radicals are passivated by H
atoms, which is classified as Type 4 junction.
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Supplementary Note 3: Temperature and magnetic field evolution of the Kondo reso-
nance

Figure 2 in the main text shows the temperature evolution of the Kondo resonance (Figure 2c)
and the broadening of its line-width at 1.2 K in response to an external applied magnetic field
(Figure 2d). Both are fingerprints of the Kondo-origin of the zero-bias resonance, which signals
the presence of a localized magnetic moment. The linewidth of the Kondo resonance was
obtained from a Frota function 2, as indicated in ref. 3, and corrected by the thermal broadening
of the tips Fermi edge using a simple quadratic approximation. We obtain that at the lowest
temperature of our experiment (1.07 K) and smallest bias modulation (100 µeV) the intrinsic
HWHM of the zero-bias resonance is 0.64 meV. Such narrow linewidth is unrealistic for a
single-particle state, because it would imply a negligible interaction with the environment and,
since it lies at zero bias - i.e. it is singly occupied, a negligible effect of Coulomb e-e blockade
in the tunneling process.

Instead, we demonstrate in the main text (inset of Fig. 2c) that the HWHM follows an
additional unconventional thermal broadening, after removal of the thermal broadening of the
tips Fermi edge. This broadening follows the empirically expression 1

2

√
(αkBT )2 + (2kBTK)2

obtained for Kondo resonances in the Fermi Liquid approximation 3, 4, and we obtain a Kondo
temperature TK ∼ 6 K and α = 9.5. The narrow linewidth allows us to also explore the
effect of an external magnetic field. As shown in Figure 2d and here, in Supplementary Figure
3, a significant reduction of intensity and a linewidth broadening amounting to ∼ 0.6 meV is
detected for applied magnetic fields of 2.8 T, in agreement with the expected behaviour of a
Kondo resonance caused by a spin 1/2. As shown in Ref. 5, for temperatures sufficiently below
TK , the Kondo resonance of a spin should split above a critical magnetic field of B ∼0.5 Tk.
The flat cusp suggests that at the maximum B of our setup we are close to a complete split,
which should then occur at ∼ 3 T.
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Supplementary Figure 3. Magnetid field
broadening of the Kondo resonance. We
compare here the zero-bias resonance pre-
sented in Fig. 2d for 0 T and 2.8 T. Both spec-
tra are measured at 1.2K and with a bias mod-
ulation of 0.1 mV @ 760 Hz. The FWHM of
resonance at 2.8 T is ∼ 2×300 µeV broader,
in agreement with the expected broadening of
a spin 1/2.
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Supplementary Note 4: Understanding the appearance of spins in the junctions from
Clar’s theory

In the main text, we used both DFT and Hubbard Mean Field simulations to show that the
spins in Type 3 junctions comes from two in-gap states, simply occupied as a result of electron-
election correlations. An alternative and intuitive chemical picture behind the emergence of
singly occupied radical states can be drawn bearing in mind Clar’s aromatic pi-sextet rule 6.
Supplementary Figure 4 shows two possible resonance structures for the GNR junction: the
closed shell structure a, with 8 Clar sextets, and the open shell structure b, with 11 Clar sextets
and two radicals at the PC and ZZ sites. The dominance of resonance structure b in our experi-
ments means that the energy required to create the two unpaired electrons (radicals) in structure
b is compensated by the stabilization provided by the presence of three additional Clar sextets.
In fact, the radical sites can delocalize towards the two second neighbor edge carbon atoms,
agreeing with the carbon sites with high density of states shown in Fig. 1e in the main text.
Hence, this phenomenological model can qualitatively explain the spontaneous appearance of
spin in the nanostructures.

a b

Supplementary Figure 4. Understanding the appearance of spins in the nanostructures
from Clar’s theory. a, Close-shell resonant structure of a Type 3 nanostructure, with its
Clar’s sextets indicated with ”c”. b, Di-radical form of the model structure in a, hosting three
additional sextets. Only the H atom of the sites becoming radicals is shown in this model.
Structure b is the energetically most stable if the energy gain by incorporating the additional
sextets compensates the energy cost for creating the pair of radicals. In this case, the di-radical
form is expected to show spin-polarization at the radical sites.
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Supplementary Note 5: Transport spectra of Type 2 junctions

