
Compiler for the Versat reconfigurable architecture

Rui Santiago
INESC-ID Lisboa / Técnico Lisboa

University of Lisbon
Email: rui.santiago@ist.utl.pt

João D. Lopes
INESC-ID Lisboa / Técnico Lisboa

University of Lisbon
Email: joao.d.lopes@ist.utl.pt

José T. de Sousa
INESC-ID Lisboa / Técnico Lisboa

University of Lisbon
Email: jts@inesc-id.pt

Abstract—This work describes the implementation of a com-
piler for Versat, a Coarse Grained Reconfigurable Array (CGRA).
Before this work, Versat was only programmable in its assembly
language. The developed compiler uses a simple and high-level
Intermediate Representation (IR), contrasting with the complex
and low-level IR found in compiler frameworks such as GCC or
LLVM. Our IR is more easily translated into hardware datapaths,
which are mapped to Versat partial reconfiguration instructions.
The language syntax is a small subset of the C++ language, for
the compiler is used only for sequences of loop nests containing
operations on data arrays, as found in the target applications:
digital filters, transforms and big data algorithms such as deep
learning and k-means clustering. Experimental results show fast
compilation time, and code size / execution time similar to
handwritten assembly code.

Keywords—reconfigurable computing, coarse-grained reconfig-
urable arrays, compilers

I. INTRODUCTION

CGRA architectures have gained attention in the last two
decades [1], [2], [3], [4], as a means to produce smaller and
more power efficient reconfigurable architectures compared
to FPGA architectures. CGRAs are also potentially faster to
compile and to reconfigure. They consist of higher granularity
processing units such as ALUs, multipliers, shifters, etc, in
smaller numbers and thus using less programmable connec-
tions.

A main disadvantage of CGRA architectures is the fact
that they can only execute program loops [5]. It is necessary
to use a more conventional processor in conjunction with the
CGRA in order to run complete applications. The data needs
to be shared between the two blocks, which creates latency
in the system, and normally the conventional processor is also
responsible for managing the reconfiguration of the CGRA.
One of the earliest CGRAs, the KressArray [6], uses static
reconfiguration: the CGRA is configured once to run a com-
plete function. In static reconfiguration, the CGRA may not
have enough hardware resources to execute certain functions.
Dynamic reconfiguration solves this problem by spreading
the computation over several configurations. The Morphosys
system [2] uses a loosely coupled RISC processor and dynamic
reconfiguration. The ADRES system [1] uses a tightly coupled
VLIW processor, to solve the system latency problem, and
dynamic (cycle by cycle) reconfiguration. However, dynamic
reconfiguration causes significant power dissipation, as large
numbers of configuration registers and routing circuits are
switching at every cycle.

The Versat architecture [7] turns the disadvantage of
CGRAs into an opportunity to simplify its hardware and

compiler. Since CGRAs can only process program loops,
Versat uses just a basic 16-instruction controller for managing
reconfiguration, data transfers and basic control. The target
application domains, digital filters, transforms and big data
algorithms such as deep learning and k-means clustering, do
not require a more sophisticated controller. The host processors
in a System on Chip can use Versat as a co-processor for
accelerating these and other functions.

Versat solves the constrained resources problem by break-
ing a program loop into multiple loops with smaller bodies.
This also solves the power dissipation problem because a
new configuration is only switched on after the execution
of a loop is terminated. By supporting loop nests, Versat
reduces the reconfiguration switching frequency even further
by eliminating reconfigurations in the outer loops [3]. Versat
uses this technique but is limited to two levels of nesting. Loop
nests having more than two levels will need reconfiguration.

While the Versat CGRA is running, its controller can
algorithmically generate future configurations, which do not
have to be statically produced by a compiler and stored in
the hardware. Versat’s reconfiguration strategy is based on
the observation that, in the target applications, program loops
rarely occur in isolation. Most of the times, program loops
follow other program loops, where each loop uses the results
of the previous loop. Because Versat can generate and schedule
configurations, it can execute rather complex kernels, making
the loose coupling with a host processor less of a problem. The
generated configurations need to be written word by word in
the configuration register file. To be able to do this quickly, and
before the CGRA has finished running the active configuration,
which is kept in a shadow register, partial reconfiguration is
implemented: new configurations can be prepared by changing
just a few configuration words of a previously generated
configuration. Finally, since the active configuration switching
rate is low, it does not matter, in terms of power, if the
configuration register and routing logic is large. Exploiting this
fact, Versat has a full mesh topology implemented by a full
crossbar, which tremendously simplifies the compiler design
by eliminating the need for Place and Route (P&R) techniques
similar to those used in FPGAs [8]. In fact, not needing
P&R makes Versat easily programmable in assembly language,
which is very useful and, to the best of our knowledge, unique
in CGRAs.

