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Abstract 

 

The goal of the present paper is to discuss the reliability of a 

strain-based multiaxial Low-Cycle Fatigue (LCF) criterion, recently 

proposed by some of the present authors, in estimating the fatigue 

lifetime of metallic structural components weakened by sharp 

notches.  Such a criterion, based on the critical plane approach, is 

formulated according to the control volume concept related to the 

Strain Energy Density (SED) criterion: a material point located at a 

certain distance from the notch tip is assumed to be the 

verification point where to perform the fatigue assessment.  The 

above distance is assumed to be a function of both the biaxiality 

ratio (applied shear stress amplitude over normal stress amplitude) 
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and the control volume radii under pure Mode I and pure Mode III 

loading conditions.  Once the position of the verification point and 

the orientation of the critical plane are determined, the fatigue 

lifetime is theoretically evaluated through an equivalent normal 

strain amplitude acting on the critical plane, together with the 

tensile Manson-Coffin curve.  Some uniaxial and multiaxial LCF data, 

recently published in the literature for V-notched round bars made 

of Ti-6Al-4V titanium alloy, are analysed through the present 

criterion. 

 

KEYWORDS: critical plane approach; control volume concept; 

multiaxial low-cycle fatigue; notched components; strain-based 

criterion 
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NOMENCLATURE 

 

1e  notch geometry parameter related to Mode I 

3e  notch geometry parameter related to Mode III 

I  error index 

aN  reference number of loading cycles to failure 

cal,fN  theoretical fatigue life 

exp,fN  experimental fatigue life 

P  verification point 

uvwP  reference system attached to the critical plane 

Prtz fixed reference system 

321 ˆˆP̂  principal strain axes reference system at time 

instant for which the maximum principal strain, 

1 , attains its peak value over the loading cycle 

r  distance of the verification point P  from the 

notch tip 

mR  mean control volume radius 

1R  control volume radius related to Mode I 

3R  control volume radius related to Mode III 

t  time 

RMST  mean square error 

w  unit vector normal to the critical plane 

  phase angle between transversal normal strain t   

and axial normal strain z  

ur , ut , uz  direction cosines of u -axis 

vr , vt , vz  direction cosines of v-axis 

wr , wt , wz  direction cosines of w-axis 

  phase angle between shear strain zt  and axial 

normal strain z  

a  Manson-Coffin shear strain amplitude 

zt  shear strain 

  angle between the averaged principal strain 

direction 1̂ and the normal w to the critical 

plane 
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AK1  Notch Stress Intensity Factor range under Mode I 

AK3  Notch Stress Intensity Factor range under Mode III 

A1  High-Cycle Fatigue strength of smooth specimens 

under Mode I 

A3  High-Cycle Fatigue strength of smooth specimens 

under Mode III 

ε  strain tensor at verification point P  

a,eq  equivalent normal strain amplitude 

a  Manson-Coffin normal strain amplitude 

r , t  transversal normal strains 

z  axial normal strain 

wη  displacement vector at verification point P , 

related to the critical plane 

Nη  normal displacement vector component of wη , 

related to the critical plane 

Cη  tangential displacement vector component of wη , 

related to the critical plane 

  phase angle between transversal normal strain r   

and axial normal strain z  

  biaxiality ratio, defined as the ratio between the 

applied shear stress amplitude and the normal 

stress amplitude 

1  eigenvalues for Mode I 

3  eigenvalues for Mode III 

a  applied normal stress amplitude 

a  applied shear stress amplitude 

ν  elastic Poisson ratio 

effν  effective Poisson ratio 

 phase angle between tension and torsion loading 

  pulsation 

 

 

Subscripts 

a amplitude  

m mean value 
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1. INTRODUCTION 

 

The state of the art clearly shows that the fatigue problem of 

mechanical components characterised by geometrical irregularities 

(such as notches, fillets and key-sets) has widely been examined in 

order to propose reliable methodologies for estimating the fatigue 

strength/lifetime under both uniaxial and multiaxial loadings [1-8]. 