In Fig. 5 of the main text, we studied the behaviour of a spin localized at the PC site in a trans-
port measurement, when a Type 3 junction was contacted with the STM tip at the neighbour
ZZ site and lifted. Electrons injected through the conjugated backbone reproduced the Kondo
resonance observed in tunneling regime. For comparison, here we show similar transport mea-
surement for a Type 2 junction, i.e. when there is no spin in the graphene nanostructure. As in
the other case, the STM tip was approached to the radical at the ZZ site to make a bond between
nanostructure and STM tip (illustrated in Supplementary Figure 5). Before bond formation, the
characteristic Kondo resonance of Type 2 junctions is observed in the dI/dV spectra (point 1
in the figure). However, once the radical bonded to the tip (signalled by the characteristic jump-
to-contact step), the junction bridged tip and substrate and the Kondo resonance disappeared.
This proves that the tip-radical contact quenches the magnetic moment of this site, as presumed
Figure 5 of the main text. It also proves that the Kondo feature observed in Fig. 5 for the lifted
junction correspond to the PC spin embedded in the cGNR junction.
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Supplementary Figure 5. Transport properties of the lifted junctions without radical. a,
Schema illustrating the process, when the STM tip was approached to the ZZ radical of a Type 2
junction (gray dashed arrow) to form a contact. b, Simultaneously recorded conductance curve
(V = −50 mV) during the process in a. Red and black dots indicate the vertical positions at
whcih dI/dV spectra in c were taken.
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Supplementary Note 6: DFT simulations

We performed calculations with the SIESTA implementation 7 of density functional theory
(DFT). Exchange and correlation (XC) were included within either the local (spin) density
approximation (LDA) 8 or the generalized gradient approximation (GGA) 9. We used a 400 Ry
cutoff for the real-space grid integrations and a double-zeta plus polarization (DZP) basis set
generated with an 0.02 Ry energy shift for the cutoff radii. The molecules, represented with
periodic unit cells, were separated by a vacuum of at least 10 Å in any direction. The electronic
density was converged to a stringent criterion of 105. The force tolerance was set to 0.002 eV/Å.
In Fig. 3 in the main text we report the GGA results.

Role of exchange-correlation functional In Supplementary Figure 6 we compare the calcu-
lated spin polarization for the generic (2,2) graphene nanojunction within both LDA 8 and GGA
9 XC approximations. We also compare the real-space spin density with a Mulliken population
analysis. From Supplementary Figure 6 it is clear that the emerging picture for the radicals is
robust among all four approaches. As expected, the intensity of the spin polarization is more
pronounced in GGA than in LDA.

Energetically preferred hydrogen passivation sites In the main text we showed the hydrogen
passivation on ZZ sites (Type 1 junctions) and PC sites (Type 2 junctions). In Supplementary
Figure 2 we report a higher probability of hydrogen passivation on ZZ sites than PC sites. To
quantitatively study this phenomenon, we analysed the energetics of different hydrogen pas-
sivation of the edges from DFT simulations. The results are summarized in Supplementary
Figure 7. We find that hydrogen passivation on the ZZ and PC sites are indeed the two most
stable configurations, with the former being the energetically most favoured one. This is in
agreement with the experimental observations (Supplementary Figure 2).
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Supplementary Figure 6. Spin polarization in the (2,2)-junction from DFT simulations.
a, Real-space spin density calculated within LDA. b, Mulliken population analysis of the spin
density calculated within LDA. c,d Same as a,b but for GGA. Panel d corresponds to Fig. 3a in
the main text.
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Supplementary Figure 7. Energetics and spin polarization for five energetically preferred
hydrogen passivation sites from DFT simulations. a-e, Results from LDA calculations via
a Mulliken population analysis. The hydrogen passivation (blue circles) shown in a on the ZZ
site is the most stable configuration, while the other sites are less energetically favoured with
the energy differences quoted in each panel. f-j, Same molecules as in a-e but results from GGA
calculations. Panels f,g correspond to Fig. 3b in the main text.
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Supplementary Note 7: Mean-field Hubbard model

To complement the DFT simulations described above we also performed simulations based
on the mean-field Hubbard (MFH) model, known to provide a good description for carbon π-
electron systems 10–14. We describe the graphene nanostuctures with the following Hamiltonian
for the sp2 carbon atoms:

H = −t1
∑

〈i,j〉,σ
(c†iσcjσ + h.c.)− t2

∑

〈〈i,j〉〉,σ
(c†iσcjσ + h.c.)− t3

∑

〈〈〈i,j〉〉〉,σ
(c†iσcjσ + h.c.)

