Containerisation of LFRic with Docker

Iva Kavéic, Met Office, UK

1 Introduction

This report presents work on containerisation of LFRic with Docker during the ESi-
WACE2 project “Container Hackathon for Modellers” in December 2019. Section 2 gives
an overview of LFRic and its main build dependency, PSyclone. Instructions on building
and running LFRic in Docker CE can be found in section 3. Instructions on how to
run the LFRic Gungho container with Sarus on Piz Daint and results of the runs are in
section 4.

The associated scripts and inputs are hosted in the “LFRIC” subdirectory of the Container
Hackathon GithHub repository. For more information on building the LFRic Docker
container please contact ITva Kavéic, Met Office and Luca Marsella, CSCS (mentor).

2 LFRic and PSyclone: A quick overview

LFRic! is the new weather and climate modelling system being developed by the UK Met
Office to replace the existing Unified Model (UM) in preparation for exascale computing
in the 2020s. LFRic uses the GungHo? dynamical core and runs on a semi-structured
cubed-sphere mesh.

The design of the supporting infrastructure follows object-oriented principles to facilitate
modularity and the use of external libraries.** One of the guiding design principles,
imposed to promote performance portability, is “separation of concerns” between the
science code and parallel code. An application called PSyclone, developed at the STFC
Hartree Centre, can generate the parallel code enabling deployment of a single source
science code onto different machine architectures.

PSyclone is a domain-specific compiler and source-to-source translator developed for use
in finite element, finite volume and finite difference codes. Using the information from a
supported API, PSyclone generates code exploiting different parallel programming models.

2.1 LFRic repository and wiki

The LFRic repository and the associated wiki are hosted at the Met Office Science Repos-
itory Service (MOSRS). The code is BSD-licensed, however browsing the LFRic wiki and
code repository requires login access to MOSRS. Please contact the LFRic team manager,
Steve Mullerworth, to be granted access to the repository.

Once the access has been granted the LFRic trunk can be checked out using Subversion
or FCM version control systems. SVN is recommended for checking out the code for runs
only as it is easier to install.

https://www.cscs.ch/events/private-events/event-detail/container-hackathon-for-modellers/
https://docs.docker.com/install/
https://github.com/eth-cscs/ContainerHackathon/tree/master
https://github.com/eth-cscs/ContainerHackathon/tree/master
iva.kavcic@metoffice.gov.uk
https://github.com/lucamar
https://code.metoffice.gov.uk/trac/home
https://code.metoffice.gov.uk/trac/lfric/wiki
https://code.metoffice.gov.uk/trac/lfric/browser
mailto:steve.mullerworth@metoffice.gov.uk
https://subversion.apache.org/
https://metomi.github.io/fcm/doc/

2.1.1 LFRic code structure

The LFRic trunk (at revision 21509) is structured as follows:

e bin - Rose executables;

e extra - Utilities (e.g. job submission scripts);

e GPL - Rose source used in LFRic;

e gungho - Gungho dynamical core (one of the main science applications);
e infrastructure - LFRic infrastructure supporting science applications;
e jules - Interface to the MO JULES land surface model;

e 1fric_atm- LFRic atmospheric model (Gungho dynamical core, UM Physics, JULES
and SOCRATES);

e mesh tools - Mesh generation tools;

e miniapps - “Standalone” science and infrastructure applications (e.g. Gravity Wave
application);

e socrates - Interface to the MO radiative transfer (“Suite Of Community RAdiative
Transfer codes”) model;

e um physics - Interface to the MO UM Physics parameterisation schemes.

2.2 PSyclone repository and wiki

Both PSyclone and the Fortran parser it uses are open source and hosted on GitHub.
Their wikis are also hosted on GitHub:

e PSyclone wiki;

e fparser wiki.

The documentation is hosted on Read the Docs:
e PSyclone documentation;
e fparser documentation;

or PSyclone and fparser repositories for functionality merged to master but not yet part
of an official release.