Dealing with the fatigue failures of metallic structural 

components weakened by notches, the average Strain Energy Density 

(SED) criterion [9-12], originally proposed by Lazzarin and Zambardi 

[13], can be considered one of the most powerful engineering tool 

suitable for accurately performing the fatigue assessment of the 

above components. 

Taking as starting point both the Neuber concept of an 

‘elementary material volume’ [14,15] and the Sih criterion [16,17], 

Lazzarin and Zambardi adopted the average value of SED, evaluated 

over a control volume surrounding the notch tip, as a damage 

parameter for notched structural components.  In particular, the 

radius of the control volume, over which the energy is averaged, was 

assumed to be a function of the notch geometry, the material fatigue 

limit evaluated on unnotched specimens, the threshold stress 

intensity factor range and the Poisson ratio.  Moreover, according 

to such a criterion, fracture of brittle materials is expected to 

occur when the average value of SED is equal to a critical value, 

which is a material property [18].  

The original version of the SED criterion [13] has been proposed 

for fatigue strength assessment of components weakened by sharp V-
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notches subjected to tensile loading (Mode I), and blunt U and V-

notches under Mode I loading have been examined in 2005 [19]. 

Subsequently, the SED criterion has been extended to notched 

components under mixed Mode loading [20-23].  Moreover, the 

aforementioned criterion has successfully been used also to perform 

the fatigue strength evaluation of both welded joints [24] and 

notched specimens under high-temperature conditions [25]. 

Then, an extension of the SED criterion to mechanical and 

structural components experiencing non-localised creep deformations 

has been proposed in 2016 [26].  Further, the criterion has recently 

been applied together with the Equivalent Material Concept (EMC) in 

order to estimate the failure loads of both U and V-notched aluminum 

plates characterised by large plastic deformations near the notch 

tip [27,28]. 

Note that the overall effectiveness of the above criterion when 

used to evaluate fatigue failures in notched metallic components has 

been analysed in Ref.[12].  In that paper, about one thousand 

experimental data taken from the literature for different materials 

and notches geometries have been examined, and a satisfactory 

agreement between experimental and theoretical results has been 

noticed. 

In light of the efficiency and wide applicability of the SED 

criterion, some of the present authors have recently implemented the 

concept of the control volume in a strain-based criterion in order 

to estimate the fatigue life of severely notched specimens under 

Low-Cycle Fatigue (LCF) [29].  In particular, such a criterion, 

based on the critical plane approach, is a reformulation of its 
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counterpart for smooth metallic structural components [30,31] by 

considering the strain state at a material point P  (named 

verification point in the following) located at a certain distance 

from the V-notch tip.  Such a distance has been proposed to be 

directly linked to the control volume radius provided by the SED 

criterion.  Then, the fatigue life evaluation is carried out at the 

verification point by employing an equivalent strain amplitude, 

related to the critical plane, together with a unique material 

reference curve (i.e. the tensile Manson-Coffin curve). 

The aim of the present paper is to discuss the accuracy and 

reliability of the strain-based criterion together with the control 

volume concept (proposed in [29]) in estimating multiaxial LCF 

lifetime of structural components weakened by notches.  Firstly, the 

analytical main points of such a criterion are outlined in Section 

2.  Then the fatigue experimental campaign reported in Refs [32,33] 

for V-notched round bars made of titanium grade 5 alloy (Ti-6Al-4V) 

is briefly summarised in Section 3.  In Section 4, the criterion 

reported in Ref [29] is applied to the experimental fatigue data 

and, finally, some conclusions are provided in Section 5. 

 

 

2. STRAIN-BASED CRITERION FORMULATION FOR SHARP V-NOTCHES 
 

Now the analytical main points of the criterion proposed in Ref.[29] 

are briefly outlined. 

The fatigue life assessment is carried out at point P  

(verification point), which is distant r  from the V-notch tip (Fig. 

1).  More precisely, such a distance r , measured along the notch 
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bisector line, is assumed to depend on both the biaxiality ratio   

(defined as the ratio between the applied shear stress amplitude, 

a , and the normal stress amplitude, a ) and the control volume 

radii under pure Mode I and pure Mode III [29]:  

  mm
.

