
LFRic and Singularity Hackerthon
This document details the containerisation of LFRic in Singularity, and in-
structions on how to run on Piz Daint. The general requirements for LFRIC
containerisation discussed, followed by the Singularity containerisation work-
flow and a description of how to install on Piz Daint.

LFRic containerisation requirements

Requirements

1. Put the LFRic build environment into a portable package that can
be deployed on different x86 target machines to build the LFRic exe-
cutable.

2. Produce an executable that is able to make use of local MPI libraries
and therefore local fast interconnects.

3. Produce an executable that be run on the native system with no run-
time dependencies on the build environment to minimise the conflict
between the packaged libraries and local libraries used for MPI and job
control.

The LFRic build environment at
https://code.metoffice.gov.uk/trac/lfric/wiki/LFRicTechnical/LFRicBuildEnvironment
was used. As the initial purpose of this project was to simplify building with
the Intel compiler, gfortran was replaced by Intel fortran throughout.

The build environment was containerised and Singularity was chosen con-
tainer system due to its widespread use on HPCs and Tier II systems.

Pre-requisites

• Intel Fortran 17 or 19 on build and run system.

• Singularity on build and run system.

• Ability to run Singularity in sudo on build system.

• MPICH based MPI on run machine. This includes MPICH, Intel MPI,
Cray MPT and MVAPICH.

1

https://code.metoffice.gov.uk/trac/lfric/wiki/LFRicTechnical/LFRicBuildEnvironment

Theory

Locally installed software can be used from inside a containerised shell. The
local Intel compiler can be accessed via either using bind points when the
container shell is invoked, or by including environment-modules in the con-
tainer, bind mounting the compiler’s location and then use the ’module load’
command to set up the compiler.

MPI ABI https://www.mpich.org/abi This provides compatibility be-
tween MPICH used to build the a execrable and the local MPICH derivative
used by the executable at run-time. Therefore it is possible to build the
executable using one MPICH derivative, and run it using a different MPICH
derivative.

Any statically compiled library will be included in the executable at link
time. Therefore there are no run-time dependency on these libraries outside
the container.

Build environment containerisation workflow

To facilitate requirements 2) and 3) above, the following changes were made
to the standard LFRic build environment.

1. gfortran replaced by Intel fortran throughout, and any necessary changes
made to compile flags and configure option.

2. All packages configured to produce static libraries.

3. The exception to 2) are the MPI libraries, which were built with shared
libraries to use MPI ABI.

LFRic software stack workflow

See https://github.com/NCAS-CMS/LFRic_Container for a full description
of the workflows.

1. Build a base build container comprising of gcc and build tools only.

2. Start a shell inside this container, mounting a bind point for the loca-
tion of the local Intel compiler. Modules can also be used for this step.
The top-level locations of the module configuration and Intel compiler
(if different) need to be mounted as bind points. The compiler then can

2

https://www.mpich.org/abi
https://github.com/NCAS-CMS/LFRic_Container

be used after the usual "module load" command. Then build all the
LFRic software dependencies using a common installation directory.

3. Build the LFRic dependency software stack. Tar this directory.

4. Build a second, final container with the tarball generated by 3) plus all
build python dependencies and also environment-modules.

LFRic build workflow

1. Copy container to target machine.

2. Run a shell inside the container. Configure the Intel compiler as de-
scribed above, again suitable bind points are required. Run the setup
tool.

3. Build LFRic as usual. The environment is pre-configured. Change the
Makefile thus:

export EXTERNAL_DYNAMIC_LIBRARIES =
EXTERNAL_STATIC_LIBRARIES = yaxt yaxt_c xios netcdff

netcdf hdf5_hl hdf5 z :libstdc++.a

LFRic run workflow

1. Outside the container, set up MPICH based MPI

2. Run LFRic as usual with mpiexec.

Example of the dependencies of the built container inside and out-
side the container

With no Intel nor MPICH2 libraries in PATH:

$ ldd gungho
linux-vdso.so.1 (0x00007fff5cad1000)
libz.so.1 => /usr/lib/libz.so.1 (0x00001514fec3a000)
libmpifort.so.12 => not found
libmpi.so.12 => not found
libm.so.6 => /usr/lib/libm.so.6 (0x00001514feaf4000)
libiomp5.so => not found

3

libpthread.so.0 => /usr/lib/libpthread.so.0 (0x00001514fead
3000)

libc.so.6 => /usr/lib/libc.so.6 (0x00001514fe90e000)
/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2

(0x00001514fee82000)
libgcc_s.so.1 => /usr/lib/libgcc_s.so.1 (0x00001514fe8f4000)
libdl.so.2 => /usr/lib/libdl.so.2 (0x00001514fe8ef000)

Inside container:

$ ldd gungho
linux-vdso.so.1 => (0x00007ffe77af6000)
libz.so.1 => /lib64/libz.so.1 (0x00007fbfcc793000)
libmpifort.so.12 => /container/usr/lib/libmpifort.so.12 (0x

00007fbfcc556000)
libmpi.so.12 => /container/usr/lib/libmpi.so.12 (0x00007fbfcc0c

0000)
libm.so.6 => /lib64/libm.so.6 (0x00007fbfcbdbe000)
libiomp5.so => /opt/intel/compilers_and_libraries_2017.4.196/

linux/compiler/lib/intel64/libiomp5.so (0x00007fbfcba1a000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fbfcb7fe000)
libc.so.6 => /lib64/libc.so.6 (0x00007fbfcb430000)
/lib64/ld-linux-x86-64.so.2 (0x00007fbfcc9a9000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007fbfcb21a000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007fbfcb016000)
librt.so.1 => /lib64/librt.so.1 (0x00007fbfcae0e000)
libifport.so.5 => /opt/intel/compilers_and_libraries