2.2.1 PSyclone in LFRic

LFRic wiki hosts pages on the use of PSyclone in LFRic, starting with the PSyclone in
LFRic wiki. As mentioned in section 3, not every PSyclone release works with every
LFRic trunk revision. The LFRic—PSyclone compatibility table is given in this LFRic
wiki (requires login).

https://code.metoffice.gov.uk/trac/lfric/browser/LFRic/trunk?rev=21509
https://github.com/metomi/rose
https://www.metoffice.gov.uk/research/approach/collaboration/jwcrp/jules
https://github.com/stfc/PSyclone
https://github.com/stfc/fparser
https://github.com/stfc/PSyclone/wiki
https://github.com/stfc/fparser/wiki
https://readthedocs.org/
https://psyclone.readthedocs.io/en/stable/
https://fparser.readthedocs.io/en/latest/
https://code.metoffice.gov.uk/trac/lfric/wiki/PSycloneTool
https://code.metoffice.gov.uk/trac/lfric/wiki/PSycloneTool
https://code.metoffice.gov.uk/trac/lfric/wiki/LFRicTechnical/VersionsCompatibility
https://code.metoffice.gov.uk/trac/lfric/wiki/LFRicTechnical/VersionsCompatibility

3 Building LFRic Docker container

3.1 Gungho benchmark

As outlined in section 2.1, the LFRic trunk is divided into several applications. This
section outlines how to build a container benchmark of the Gungho application.

A template Dockerfile to build the LFRic Gungho container is available below.

g

LFRic environment: Builds and runs LFRic Gungho benchmark with PSyclone 0OMP.

Prerequisites: LFRic build environment built with the system GCC compiler
(version 7.4.0) using Docker template ’lfric_deps.docker’ and
the relevant installation scripts.

g T

#

FROM lfric-deps:gnu

#

Define home and working directories

ENV HOME /usr/local/src

WORKDIR /usr/local/src

#

Set the compiler environment

ENV COMP_PACKAGE_DIR $HOME/gnu_env

Set the following environment variables

ENV INSTALL_DIR $COMP_PACKAGE_DIR/usr

ENV BUILD_DIR $COMP_PACKAGE_DIR/build

ENV PFUNIT $INSTALL_DIR

ENV PATH $INSTALL_DIR/bin:$PATH

ENV FC gfortran

ENV FPP "cpp -traditional-cpp"

ENV LDMPI mpif90

ENV FFLAGS "-I$BUILD_DIR/XI0S/inc -I$INSTALL_DIR/include -I$INSTALL_DIR/mod"

ENV LDFLAGS "-L$BUILD_DIR/XI0S/lib -L$INSTALL_DIR/1lib -L/usr/1lib -lstdc++"

ENV CPPFLAGS "-I$INSTALL_DIR/include -I/usr/include"

ENV LD_LIBRARY_PATH $INSTALL_DIR/1lib:$INSTALL_DIR/1ib64:$LD_LIBRARY_PATH

Path to PSyclone configuration file

ENV PSYCLONE_CONFIG /usr/local/share/psyclone/psyclone.cfg

#

Adds config file for MPICH for Sarus on Piz Daint

RUN echo "/usr/local/src/gnu_env/usr/1ib" > /etc/ld.so.conf.d/mpich.conf \

&& ldconfig

#

For most applications one OMP thread is enough (can be set in batch submit script)

ENV OMP_NUM_THREADS 1

#

Set option to apply OpenMP optimisations with PSyclone

ENV LFRIC_TARGET_PLATFORM meto-spice

#

Copy LFRic trunk inside the container

COPY LFRic_trunk.tar .

Unpack LFRic trunk

RUN tar -xf LFRic_trunk.tar \

Navigate to "gungho" directory and build application

&& cd LFRic_trunk/gungho \

&% make build -j \

Navigate to example directory to run the application from
&& cd example

#

Paths to executables and example directory

ENV PATH $HOME/LFRic_trunk/gungho/bin:$PATH

WORKDIR $HOME/LFRic_trunk/gungho/example

We have saved the template Dockerfile above as 1fric_gungho.docker and we built it
with the command below:

docker build --network=host --add-host $HOSTNAME:127.0.0.1 -f \
lfric_gungho.docker -t lfric-gungho:gnu .

The template starts the build from the 1fric-deps:gnu Docker container which contains
the libraries needed by the code: MPICH, YAXT, HDF5, NetCDF, NetCDF-Fortran,
NetCDF-C++, XIOS and pFUnit. This dependency container was built from the script
1fric_deps.docker by running

docker build --network=host --add-host $HOSTNAME:127.0.0.1 -f \
lfric_deps.docker -t lfric-deps:gnu .

The scripts that build the libraries are also provided in the Hackathon LFRic Docker
repository:

e install 1fric_env.sh sets up the environment and builds the dependencies of
LFRic without the XIOS;

e install xios_env.sh creates architecture files needed to build XIOS and builds

XIOS.