RR.r 1.31  2210 
4841




 (1) 

 

where mR  is the mean control volume radius computed by averaging 1R  

related to Mode I and 3R  related to Mode III, such control volume 

radii ( 1R  and 3R ) being provided by the SED criterion [20,21,32] 

through the following expressions: 
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1
e  and 

3
e  being two parameters depending on the V-notch geometry 

[32].  Further,   is the elastic Poisson ratio, and 
1

  and 
3

  are 

the eigenvalues for Mode I and Mode III, respectively, calculated by 

means of a linear elastic finite element analysis as is reported in 

Ref. [32].  Moreover, 
A1

K  and 
A3

K  are the mean values of Mode I 

and Mode III Notch Stress Intensity Factors (NSIFs) ranges, 

respectively.  Finally, the above control volume radii are also 

function of the High-Cycle Fatigue (HCF) strengths of smooth 

specimens (
A1

  for Mode I, and 
A3

  for Mode III), such strengths 
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being all referred to the same reference number 
a

N  of loading cycles 

to failure (for example, 
6102 

a
N ). 

 

Figure 1. 

 

Once the position of the verification point P  is determined 

according to Eq. (1), the strain tensor at the above point is 

obtained from a finite element analysis by examining a 

tridimensional model. 

If the structural component is subjected to synchronous out-of-

phase sinusoidal loadings, the strain state is characterised by two 

transversal normal strains ( r  and t ), one axial normal strain ( z ) 

and one shear strain ( zt ): 

  m,ra,rr tsin      (3a) 

  m,ta,tt tsin      (3b) 

  m,za,zz tsin     (3c) 

  m,zta,ztzt tsin     (3d) 

 

where   = pulsation, t  = time, βα  , ,  = load phase angles.  The 

subscripts a and m refer to amplitude and mean value, respectively.  

The strain tensor )t(ε  (at point P ) with respect to the fixed 

reference system Prtz(Fig. 2(a)) is hence given by: 
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Figure 2. 

 

Then, the critical plane orientation, which is linked to the 

averaged principal strain directions, has to be determined by using 

appropriate weight functions.  In particular, the averaged 

directions of principal strain axes can be deduced on the basis of 

their instantaneous directions by means of the averaged principal 

Euler angles.  By adopting the weight function  tW  reported in Ref. 

[34], the averaged principal strain axes 3,2,1 ˆˆˆ  coincide with the 

instantaneous ones at the time instant for which the maximum 

principal strain 1  (being      ttt 321   ) attains its peak value over 

the loading cycle. 

The orientation of the critical plane, which is the verification 

plane for fatigue life evaluation, is defined by taking an off-angle 

  (in the principal averaged plane 1̂ 3̂) formed by the normal w  to 

the critical plane and the averaged direction 1̂.  The off-angle   is 

assumed to be expressed as follows:  
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eff  being the effective Poisson ratio.  Moreover, a  and a  are 

determined by means of the tensile and torsional Manson-Coffin 

equations, respectively: 
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where fN  is the number of loading cycles to failure, and f' , f' , 

b , c, f' , f' , 0b , 0c  are material constants, which can be deduced 

by running appropriate experimental tests.  Note that Eq. (5) can be 

employed for metals ranging from ductile to extremely brittle 

fracture behaviour (details can be found in Refs [29-31]). 

After defining the normal w  to the critical plane, a local 

reference system uvwP  is taken into account, where the unit vector u 

is on the intersection line between the critical plane and the plane 

defined by the normal vector w  and the z -axis; further, v  is normal 

to u so that uvwP  forms a right-handed reference system (Fig. 2(b)).  

The directions cosines of the normal w  can be computed with respect 

to the Prtz as a function of two angles,     and  , in a spherical 

coordinate system (  20   and  0 , Fig. 2(c)) [35]:  

 cossinwr  ,         sinsinwt  ,         coswz   (7) 

 

Furthermore, the direction cosines of the u - and v-axis are given 

by the following expressions [35]: 
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 coscosur  ,        sincosut  ,        sinuz   (8a) 

 sinvr  ,        cosvt  ,       0vz  (8b) 

 

Then, by taking into account the strain tensor  tε  at point P  

(Eq.(4)) with respect to the reference system uvwP , the displacement 

vector wη  related to the critical plane (Fig. 2(b)) can be expressed 

as follows: 
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and the scalar value  tηN  of the normal displacement vector Nη  (Fig. 