+U
∑

〈i
(ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉) (1)

where ciσ (c†iσ) annihilates (creates) an electron with spin σ in the pz orbital centred at site i.
The first three terms describe a tight-binding model with hopping amplitudes t1, t2, and t3 for
the first, second, and third-nearest neighbour matrix elements (defined in terms of interatomic
distances d1 < 1.6Å< d2 < 2.6Å< d3 < 3.1Å). We follow the parameterizations of Ref. 14 and
consider both a simple first-nearest neighbour (1NN) model with t1 = 2.7 eV and t2 = t3 = 0
as well as a more accurate third-nearest neighbour (3NN) model with t1 = 2.7 eV, t2 = 0.2 eV,
and t3 = 0.18 eV.

The term proportional to the empirical parameter U accounts for the on-site Coulomb
repulsion. By comparison with first-principles simulations it has been established that DFT-
GGA (DFT-LDA) are generally best reproduced when U/t ≈ 1.3 (0.9) 12. Consistent with this,
we find a good overall agreement with our experimental observations using U ∼ 3.5 eV as
analysed below.

The expectation value of the spin-resolved density operator niσ = c†iσciσ is computed
from the eigenvectors of H . From the self-consistent solution of the Hamiltonian in Eq. (1) we
obtain the local spin density from the charge difference Qi↑ −Qi↓, with Qiσ = e〈niσ〉. In units
of µB the magnetization is Mi = (ni↑ − ni↓)/2.

We solve the mean-field Hubbard model using a custom-made Python implementation
based on SISL 15. In Fig. 3 in the main text we report the non-interacting single-particle wave
functions in the 3NN model (U = 0) as a basis to understand the open-shell electronic configu-
rations obtained in DFT and MFH.
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Band structure of infinite (3,1)cGNRs As shown in Supplementary Figures 8 and 9, both
the first-neighbour and third-neighbour MFH models (red bands) provide a good description
for the 1D band structure of the (3,1) chiral graphene nanoribbon (cGNR) as compared to DFT
calculations (black bands) obtained with SIESTA 7. Unlike DFT and the 3NN model, the simple
1NN model implies electron-hole symmetry of the bands. The low-energy part of the DFT band
structure is generally very well reproduced with MFH using an on-site Coulomb repulsion of
U ≤ 3.5 eV. Indeed this narrow cGNR is intrinsically non-magnetic, consistent with previous
works 12, 13, 16.
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Supplementary Figure 8. Calculated 1D band structure for the (3,1)cGNR. We compare
DFT-LDA (black lines) with the mean-field Hubbard model with different Coulomb repulsion
U (red lines) within either (a-e) first-nearest neighbour couplings only (t1 = 2.70 eV, top row)
or (f-j) third-nearest neighbour couplings (t1 = 2.70 eV, t2 = 0.20 eV, and t3 = 0.18 eV, bottom
row).
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Supplementary Figure 9. Calculated 1D band structure for the (3,1)cGNR. We compare
DFT-GGA (black lines) with the mean-field Hubbard model with different Coulomb repulsion
U (red lines) within either (a-e) first-nearest neighbour couplings only (t1 = 2.70 eV, top row)
or (f-j) third-nearest neighbour couplings (t1 = 2.70 eV, t2 = 0.20 eV, and t3 = 0.18 eV, bottom
row).
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Single-particle wave functions In Supplementary Figure 10 and Supplementary Figure 11 we
analyze the eigenspectrum of energies and states in both the non-interacting (U = 0) and inter-
acting (U = 3.5 eV) MFH Hamiltonians. The degree of spatial localization of each state is com-
puted as ηασ =