3.2 Gravity Wave benchmark

This section outlines how to build a container benchmark of the Gravity Wave application,
one of the LFRic miniapps (see section 2.1 for more details).

A template Dockerfile to build the LFRic Gravity Wave container is available below.

g L

LFRic environment: Builds and runs LFRic Gravity Wave benchmark.

Prerequisites: LFRic build environment built with the system GCC compiler
(version 7.4.0) using Docker template ’lfric_deps.docker’ and
the relevant installation scripts.

g s T

#

FROM 1lfric-deps:gnu

#

https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/lfric_deps.docker
https://github.com/eth-cscs/ContainerHackathon/tree/master/LFRIC/docker
https://github.com/eth-cscs/ContainerHackathon/tree/master/LFRIC/docker
https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/install_lfric_env.sh
https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/install_xios_env.sh

Define home and working directories

ENV HOME /usr/local/src

WORKDIR /usr/local/src

#

Set the compiler environment

ENV COMP_PACKAGE_DIR $HOME/gnu_env

Set the following environment variables

ENV INSTALL_DIR $COMP_PACKAGE_DIR/usr

ENV BUILD_DIR $COMP_PACKAGE_DIR/build

ENV PFUNIT $INSTALL_DIR

ENV PATH $INSTALL_DIR/bin:$PATH

ENV FC gfortran

ENV FPP "cpp -traditional-cpp"

ENV LDMPI mpif90

ENV FFLAGS "-I$BUILD_DIR/XIOS/inc -I$INSTALL_DIR/include -I$INSTALL_DIR/mod"
ENV LDFLAGS "-L$BUILD_DIR/XI0S/1lib -L$INSTALL_DIR/1lib -L/usr/lib -lstdc++"
ENV CPPFLAGS "-I$INSTALL_DIR/include -I/usr/include"

ENV LD_LIBRARY_PATH $INSTALL_DIR/1ib:$INSTALL_DIR/1ib64:$LD_LIBRARY_PATH
Path to PSyclone configuration file

ENV PSYCLONE_CONFIG /usr/local/share/psyclone/psyclone.cfg

#

Adds config file for MPICH for Sarus on Piz Daint

RUN echo "/usr/local/src/gnu_env/usr/lib" > /etc/ld.so.conf.d/mpich.conf \
&& ldconfig

#

For most applications one OMP thread is enough (can be set in batch submit script)
ENV OMP_NUM_THREADS 1

#

Copy LFRic trunk inside the container

COPY LFRic_trunk.tar .

Unpack LFRic trunk

RUN tar -xf LFRic_trunk.tar \

Navigate to "gravity_wave" directory and build application

&& cd LFRic_trunk/miniapps/gravity_wave \

&& make build -j \

Navigate to example directory to run the application from

&& cd example

#

Paths to executables and example directory

ENV PATH $HOME/LFRic_trunk/miniapps/gravity_wave/bin:$PATH

WORKDIR $HOME/LFRic_trunk/miniapps/gravity_wave/example

The above template was saved as 1fric_gwave.docker and built with the command
below:

docker build --network=host --add-host $HOSTNAME:127.0.0.1 -f \
lfric_gwave.docker -t lfric-gwave:gnu .

As for the Gungho benchmark, the template starts the build from the 1fric-deps:gnu
Docker container.

3.3

3.4

Library versions and settings

All libraries were dynamically linked to make sure that the LFRic container will
use the optimised libraries of the host system: the install 1fric_env.sh script
contains commented out instructions for a static build if required.

The MPICH version used in the current Met Office (MO) LFRic build system is 3.3.
Here we used version 3.1.4 to ensure ABI compatibility with the Cray MPI library
available on Piz Daint: please have a look at the MPICH Wiki for more information
on the ABI Compatibility Initiative.

HDF5, NetCDF, NetCDF-Fortran, NetCDF-C++ and pFUnit are also slightly older
than in the current MO LFRic build system, whereas YAXT is the same version.
To install the same versions of the above packages that are currently used by LFRic,
please use the alternative install script (dynamic linking example)

install 1fric_env_current.sh.