The Versat VLSI implementation in the UMC 130 nm
technology [7] features a silicon area of 4.2mm2, a post
place and route operation frequency of 170MHz and a power
consumption of 99mW. The full crossbar silicon area is only
4% of the Versat total area, which is dominated by the area



of the embedded memories. Compared to an ARM Cortex A9
processor, Versat can execute a 1024-point complex FFT 17x
faster, using 10x less silicon area and consuming 249x less
energy.

Before this work, Versat was only programmable in as-
sembly language. With the present compiler, Versat can be
programmed with a higher level language, having a syntax
similar to C++. By focusing in the sequences of program
loops used in the target applications, we have dismissed most
of the C++ features and come up with a concise dialect
able to fulfill our needs. Initially, the use of a standard
compiler framework such as GCC or LLVM was considered.
However, this idea has been abandoned because the IR in
these frameworks, albeit powerful, is too low-level, a sort of
universal assembly language from which it is hard to extract
the loop nest parameters needed to program Versat. Those IRs
can easily be mapped to the assembly language of conventional
processors, provide better parsing, high level optimizations,
debugging support, error message handling, etc, but destroy the
high-level information that we need to configure our CGRA.
Therefore, we propose a simple yet high-level and effective IR
for mapping loop nests. Since we only use a small number of
C++ constructs, we have decided that implementing the parser
ourselves was easier than using a standard parser and having
to extract the Versat configurations from its unsuitable IR.

This paper has five more sections. In section II, the Versat
architecture is summarized. In section III, the structure of
the developed compiler is presented. In section IV, the main
constructs supported by the compiler are outlined. In section V,
experimental results are presented. Finally, in section VI,
conclusions are outlined.

II. VERSAT ARCHITECTURE

The Versat architecture is presented in detail in [7]. Here,
only a brief description is presented for self containability rea-
sons. The top level entity is shown in figure 1. The Controller
executes the program stored in the Program Memory (PM).
The communication between a host system and Versat is done
through the Control Register File (CRF). The host uses the
CRF to initiate the execution of programs, pass parameters
and check if the execution is finished. The Data Engine (DE)
is where heavy computations take place. The controller writes
or selects the DE configurations in the Configuration Module
(CM). The Direct Memory Access (DMA) module is used
to access the external memory and transfer data/instructions/-
configurations to/from the DE/PM/CM, respectively. The DE
receives a command to start running from the controller and
informs the controller when the execution is finished. This
process normally repeats many times during the execution of
a program, for many different DE configurations.

A. Controller

The Versat controller is used for the overall control of
the system, especially the reconfiguration process. It performs
loads and stores (from/to the Control Bus), simple calcu-
lations, and conditional instructions. The controller has not
been designed for efficiency or to support complex operations.
Its instruction set consists of just 16 instructions and its
performance is just enough for carrying out reconfigurations

Fig. 1: The Versat top-level entity.

and simple control tasks; the intense computations are done in
the DE. A simplified block diagram of the controller is shown
in figure 2.

Fig. 2: Controller block diagram.

The Versat controller architecture has only three main reg-
isters: the program counter (PC), the accumulator (register A)
and the pointer (register B). The program counter contains the
next instruction address, as usual. The result of all operations
is stored in the accumulator. Register B is used for indirect
addressing or as general purpose.

B. Data Engine

The Data Engine (DE) is a 32-bit architecture and com-
prises 15 functional units (FUs) as shown in figure 3. There
are 4 dual port embedded memories, 6 ALUs, 4 multipliers
and 1 barrel shifter. The outputs of all FUs are concatenated
to form a 19x32-bit Data Bus. (Since each memory contributes
two outputs at most, there are 2*4+11=19 bus sections.) Each
FU input can be configured to select any of the 19 sections of
the bus – this implements the full mesh topology and avoids
contention on the Data Bus.

The embedded memories have an address generator for
each port. The address generator can support two-level for
loop nests. It is possible to configure and run each address
generator independently. The address generator parameters are
described in table I. The ports can be configured to read
or write the memories. The write configuration includes the
selection of a data bus section to be written.