_2017.4.196/linux/compiler/lib/intel64/libifport.so.5 (0x
00007fbfcabdf000)

libifcoremt.so.5 => /opt/intel/compilers_and_libraries
_2017.4.196/linux/compiler/lib/intel64/libifcoremt.so.5 (0x
00007fbfca84f000)

libimf.so => /opt/intel/compilers_and_libraries_2017.4.196/
linux/compiler/lib/intel64/libimf.so (0x00007fbfca362000)

libintlc.so.5 => /opt/intel/compilers_and_libraries_2017.4.196/
linux/compiler/lib/intel64/libintlc.so.5 (0x00007fbfca0f
7000)

libsvml.so => /opt/intel/compilers_and_libraries_2017.4.196/
linux/compiler/lib/intel64/libsvml.so (0x00007fbfc91de000)

4

On target machine using Intel MPI:

$ ldd gungho
linux-vdso.so.1 (0x00007ffd0e98e000)
libz.so.1 => /usr/lib/libz.so.1 (0x000014e33d8e0000)
libmpifort.so.12 => /opt/intel/compilers_and_libraries

_2017.4.196/linux/mpi/intel64/lib/libmpifort.so.12 (0x
000014e33d537000)

libmpi.so.12 => /opt/intel/compilers_and_libraries_2017.4.196/
linux/mpi/intel64/lib/libmpi.so.12 (0x000014e33c80f000)

libm.so.6 => /usr/lib/libm.so.6 (0x000014e33c6c9000)
libiomp5.so => /opt/intel/compilers_and_libraries_2017.4.196/

linux/compiler/lib/intel64/libiomp5.so (0x000014e33c325000)
libpthread.so.0 => /usr/lib/libpthread.so.0 (0x000014e33c

302000)
libc.so.6 => /usr/lib/libc.so.6 (0x000014e33c13f000)
/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2

(0x000014e33db28000)
libgcc_s.so.1 => /usr/lib/libgcc_s.so.1 (0x000014e33c125000)
libdl.so.2 => /usr/lib/libdl.so.2 (0x000014e33c120000)
librt.so.1 => /usr/lib/librt.so.1 (0x000014e33c115000)

Note that there are no dependencies of the LFRic software stack, and that
inside the container libmpifort.so.12 and libmpi.so.12 under /container/usr
are listed as dependencies, while outside they are under /opt/intel/compil-
ers_and_libraries_2017.4.196/linux/mpi/intel64/lib as part of Intel MPI.

Installing on Piz Daint

Build container

Build the Singularity LFRic build system as described in step 1-4 in
https://github.com/NCAS-CMS/LFRic_Container then copy to Piz Daint.

On Piz Daint

unset LD_PRELOAD # There is a general LD_PRELOAD with
interferes with Singularity, but isn’t required for it.

module swap PrgEnv-cray PrgEnv-intel

5

https://github.com/NCAS-CMS/LFRic_Container

module load singularity
svn checkout --username <username> https://code.metoffice.gov.

uk/svn/lfric/LFRic/trunk

For Gungho the Makefile needs to be edited. Change the lines:

export EXTERNAL_DYNAMIC_LIBRARIES = yaxt yaxt_c netcdff netcdf
hdf5 \

$(CXX_RUNTIME_LIBRARY)
export EXTERNAL_STATIC_LIBRARIES = xios

to

export EXTERNAL_DYNAMIC_LIBRARIES =
export EXTERNAL_STATIC_LIBRARIES = yaxt yaxt_c xios netcdff

netcdf hdf5_hl hdf5 z :libstdc++.a

Start the container

singularity shell -B /opt/intel:/opt/intel lfric_usr.sif #Start
singularity with bind points for the local Intel compilers

.

Inside the container

. /opt/intel/compilers_and_libraries_2017.4.196/linux/bin/
ifortvars.sh intel64 #Change compilers_and_libraries
_2017.4.196 to match the same major number of the Intel
compiler used to build the container. Ignore the "WARNING:
’gcc’ was not found" message.

. /container/setup #Set up LFRic compile environment
cd trunk/gungho # or to the downloaded location.
make build #Build the main exec.

Log out of the container. The executable built inside the container can
be run outside the container using the standard Slurm submission system.
Submission

The following submission script will set up the Intel compiler version used
to build the executable, and ensure that the Cray MPICH-ABI libraries are
used at run time.

#!/bin/bash -l

6

#SBATCH --job-name="gungho"
#SBATCH --time=00:05:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-core=1
#SBATCH --ntasks-per-node=6
#SBATCH --cpus-per-task=1
#SBATCH --partition=normal
#SBATCH --constraint=gpu
#SBATCH --hint=nomultithread
#SBATCH --reservation=esiwace_1
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module swap PrgEnv-cray PrgEnv-intel
module swap intel/19.0.1.144 intel/17.0.4.196
module unload cray-mpich
module load cray-mpich-abi
export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH:$LD_LIBRARY_PATH
The following line should be customised to match the location

of wlm_detect on the system.
export LD_LIBRARY_PATH=/opt/cray/wlm_detect/1.3.3-7.0.1.1_4.6__

g7109084.ari/lib64:$LD_LIBRARY_PATH
export CRAY_ROOTFS=UDI
cd $HOME/trunk/gungho/example
echo $LD_LIBRARY_PATH
ldd ../bin/gungho
srun ../bin/gungho gungho_configuration.nml

Conclusion

The LFRic build infrastructure singularity container was built on a laptop
during the hackathon and then deployed and run on Piz Daint using the local
MPT libraries. As the executable was run natively using the MPT on the
system there was no slow down with respect to an executable built without
the use of the container. The same container has been used to build LFRic
on a laptop and Cirrus, a UK Tier 2 HPC.

7