2(b)) is given by: 

     
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The mean value mN,  and the amplitude aN,  of  tηN  can be 

determined by substituting the strain components (Eqs (3)) into Eq. 

(10): 

   cossinsincossincossin m,ztm,zm,tm,rm,N  2222
 (11a) 

22 baa,N   (11b) 

 

with: 

   cossinsincoscossincoscoscossina a,zta,za,ta,r  2222
 (12a) 
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   cossinsinsinsinsincossinsinb a,zta,ta,r  222  (12b) 

 

Then, the normal displacement vector Nη , perpendicular to the 

critical plane (Fig. 2(b)), is obtained from Eq. (10): 
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where 

    sinsincoscoscossinsincoscossin ztztrr,N  223
 (14a) 

    sinsincossincossinsincossinsin ztztrt,N  223  (14b) 

    sinsincoscossincoscossin ztztrz,N  2222  (14c) 

 

By recalling Eqs (9) and (13), the tangential displacement vector 

Cη  lying on the critical plane (Fig. 2(b)) can be computed according 

to the following expression: 
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where 

     cossincossincossinsincoscossin ztztrrr,C
22222   (16a) 

      222222 21
2

1
sinsincoscossinsincossinsin ztzrttt,C   (16b) 

    2222 21
2

1
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Since the direction of vector Cη  is generally time-varying, the 

mean value m,C  and the amplitude a,C  are not uniquely defined, and 
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different methods have been proposed in the literature (for 

instance, the Prismatic Hull method [36,37]).  In the present paper, 

a min-max procedure to define m,C  and a,C  is applied [38] by 

examining the components of Cη  along both u - and v-axis: 

z,Cuzt,Cutr,CurCCC uu
  ηu  (17a) 

z,Cvzt,Cvtr,CvrCCC vv
  ηv  (17b) 

 

Recalling Eqs (3) and (16), the above expressions become:  

   
m,uu CC tcosgtsinf    (18a) 

   
m,vv CC tcosqtsinp    (18b) 

 

where the mean values, 
m,uC  and 

m,vC , of the components of Cη  along 

the u- and v-axis are given by: 
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whereas the functions qpgf  , , ,  are expressed by: 
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


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Note that Eqs (18) are the parametric equations of the ellipse s 

described by the tip of the tangential displacement vector Cη  on the 

critical plane during a loading cycle (Fig. 3).  This ellipse is 
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centred at point (
m,uC ;

m,vC ) and its semi-axes can be computed as 

follows:  

   
22
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22

 
2

2
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








 



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The mean value m,C  of the tangential displacement component Cη  on 

the critical plane is obtained from the following expression: 

22

m,vm,u CCm,C    (22) 

 

whereas the amplitude of vector Cη  coincides with the major semi-

axis a,C  of the above ellipse.  

 

Figure 3. 

 

Then, the fatigue strength is assessed by means of an equivalent 

strain amplitude, a,eq , together with a unique material reference 

curve (i.e. the tensile Manson-Coffin curve, Eq. (6a)).  More 

precisely, the above equivalent strain amplitude is expressed by 

quadratically combining the amplitudes of both the normal ( a,N   , Eq 

(11b)) and the tangential ( a,C   , Eq. (21a)) displacement vectors 

acting on the critical plane: 

       
2

 

2

2
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a

a
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
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




  (23) 
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By equating Eq. (23) with Eq. (6a), the number fN  of loading 

cycles to failure can be worked out through an iterative procedure. 

 

 

3. FATIGUE EXPERIMENTAL CAMPAIGN 

 

The strain-based multiaxial LCF criterion formulated in conjunction 

with the control volume concept is applied to a set of data recently 

published in the literature [32,33].  Uniaxial and multiaxial 

fatigue tests on circumferentially V-notched round bars made of Ti-

6Al-4V titanium alloy are briefly described in the present Section. 