XIOS is a tricky beast to build as not every revision/release will work with every
compiler and/or every compiler release. For instance, the MO GCC 6.1.0 environ-
ment uses revision 1537 which is too old for GCC 7.4.0 used here. Unfortunately,
the current XIOS trunk produces a build which segfaults at runtime for the GCC
release and other libraries used in this container. There is, however, a relatively
recent revision before the segfault bug that was appropriate for this container.

Here we used the same PSyclone release (1.7.0) that is used by the current LFRic
trunk (as of 15 December 2019), built with Python 2 environment (the move to
Python 3 and the newest PSyclone 1.8.1 is under way). Not every PSyclone release
will work with every LFRic trunk revision. The LFRic-PSyclone compatibility table
is give in this LFRic wiki (requires login).

Tips & tricks

3.4.1 Libraries

The container tool Sarus supported on Piz Daint can add the proper hook to the host
MPTI library if the command 1dconfig has been run to configure dynamic linker run-
time bindings. Since we have installed the MPICH library in a non-default location,
the command ldconfig would not be able to find the library in the custom path
within the container. Therefore, before running ldconfig we added the path of
MPICH to /etc/1d.so.conf.d/mpich.conf as in the example below (please look
here for more information):

Adds config file for MPICH for Sarus on Piz Daint
RUN echo "/usr/local/src/gnu_env/usr/lib" > /etc/ld.so.conf.d/mpich.conf \
&% ldconfig

Some libraries (e.g. YAXT) perform a test run of a minimal MPI code during the
configure step of the installation procedure: the test might fail within the Docker
container if the local hostname cannot be resolved correctly. In order to do that, the
local hostname should be available in the file /etc/hosts, which can be achieved

6

https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/install_lfric_env.sh
https://wiki.mpich.org/mpich/index.php/ABI_Compatibility_Initiative
https://www.dkrz.de/redmine/projects/yaxt/
https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/install_lfric_env_current.sh
https://forge.ipsl.jussieu.fr/ioserver
https://code.metoffice.gov.uk/trac/lfric/wiki/LFRicTechnical/VersionsCompatibility
https://user.cscs.ch/tools/containers/sarus/
https://unix.stackexchange.com/questions/425251/using-ldconfig-and-ld-so-conf-versus-ld-library-path

adding the option --add-hostname $HOSTNAME:127.0.0.1 to Docker build com-
mand. If this solution does not work, one needs to edit the /etc/hosts file of the
Docker container directly using docker run and commit the change with docker
commit, since editing the /etc/hosts file is not possible within the Dockerfile. For
more details, please check this link.

PSyclone configuration file psyclone.cfg can end up in different locations during
PSyclone installation. Please see PSyclone configuration documentation for the
most common locations. If none of those work, try the good old find / -name
"psyclone.cfg" search.

3.4.2 LFRic code

e Once the LFRic trunk was checked out, the Makefiles of the tested Gungho and

4

4.1

Gravity Wave applications needed to be modified from

export EXTERNAL_DYNAMIC_LIBRARIES = yaxt yaxt_c netcdff netcdf hdf5 \
$ (CXX_RUNTIME_LIBRARY)
export EXTERNAL_STATIC_LIBRARIES = xios

to

export EXTERNAL_DYNAMIC_LIBRARIES =
export EXTERNAL_STATIC_LIBRARIES = yaxt yaxt_c xios netcdff netcdf \
hdf5_hl hdfb5 z :libstdc++.a

for the build to complete. For this reason we made changes to Makefiles outside
the container and then copied the tarballs into the container.

By default, running command-line make build builds LFRic with MPI but not
OpenMP. To enable PSyclone OpenMP optimisations, the environment variable
LFRIC_TARGET PLATFORM was set to meto-spice value for the Gungho benchmark.

Running LFRic Docker container on Piz Daint

Gungho benchmark

The Docker image of the LFRic Gungho benchmark was loaded with sarus and run on Piz
Daint. The Slurm batch script below was used as a template for running the benchmark.