∫
dr|ψασ|4, also denoted the inverse participation ratio 17. The HOMO/LUMO

wave functions, shown in Supplementary Figure 12 for U = 0 and in Supplementary Figure 13
for U = 3.5 eV, are concentrated around the radical sites of the structure.
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Supplementary Figure 10. Single-particle orbital localization ηασ versus single-particle
energy Eασ in the 1NN model. Here we consider two characteristic values of U in both the
1NN and 3NN TB models. Among all states the LUMO orbital (σ =↑ for finite U ) is the most
localized one.
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Supplementary Figure 11. Single-particle orbital localization ηασ versus single-particle
energy Eασ in the 3NN model. Here we consider two characteristic values of U in both the
1NN and 3NN TB models. Among all states the LUMO orbital (σ =↑ for finite U ) is the most
localized one.
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Supplementary Figure 12. Single-particle wave functions from MFH with U = 0 eV. a,b,
Spatial distribution of the HOMO and LUMO wave functions within the 1NN model. c,d, Same
as a,b but within the 3NN model. Panels c,d correspond to Fig. 3e in the main text. The single-
particle energies relative to the midgap are stated below each plot. The size and color of the
red-green circles reflect magnitude and phase of the wave function coefficients on each carbon
atom, respectively.
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Supplementary Figure 13. Single-particle wave functions from MFH within the 3NN
model with U = 3.5 eV. a,b, Spatial distribution of the SOMO and LUMO wave functions
for the spin-up electrons, respectively. c,d, Same as a,b but for the spin-down electrons. The
single-particle state energies relative to the midgap are stated below each plot. The size and
color of the red-green circles reflect magnitude and phase of the wave function coefficients on
each carbon atom, respectively.
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Spin polarization In Supplementary Figure 14 we examine the spatial spin density obtained
with MFH for both 1NN and 3NN models and varying on-site Coulomb repulsion. In the 1NN
(3NN) model the onset of spin polarization occurs around U = 3.1 (2.7) eV. Compared with
the DFT results in Supplementary Figure 6 (and the band structures of the previous section) we
conclude that the 3NN model with Coulomb repulsion of the order U = 3.5 eV yields a very
satisfactory agreement with DFT.
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Supplementary Figure 14. Spin density from MFH calculations. (a-d) Spatial spin density,
computed at site i as Qi↑−Qi↓, for different values of the on-site Coulomb repulsion parameter
U . (e-h) Same as (a-d) but for the 3NN model.
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Singlet-triplet excitations From Supplementary Figure 14 we have established that U = 3.5
eV yields a good description for these nanostructures as compared with DFT. As an approxima-
tion to the true singlet-triplet excitation energy J , we computed the mean-field energy difference
∆EST between the converged electronic configurations with n↑ = n↓ and n↑ = n↓+ 2. In Sup-
plementary Figure 15 we explore the variation of ∆EST with U for a Type 3 junction. Within
the 3NN model a minimum is observed close to ∆EST ∼ 19 meV at U ∼ 3.5 eV, in reasonable
agreement with (albeit larger than) the experimentally observed peak splitting.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

U (eV)

20

40

60

80

100

∆
E
S
T

(m
eV

)

1NN

3NN

Supplementary Figure 15. Singlet-triplet excitation energy ∆EST versus U . We consider
here the prototype molecule (L,R) = (2, 2) within both the 1NN and 3NN models. The curves
increase monotonically to the HOMO-LUMO gap ∆EH−L = 0.328 (0.242) eV in the limit
U → 0 for the 1NN (3NN) model.
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Supplementary Note 8: Singlet-triplet excitations vs molecular size

In the main text we have shown hat the singlet-triplet excitation energy of Type 3 junctions
decreases with the size of the junctions, namely, with the length of the contacted ribbons. Here,
we present results of the interaction energy between two coupled spins for several junctions
with the structure shown in Supplementary Figure 16a, which corroborate this dependence.

In Supplementary Figure 16b we report experimentally extracted values of the singlet-
triplet excitation energy from fits of a set of junctions, all with a similarly long arm a, as a
function of the length of arm b. When the arm b consists of two precursor units, the singlet-
triplet excitation energy is relatively low (below 3 meV), but for larger length of b (more than
three precursor units) the energy difference raises quickly to around 8 meV. This trend is con-
firmed by the MFH simulations (Supplementary Figure 16c,d) both with the first-nearest hop-
ping model (1NN) and the third-nearest hopping model (3NN). However, the experimental val-
ues are smaller than the computed ones. The origin of this could be related to the presence of a
metal surface in the experiment, to the approximation of having only local Coulomb repulsion
in the theory, or to limitation of the meanfield description.
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Supplementary Figure 16. Size-dependent singlet-triplet excitation energy of Type 3 junc-
tions. a, Backbone structure of a Type 3 junction to illustrate how the size of a junction is
measured in terms of the number of precursor units of each of its arms (defined as arm L and
R as in the main text). b, Experimentally obtained spin-spin coupling energy J plotted as a
function of the length of arm R. All junctions had arm L > 7. Each data point was extracted
from a fit of dI/dV spectra as described in Fig. 2f. c, Calculated excitation energies as a func-
tion of the length of arm R within MFH with U = 3.5 eV in the first-nearest hopping model
(1NN). Here the length of arm a are fixed as 7 and 10, respectively. d, Same as c but for the
third-nearest hopping model (3NN).
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