Each specimen presents a V-notch with depth equal to 6 mm, 

opening angle equal to 90  and notch root radius equal to about 10.  

mm.  All specimens have been polished in order to remove surface 

scratches before performing the tests. 

The experimental uniaxial and multiaxial fatigue tests have been 

carried out by means of a MTS 809 servo-hydraulic biaxial machine.  

All tests have been conducted under load control at a frequency 

value from 5 to 10 Hz, depending on the applied load.  Details of 

the loading conditions being examined are reported in Tables 1-3, 

where exp,fN  is the experimental fatigue life. 

 

Table 1. 

 

Table 2. 

 

Table 3. 

 



17 

According to the notch geometry and the material properties (that 

is, the values of the elastic Poisson ratio, the eigenvalues of Mode 

I and Mode III, the NSIFs ranges, and the HCF strengths) reported in 

the original papers [32,33], the control volume radius 1R  is equal 

to 0510.  mm (Eq. (2a)), whereas the control volume radius 3R  is equal 

to 8370.  mm (Eq. (2b)).  The above difference in the values of 

control volume radii is not only due to the different behaviour in 

the crack propagation process under either tension or torsion 

loading, but also to the higher plasticity around the notch tip 

experienced under torsion with respect to that under tension. 

 

 

4. CRITERION VALIDATION AND DISCUSSION 

 

The present strain-based multiaxial LCF criterion is here applied to 

the experimental data described in the previous Section. 

All experimental data being examined are characterised by a 

fatigue life between 
310  and 

5106   loading cycles and a nominal load 

ratio equal to 1 .  Six different fatigue test series on V-notched 

specimens are here analysed (Tables 1-3): 

(1) two series of tests under pure tension (specimens No. 1-6 in 

Table 1) and pure torsion (specimens No. 7-11 in Table 1) fatigue 

loading; 

(2) two series of tests under combined in- (  0 ) and out-of-

phase (  90 ) tension and torsion loading, with constant biaxiality 

ratio   equal to 60.  (Table 2); 
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(3) two series of tests under combined in- (  0 ) and out-of-

phase (  90 ) tension and torsion loading, with constant biaxiality 

ratio   equal to 0.2  (Table 3). 

Different values of the distance r  to determine the verification 

point position are computed according to Eq. (1): 

(a) for pure tension loading (that is, 0 ), r  is equal to mR. 91 ; 

(b) for pure torsion loading (that is,  ), r  is equal to mR. 311 ; 

(c) for combined in- and out-of-phase tension and torsion loading 

characterised by 60. , r  is equal to mR. 57 ; 

(d) for combined in- and out-of-phase tension and torsion loading 

characterised by 02. , r  is equal to mR. 810 .   

Note that Eq. (1) has been obtained from a best-fit procedure by 

considering some values of   related to the experimental data 

reported in Ref. [32,33].  In particular, the following error index, 

I , has been optimised in order to determine the data-points to be 

interpolated: 

   

a

aaC
a

a
aN

I






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




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
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2
 ,

2

2
 ,

 
(24) 

 

where a  and a  are defined by means of Eqs (6a) and (6b), 

respectively. 

As is previously discussed, in order to estimate the fatigue 

lifetime of the V-notched specimens, the strain tensor at the 

verification point P  has been estimated from a finite element 

analysis by means of the commercial software Straus7® [39].  More 

precisely, the strain state at the verification point, for every 



19 

investigated fatigue test, has been determined through a 

tridimensional model by using both 6- and 8–node finite elements.  

Taking advantage of the geometric symmetry, only one-half of the 

specimen has been modelled, as is shown in Figure 4.  Furthermore, 

the mesh size has been gradually refined nearing the region 

containing the notch tip (Fig. 4(b)).  The results in terms of 

strains have been determined by running a series of linear transient 

dynamic analyses in order to simulate the experimental tests 

performed by Berto et al. [32,33]. 

 

Figure 4. 

 

The Von Mises stress distribution for combined in-phase tension 

and torsion loading characterised by 02.  and  0  is shown in 

Figure 5, at the time instant corresponding to the maximum value of 

the both normal and shear stresses applied. 

 

Figure 5. 