The ALU functions are given in table II. Two of the ALUs
can execute all functions while four of the ALUs execute only



Fig. 3: Data engine block diagram.

TABLE I: Address generator parameters.

Parameter Description
Start Memory start address. Default value is 0.
Per Number of iterations of the inner loop, aka Period. Default

is 1 (no inner loop).
Duty Number of cycles in a period (Per) that the memory is

enabled. Default is 1.
Incr Increment for the inner loop. Default is 0.
Iter Number of iterations of the outer loop. Default is 1.
Shift Additional increment in the end of each period. Note that

Per+Shift is the increment of the outer loop. Default is 0.
Delay Number of clock cycles that the address generator must wait

before starting to work. Used to compensate different laten-
cies in the converging branches of the configured datapaths.
Default is 0.

Reverse Bit-wise reversion of the generated address. Certain appli-
cations like the FFT work with mirrored addresses. Default
is 0.

the first 6 functions (ALULite). The multipliers take two 32-bit
operands and produce a 64-bit result, of which only 32 bits
are used. It is possible to choose the upper or lower 32-bit
part of the result. It is also possible multiply the output by
two, which is useful when working in the Q1.31 fixed-point
format. This format is common in some DSP algorithms. For
the barrel shifter, one operand is the word to be shifted and
the other operand is the size of the displacement. The barrel
shifter is configured with the shift direction (left or right) and
the right shift type (arithmetic or logic).

TABLE II: ALU functions.

Operation Description
OR Logical OR.
AND Logical AND.
NAND Logical NAND.
XOR Logical XOR.
ADD Arithmetic addition.
SUB Arithmetic subtraction.
SEXT8 Sign extend from 8 to 32 bits.
SEXT16 Sign extend from 16 to 32 bits.
SHR Arithmetic shift right.
SLR Logic right shift.
SCMP Signed compare.
UCMP Unsigned compare.
CLZ Count leading zeros.
MAX Maximum.
MIN Minimum.
ABS Absolute value.

Each FU has a latency due to pipelining, which is imple-
mented by adding registers to the output of the FU and using
the retiming feature of the synthesis tool to move the registers
backwards, balancing combinational paths. The number of
registers added to each FU (latency) has been chosen in
order to achieve timing closure. The obtained latencies are the
following: 2 cycles for the ALU, 3 cycles for the multiplier
and 1 cycle for the barrel shifter. Thus, when configuring a

datapath in the DE, it is necessary to take into account the
latency of each branch, and compensate for any mismatches
when branches with different latencies converge. To do this,
the address generators have the delay parameter explained in
table I. The branch latency is the sum of its FU latencies.

To control the DE, it is necessary to write to its control
register. It is possible to initialize/run the FUs by setting bit 0/1
of the control register. Bits 2-20 select the FUs to initialize or
run. (Since each memory port can be controlled independently,
there are 2*4+11=19 bits for selecting the FUs.) To check the
DE, its status register is used. The status register indicates
which address generators have ended execution (bits 0-7).

C. Configuration module

The configurations of the DE are stored in the Configu-
ration Module (CM). It comprises the configuration register
file, the configuration shadow register and the configuration
memory. The configuration register file is used by the Versat
controller to write a configuration for the DE. The shadow reg-
ister allows maintaining the currently active DE configuration
while a future configuration is being created in the configura-
tion register. The configuration memory can be used to save
64 frequently used DE configurations. A configuration in the
configuration register file can be saved in the configuration
memory and reloaded later for use.

D. DMA

The Versat controller uses the DMA to access an external
memory and transfer programs, data and configurations. The
maximum block transfer size is 256 words of 32 bits. The
DMA can work in parallel with the controller and the DE.

III. VERSAT COMPILER STRUCTURE

The most distinctive feature of our compiler is its In-
termediate Representation (IR). Driven by the need to map
sequences of loop nests, and forgoing optimizations steps, a
simple yet high-level IR is proposed. This data structure is
a list that represents a linear sequence of commands, where
some of the commands are high-level, such as the commands
named register expression and memory expressions, which are
discussed below. The commands are scheduled in the order by
which they are read from the program text.

The register expression command is a high-level rep-
resentation of an expression involving arithmetic and logic
operations, to be executed by the controller. Besides grouping
operations in a high-level command, there is nothing special
about the register expression command, and we could have
used a standard framework such as GCC or LLVM to obtain
equivalent functionality. This is because the controller is a
conventional machine.