#!/bin/bash -1

#SBATCH --job-name=job_name

#SBATCH --time=01:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=6

#SBATCH --cpus-per-task=1

#SBATCH --constraint=gpu

#SBATCH --output=1lfric-gungho.%j.out
#SBATCH --error=1fric-gungho.%j.err

https://stackoverflow.com/questions/23112515/mpich2-gethostbyname-failed/23118973
https://psyclone.readthedocs.io/en/stable/getting_going.html#configuration

module load daint-gpu

module load sarus

module unload xalt

srun sarus run --mount=type=bind,source=$PWD/input/gungho,\
destination=/usr/local/src/LFRic_trunk/gungho/example \
--mpi load/library/lfric-gungho:gnu \
bash -c "export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK && \
gungho ./gungho_configuration.nml

The local folder input/gungho is a copy of the folder LFRIC_trunk/gungho/example and
contains:

e Namelist gungho_configuration.nml;

e Four mesh files required for the multigrid preconditioner (1 multigrid flag set
to .true. in the &multigrid namelist) used in Gungho (mesh24.nc, mesh12.nc,
mesh6.nc and mesh3.nc);

e iodef.xml file required for parallel 10.

The IO file, however, was not used as the use xios_io flag in the &io namelist was set
to .false.. If no diagnostic output (e.g. plots) are required, it is recommended that the
write_ diag flag in the &io namelist is also set to .false.. All input files are available
as the Gungho input archive in the Hackathon LFRic Docker repository. The mesh files
and related namelists required for the Gungho higher resolution tests below (C48, C96
and €192 mesh configurations) were produced as described in Appendix A.

The Gungho application produces a single text output for a serial run (single MPI task)
or PET#**.gungho.Log outputs for multiple MPI tasks, as well as checksums stored in
gungho-checksum. txt output. Depending on the &io namelist’s settings, it also produces
diagnostic outputs such as

e Overall application run times stored in timer.txt (set by the subroutine timers
flag to .true.);

e Overall application counter of halo calls stored in halo_calls_counter.txt (set by
the subroutine counters flag to .true.);

e Plots of the results (set by the write diag and diagnostic_frequency options);

e XIOS client output and error logs if use_xios_io flagisset to . true. (xios_client.out
and xios_client.err for a serial run/single MPI task; xios_client **.out and
xios_client **.err for multiple MPI tasks).

4.1.1 Results

Tables 1-3 show times for completing the Gungho benchmark on Piz Daint Cray XC50
with different mesh resolutions, number of nodes, MPI tasks and OpenMP threads. Ta-
ble 4 shows results of the additional tests for the C24 mesh configuration, run with 1 MPI
task and on 1, 2 and 4 OpenMP threads, respectively.

The times are from the LFRic timer.txt outputs and Slurm job outputs. Note that the
Slurm completion times are longer, as they include overheads of job submission (prologue
and epilogue).

https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/input-gungho.tar.gz
https://github.com/eth-cscs/ContainerHackathon/tree/master/LFRIC/docker

OMP threads

C24, 1 node

LFRic timer

Slurm time

1 MPI p.n. | 6 MPI p.n. 1 MPI p.n. 6 MPI p.n.
1 328.91 s 72.22 s 00:08:06 (486 s) | 00:01:56 (116 s)
2 185.56 s 44.33 s 00:03:24 (204 s) | 00:00:57 (57 s)

Table 1: Gungho benchmark runtimes on Piz Daint for C24 mesh configuration, run on 1
compute node with 1 and 6 MPI tasks per node, respectively.

C48, 1 node
OMP threads LFRic timer Slurm time
1 MPI p.n. | 6 MPI p.n. 1 MPI p.n. 6 MPI p.n.
1 1354.05 s 280.76 s | 00:22:51 (1371 s) | 00:05:00 (300 s)
2 776.13 s 177.2 s 00:13:18 (798 s) | 00:03:26 (206 s)

Table 2: Gungho benchmark runtimes on Piz Daint for C48 mesh configuration, run on 1
compute node with 1 and 6 MPI tasks per node, respectively.

C96, 6 nodes, 6 MPI p.n.
OMP threads | LFRic timer Slurm time
1 194.59 s 00:03:33 (213 s)
2 128.43's | 00:02:57 (177 s)

C192, 6 nodes, 6 MPI p.n.
LFRic timer Slurm time

801.52 s 00:13:40 (820 s)

517.95 s 00:08:57 (537 s)

Table 3: Gungho benchmark runtimes on Piz Daint for C96 and C192 mesh configurations,
respectively, run on 6 compute nodes with 6 MPI tasks per node.

C24, 1 node, 1 MPI p.n.

OMP threads

LFRic timer Slurm time
1 394.76 s 00:06:58 (418 s)
231.69 s 00:04:32 (272 s)
4 153.93 s 00:03:14 (194 s)

Table 4: Gungho benchmark runtimes on Piz Daint for C24 mesh configuration, run on 1
compute node with 1 MPI task per node and 1, 2 and 4 OpenMP threads, respectively.