 

The values of the material parameters of the Manson-Coffin 

curves, required for applying the strain-based criterion, are 

reported in Ref. [29].  The effective Poisson ratio, eff , is assumed 

to be equal to the elastic Poisson ratio (that is, 30. ). 

Once the strain state at point P  is numerically determined and 

the above material parameters are deduced, the fatigue lifetime can 

be estimated by using the present strain-based multiaxial LCF 

criterion together with the control volume concept.  
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The comparison between experimental, exp,fN , and theoretical, 

cal,fN , evaluation in terms of fatigue life for both uniaxial and 

multiaxial loadings is shown in Figs 6(a) and 6(b), respectively.  

Note that the solid line indicates exp,fcal,f NN  , whereas the dash-dot 

lines correspond to exp,fcal,f NN  equal to 30.  and 03. . 

This comparison clearly proves that: 

- for uniaxial fatigue loading (that is, pure tension and pure 

torsion loading, Fig. 6(a)), %71  of fatigue life calculations are 

included into 3x band; 

- for multiaxial fatigue loading (that is, combined tension and 

torsion loading with 60.  and 02. , Fig. 6(b)), %76  of fatigue life 

calculations are included into 3x band.  Note that better results 

are obtained for multiaxial fatigue data characterised by biaxiality 

ratio equal to 60. .  That is due to the fact that the relationship 

between r  and   (Eq. (1)) has been deduced by taking into account 

only the experimental data with 60.  and not those with   equal to 

02. . 

 

Figure 6. 

 

The accuracy of the present fatigue lifetime estimation can also 

be evaluated by means of the root mean square error method [40].  In 

more detail, the value of the root mean square logarithmic error is 

computed as follows: 
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(25) 

 

where j  is the total number of data, and the mean square error RMST  

is given by: 

RMSE
RMST 10  (26) 

 

If all the computed results fell, for instance, within the 3x band, 

the value of RMST  would be equal to 3. 

Figure 7 shows the mean square error computed for all values of 

fatigue life, in accordance with the different fatigue test series 

previously presented. 

 

Figure 7. 

 

The analysis of the results in terms of the mean square error 

indicates that the agreement between experimental and theoretical 

fatigue lives is satisfactory, the value of the RMST  being lower than 

3, and that holds true for all the loading conditions being 

examined. 

On the basis of such encouraging results, we can remark that the 

joined application of the strain-based criterion together with the 

concept of the control volume radii (provided by the SED criterion) 

seems to be a promising engineering tool, able to perform the 

fatigue lifetime evaluation with an adequate accuracy. 
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5. CONCLUSIONS 

 

In the present paper, the multiaxial fatigue life assessment of 

components weakened by sharp notches has been performed by employing 

a strain-based multiaxial LCF criterion in conjunction with the 

concept of control volume radius, related to the SED criterion 

originally proposed by Lazzarin and co-workers.  In particular, such 

a radius has been assumed to be a function of both the notch 

geometry and the material properties. 

According to the present criterion, the fatigue assessment has 

been carried out at a verification point, which is located at a 

certain distance from the notch tip, depending such a distance on 

both the biaxiality ratio and the control volume radii under loading 

conditions of pure Mode I and pure Mode III.  

Once the position of the verification point and the orientation 

of the critical plane have been determined, the fatigue lifetime has 

theoretically been evaluated through an equivalent normal strain 

amplitude, acting on the critical plane, together with the tensile 

Manson-Coffin curve. 

Some uniaxial and multiaxial fatigue data, recently published in 

the literature, have been analysed to evaluate the effectiveness of 

the present criterion.  The agreement between experimental data and 

theoretical fatigue lives is satisfactory. 

Therefore, the present criterion seems to be a promising tool to 

assess the fatigue lifetime of notched structural components, 

although both more complex loading configurations (characterised by 

nominal load ratio different from 1 ) and different notch geometries 
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(i.e. blunt notches) need to be processed in order to devise a 

robust procedure suitable for practical applications. 
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Figure 3. Ellipse s described by the tip of the tangential 

displacement vector Cη  on the critical plane during a loading 

cycle. 
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Table 1. Uniaxial loading conditions of the experimental tests 

being examined. 