On the other hand, the memory expressions command,
which configures a complete loop nest in the DE, is difficult to
implement with standard compiler frameworks. It is necessary
to partially reverse the compilation process to recover the high-
level parameters that describe the loop nest (the number of
levels, number of iterations in each level, address start values
and increment patterns), as well as the compute graphs in



its body. The memory expressions command captures all this
information effortlessly (section IV-C).

The syntax of the C++ language has been adopted for the
compiler language, because C++ is a widely used language.
The C++ dialect used in this work will be called VC++ from
now on.

The Versat compiler is divided in two parts as usual: the
front end and the back end. In the front end the text description
of the program is read and the IR is built. In the back end the IR
is traversed and assembly code is generated for each command
in the list. For machine code production, it is necessary to use
the Versat assembler, a separate program which already existed
when this project started.

A. Front end

The front end is divided in two phases: lexing followed
by parsing. In the lexing phase the program file is read,
keywords are recognized and tokens are returned to the parser.
A particular token is returned when a particular sequence
of symbols is detected during lexing. During parsing, the
sequence of tokens received from the lexer is analyzed and
compatible grammar rules are detected. If no matching rules
are detected, errors are reported. The tools used for the front
end are the well known Flex (lexer) and Bison (parser) tools.
Consider the following expression in VC++:

R5 = R4+R3+(2-R6);

The expression parse tree is shown in figure 4, where
Reg_target is the register where the result will be saved
and expressions are the nodes responsible for storing the
expression terms. The whole expression is stored as a register
expression command in the IR.

Fig. 4: Parse tree of a register expression in VC++.

B. Back end

The back end is responsible for scanning the commands
in the IR and generating the respective assembly code. Each
command produces a chunk of assembly instructions. No
optimization steps are run before or after the sequence of
instructions is produced. For some commands, generating the
assembly code is straightforward. Other commands, which
typically involve expression trees, require more elaborate pro-
cessing.

Fig. 5: Register expression tree.

The register expression command used in section III-A
stores the tree shown in figure 5. The front end builds the
tree taking into account the precedence of the operations, and
the back end processes it from right to left. It first issues
instructions to compute the expression 2-R6 and to store the
result in register B. When processing larger trees, register
B may be already occupied with the result of another sub-
tree. In this case the back end returns an error indicating
lack of resources to process the expression. To support larger
expressions in future versions of the compiler, more registers
for storing temporary results are needed. Finally, instructions
are generated to compute R4+R3+RB in the accumulator. The
assembly code generated by this example is the following:

ldi 2 //loads constant 2 in register A
sub R6 //subtracts R6 from register A
wrw RB //stores register A to RB
rdw R4 //loads R4 to register A
add R3 //adds R3 to register A
add RB //adds RB to register A
wrw R5 //stores register A to R5

IV. VERSAT COMPILER CONSTRUCTS

The VC++ constructs that reflect the main research pro-
posal in this work are the memory expressions constructs, in-
troduced in the beginning of section III. VC++ has many other
lower-level and less original constructs, which are nevertheless
useful. In this section, we describe the compiler constructs in
ascending order of abstraction, ending with the description of
memory expressions.

A. Predefined objects, variables and intrinsic methods

In the VC++ dialect, the programmer mostly works with
predefined objects and variables, since resources are limited.
The exception is for variables of type node, which are
explained in section IV-E. The predefined objects and variables
represent parts of the Versat hardware, which are exposed to
the programmer. Hence, it is possible to work close to the



machine level, using a more convenient syntax compared to
assembly code. The VC++ predefined objects and variables
are outlined in table III. The FUs in the DE can be configured
using only the predefined objects and variables. We call this
manual configuration.

TABLE III: Predefined objects and variables.

Obj/Var Type Suffix Description
mem object [0-3][A-B] Allows data access to memo-

ries 0-3 via ports A or B. Used
in memory expressions.

alu object [0-1] ALUs.
alulite object [0-3] ALULites.
mult object [0-3] Multipliers.
bs object 0 Barrel shifter.
de object - Data Engine.
dma object - DMA Engine.
R variable [1-15] Read/write registers to use as

variables. The R0 register is
reserved for boot ROM use.

Ralu variable [0-1] ALU output registers (read-
/write).

RaluLite variable [0-3] ALULite output registers
(read/write).

Rmult variable [0-3] Multiplier output registers
(read/write).

Rbs variable 0 Barrel shifter output register
(read/write).

i, j variable - Memory expression iterators
(read/write).