4.2 Gravity Wave benchmark

The Docker image of the LFRic Gravity Wave benchmark was loaded with sarus and
run on Piz Daint. The Slurm batch script below was used as a template for running the
benchmark.

#!/bin/bash -1

#SBATCH --job—name=lfric-gwave
#SBATCH --time=00:30:00
#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=1
#SBATCH --partition=normal
#SBATCH --constraint=gpu

module load daint-gpu

module load sarus

module unload xalt

srun sarus run \
—--mount=type=bind, source=$PWD/input/gwave,\
destination=/usr/local/src/LFRic_trunk/gwave/example \
--mpi load/library/lfric-gwave:gnu \
bash -c "export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK && \
gravity_wave ./gravity_wave_configuration.nml"

The local folder input/gwave contains the namelist gravity wave_configuration.nml
and the mesh file mesh24.nc: both files are available in the Gravity Wave input archive
of the Hackathon LFRic Docker repository. This folder is a trimmed-down copy of the
folder LFRIC_trunk/miniapps/gravity wave/example. There are also other input files
present in the LFRic repository: mesh12.nc, mesh6.nc and mesh3.nc (for the multigrid
preconditioner) and iodef .xml (for parallel IO). They are not present in the input/gwave
archive as neither 1 multigrid nor use xios_io flags were set to .true. for the Piz Daint
run.

The Gravity Wave application produces outputs similar to the Gungho application de-
pending on the namelists’ settings. On a single Piz Daint Cray XC50 node the benchmark
took around 5 minutes to complete on a single MPI task (truncated output below).

Batch Job Summary Report for Job "lfric-gwave" (18507334) on daint

Username Account Partition NNodes Energy

hckO1 hck normal 1 29.18K joules

5 Summary

The LFRic Docker containers for Gungho and Gravity Wave benchmark were built inside
the Ubuntu 18.04 virtual environment on a laptop and then deployed and run on Piz Daint
using the local libraries. Building containers was somewhat challenging due to the LFRic
build dependencies and quirks of the Ubuntu virtual machine. A Docker container for only
the libraries and build dependencies needed by the code seems as a very useful tool, for
both building benchmark containers and providing LFRic software stack to collaborators
who may not have access to the requirements or expertise to build the environment.

Running the Docker containers with Sarus on Piz Daint showed to be relatively straight-
forward in comparison with the process of building them. The Gungho benchmark was
successfully run with different mesh resolutions, number of nodes, MPI tasks and OpenMP
threads. The results show good scaling, with the actual runtimes shorter than the Slurm
completion times as expected.

The Met Office has been exploring various approaches for containerisation of its models
and the experiences from this hackathon will be very useful in coming up with the optimal
strategies for different applications.

10

https://github.com/eth-cscs/ContainerHackathon/blob/master/LFRIC/docker/input-gwave.tar.gz
https://github.com/eth-cscs/ContainerHackathon/tree/master/LFRIC/docker

References

' Adams SV, Ford RW, Hambley M, Hobson JM, Kavcic I, Maynard CM, Melvin T,
Mueller EH, Mullerworth S, Porter AR, Rezny M, Shipway BJ and Wong R (2019):
LFRic: Meeting the challenges of scalability and performance portability in Weather
and Climate models. Journal of Parallel and Distributed Computing.

2 GungHo - a next generation atmospheric dynamical core for weather and climate
modelling. Accessed: 15 December 2019.

3 LFRic - a modelling system fit for future computers. Accessed: 15 December 2019.

4 Newt generation atmospheric model development. Accessed: 15 December 2019.

A LFRic mesh generation

This section describes how to generate higher resolution cubed-sphere meshes used in
the LFRic Gungho runs on Piz Daint (see section 4.1 for more details on the runs).
To generate the required meshes, we used the 1fric-gungho:gnu Docker container (see
section 3 for the container build instructions).

A.1 LFRic mesh tools

LFRic application mesh_tools (see section 2.1 for more details on LFRic code structure)
contains all prerequisites for the generation of cubed-sphere and biperiodic Cartesian
meshes (we only used the former in the Piz Daint tests).

Running make build or make build -j in the mesh_tools directory produces two ex-
ecutables for mesh generation in the bin/ directory, cubedsphere mesh generator and
planar mesh generator, and the executable summarise ugrid that summarises mesh
files information (LFRic stores meshes in UGRID format).