 

Material 
No.     a  a  exp,fN  

 [°]  [MPa] [MPa] [cycles] 

Ti-6Al-4V 

Titanium Alloy 

1 0 0 160.0 - 99067 

2 0 0 160.0 - 107540 

3 0 0 200.0 - 24772 

4 0 0 200.0 - 33670 

5 0 0 230.0 - 11164 

6 0 0 230.0 - 13456 

7 0   - 380.0 46496 

8 0   - 380.0 65569 

9 0   - 400.0 19520 

10 0   - 420.0 7518 

11 0   - 460.0 1053 
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Table 2. Multiaxial loading conditions (with biaxiality ratio   

equal to 60. ) of the experimental tests being examined. 

 

Material No.     a  a  exp,fN  

  [°]  [MPa] [MPa] [cycles] 

Ti-6Al-4V 

Titanium Alloy 

1 0 0.6 130.0 78.0 137540 

2 0 0.6 140.0 84.0 93785 

3 0 0.6 140.0 84.0 141768 

4 0 0.6 160.0 96.0 67500 

5 0 0.6 160.0 96.0 85000 

6 0 0.6 170.0 102.0 36177 

7 0 0.6 170.0 102.0 43400 

8 0 0.6 190.0 114.0 12668 

9 0 0.6 190.0 114.0 15346 

10 90 0.6 130.0 78.0 182284 

11 90 0.6 130.0 78.0 237488 

12 90 0.6 140.0 84.0 74178 

13 90 0.6 140.0 84.0 91230 

14 90 0.6 170.0 102.0 19789 

15 90 0.6 170.0 102.0 26540 

16 90 0.6 190.0 114.0 10698 
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Table 3. Multiaxial loading conditions (with biaxiality ratio   

equal to 02. ) of the experimental tests being examined. 

 

Material No.     a  a  exp,fN  

  [°]  [MPa] [MPa] [cycles] 

Ti-6Al-4V 

Titanium Alloy 

1 0 2.0 90 180 384500 

2 0 2.0 90 180 390000 

3 0 2.0 90 180 455000 

4 0 2.0 90 180 567300 

5 0 2.0 90 180 622000 

6 0 2.0 90 180 750000 

7 0 2.0 90 180 834000 

8 0 2.0 100 200 198000 

9 0 2.0 100 200 206000 

10 0 2.0 100 200 221000 

11 0 2.0 110 220 103000 

12 0 2.0 110 220 108475 

13 0 2.0 110 220 112000 

14 0 2.0 110 220 121000 

15 0 2.0 130 260 27500 

16 0 2.0 130 260 34500 

17 0 2.0 130 260 38000 

18 0 2.0 130 260 54021 

19 0 2.0 140 280 16500 

20 0 2.0 140 280 19000 

21 0 2.0 150 300 10200 

22 0 2.0 150 300 12000 

23 0 2.0 150 300 13400 

24 90 2.0 100 200 506280 

25 90 2.0 100 200 621000 

26 90 2.0 110 220 182000 

27 90 2.0 110 220 225000 

28 90 2.0 110 220 301000 

29 90 2.0 120 240 131200 

30 90 2.0 120 240 154000 

31 90 2.0 130 260 87500 

32 90 2.0 130 260 96000 

33 90 2.0 130 260 118500 

34 90 2.0 150 300 18900 

35 90 2.0 150 300 22000 

36 90 2.0 150 300 26500 

37 90 2.0 150 300 31500 

38 90 2.0 170 340 8900 

39 90 2.0 170 340 11000 
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Figure 4. Tridimensional finite element model of the V-notched 

specimen: (a) prospective view; (b) detailed view in the close 

neighbourhood of the notch.  

 

(a) 

(b) 
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Figure 5. The Von Mises stress distribution for combined in-

phase tension and torsion loading characterised by 02.  and  0 , 

at the time instant corresponding to the maximum value of the both 

normal and shear stresses applied. 
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Figure 6. Comparison between theoretical and experimental fatigue 

life: (a) uniaxial loading; (b) multiaxial loading.  
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Figure 7.  Mean square error determined by applying the strain-

based criterion together with the control volume concept, for 

different loading conditions. 

 

 