Cubed-sphere or planar meshes can then be produced by running
../bin cubedsphere_mesh_generator cubedsphere.nml

or

../bin planar_mesh_generator planar_mesh.nml

from the mesh tools/example directory. The C48 mesh can be generated by copying
the cubedsphere.nml to cubedsphere_C48.nml namelist, modifying the new namelist as
shown below

&cubedsphere_mesh_generator

mesh_filename = ’mesh_C48.nc’
nmeshes =1

mesh_names = ’dynamics’
edge_cells = 48
smooth_passes = 0

11

https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1016/j.jpdc.2019.02.007
https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation
https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation
https://www.metoffice.gov.uk/research/approach/modelling-systems/lfric
https://www.metoffice.gov.uk/research/news/2019/gungho-and-lfric

and then running
../bin cubedsphere_mesh_generator cubedsphere_C48.nml

from the mesh_tools/example directory. The C96 and C192 meshes are also produced in
a similar way.

A.2 Using LFRic container for mesh generation

To build the mesh generation executables, we navigated to the LFRic_trunk/mesh tools
directory in the 1fric-gungho:gnu container and modified the Makefile from

export EXTERNAL_DYNAMIC_LIBRARIES = netcdff netcdf hdf5 yaxt yaxt_c
to

export EXTERNAL_DYNAMIC_LIBRARIES =
export EXTERNAL_STATIC_LIBRARIES = netcdff netcdf hdf5 yaxt yaxt_c

before running make build -j (similar Makefile modifications were also required for the
Gungho and Gravity Wave benchmarks; see section 3.4.2 for details). The required mesh
files, C48, C96 and C192, were then generated as described above.

A.3 Higher resolution Gungho benchmark on Piz Daint

The generated mesh files were copied from the LFRic Gungho container to the host
Ubuntu 18.04 virtual environment platform in order to be transferred to Piz Daint for
the runs described in section 4.

Files can be copied from a Docker container to the host platform by using command
docker cp <containerId>:/file/path/within/container /host/path/target

where docker ps gives the container ID.

Running Gungho with multigrid preconditioner requires four-component mesh chain: base
mesh and three lower-resolution meshes, each one twice as coarse as the mesh before.
Hence, running C48 jobs required mesh files for the C48 base mesh and C24, C12 and C6
coarser resolution meshes. It also required modifying the gungho namelist.nml input
file as shown below.

e filename option in the &base mesh namelist was modified from

filename = ’mesh_C24.nc’
to
filename = ’mesh_C48.nc’

e ugrid option in the &multigrid namelist was modified from

ugrid = ’prime’, ’mesh_C12.nc’, ’mesh_C6.nc’, ’mesh_C3.nc’

12

to
ugrid = ’prime’, ’mesh_C24.nc’, ’mesh_Cl12.nc’, ’mesh_C6.nc’

For easier work the modified namelist input file was saved as
gungho_configuration C48.nml. The higher resolution (C96 and C192) mesh chains
and namelist input files were generated in a similar way and then transferred to Piz
Daint.

A.4 Higher resolution Gungho benchmark inside the con-
tainer

The generated mesh files can be copied into the LFRic_trunk/gungho/example
directory inside the LFRic Gungho container. After modifying the namelist input
files as shown above, simply run e.g. C48 configuration as

../bin/gungho gungho_configuration_C48.nml
in serial or
mpirun -np $MPI_TASKS ../bin/gungho gungho_configuration_C48.nml

for parallel runs (it is recommended to have multiples of 6 MPI_TASKS for the cubed-
sphere runs). The container changes need to be committed so that the generated
meshes and namelist files are saved for later, either in the same or in a new container.

13

	Introduction
	LFRic and PSyclone: A quick overview
	LFRic repository and wiki
	LFRic code structure

	PSyclone repository and wiki
	PSyclone in LFRic

	Building LFRic Docker container
	Gungho benchmark
	Gravity Wave benchmark
	Library versions and settings
	Tips & tricks
	Libraries
	LFRic code

	Running LFRic Docker container on Piz Daint
	Gungho benchmark
	Results

	Gravity Wave benchmark

	Summary
	LFRic mesh generation
	LFRic mesh tools
	Using LFRic container for mesh generation
	Higher resolution Gungho benchmark on Piz Daint
	Higher resolution Gungho benchmark inside the container