The intrinsic methods associated with the data engine
object are shown in table IV. The run method writes to the
DE control register and the wait method reads DE status
register. The intrinsic methods for configuring the FUs are
given in table V and the intrinsic methods for connecting the
input ports of an FU are explained in table VI.

TABLE IV: Data Engine intrinsic methods.

Method Description
de.run(FU, FU, ...) Initializes and runs the data engine. Re-

ceives as arguments the memory ports to
run and the FUs to initialize. Adds auto-
matically to the argument list all FUs of
the last memory expression.

de.wait(memPort, memPort, ...) Waits for the data engine to finish running.
Receives as arguments the memory ports
to wait for. Adds automatically to the ar-
gument list all memory ports of the last
memory expression.

de.autoDuty(bit) Duty parameter is calculated automatically
(bit=1, default) or not (bit=0).

clearConfig() Clears the configuration register and deal-
locates all FUs.

de.loadConfig(address) Loads a configuration from a given config-
uration memory address to the configura-
tion register.

de.saveConfig(int) Saves a configuration from the configura-
tion register to a given configuration mem-
ory address.

B. Register expressions

The Versat language supports expressions involving the
predefined register variables and arithmetic and logic opera-
tors. As explained in section III-B, it is not guaranteed that
long expressions can be processed. The supported operations
in register expressions are listed in table VII. The use of

TABLE V: FU configuration intrinsic methods.

Method Description
mem[0-3][A-B].setStart(expression) Sets the Start parameter of a memory

port.
mem[0-3][A-B].setDuty(expression) Sets the Duty parameter.
mem[0-3][A-B].setIncr(expression) Sets the Incr parameter.
mem[0-3][A-B].setIter(expression) Sets the Iter parameter.
mem[0-3][A-B].setPer(expression) Sets the Per parameter.
mem[0-3][A-B].setShift(expression) Sets the Shift parameter.
mem[0-3][A-B].setDelay(expression) Sets the Delay parameter.
mem[0-3][A-B].setReverse(expression) Sets the Reverse parameter.
alu[0-1].setOper(operation) Defines the operation of the ALU.
alulite[0-3].setOper(operation) Defines the operation of the ALULite.
mult[0-3].setLonhi(bit) Selects the lower 32-bit part (bit=1) or

the higher 32-bit part (bit=0, default) of
the 64-bit multiplier result.

mult[0-3].setDiv2(bit) Shifts the multiplier result 1 bit to the
left (bit=0, default), or not (bit=1).

bs.setLNR(bit) Shift is to the left (bit=1) or to the right
(bit=0, default).

bs.setLNA(bit) Right shift is arithmetic (bit=0, default)
or logic (bit=1).

TABLE VI: Connect intrinsic methods.

Method Description
x.connectPortA(y) Connects input port A of FU x to the output of

FU y.
x.connectPortB(y) Connects input port B of FU x to the output of

FU y.

parentheses is supported, the operations are evaluated in the
order established by the precedence levels given, (lower is
first,) or left to right by default.

TABLE VII: Supported operations in register expressions.

Operation Description Precedence
+ Addition 3
- Subtraction 3
& Logic AND 2

>> Shift right 1
<< Shift left 1

C. Memory expressions

In this section, the most important construct of the de-
veloped compiler is discussed: memory expressions. These
represent for loop nests where only the DE memories need
be explicitly instantiated by the programmer – this is why they
have been called memory expressions. The DE memories are
used as data arrays in the loop body expressions. Operators
are automatically mapped to FUs. It was this feature alone
that forced us to deviate from a standard IR such as GCC’s
or LLVM’s and to develop our own IR, an ordered list of
commands where memory expressions is one of the command
types.

The memory expressions command stores the parameters
of a loop nest. When processed by the back end, this command
produces DE configuration instructions only. To run them, one
needs to call the de.run() method (table IV). An example
of a simple memory expression for vector addition is the
following:



for(j=0;j<iter;j++)
mem1A[start1A+incr1A*j] =

mem0A[start0A+incr0A*j] +
mem2B[start2B+incr2B*j];

Memory ports mem1A, mem0A and mem2B are instantiated
explicitly and the addition is mapped automatically. The con-
figuration parameters of the address generators in the memory
ports (table I) can be extracted by direct inspection of the
memory expression as shown in the example. Note that the
parameter iter is common to all memory ports. The param-
eters can be extracted from constants or register values.

An example of a complete instantiation of a memory port
in a memory expression is given below:

for(j=0;j<iter;j++)
for(i=0;i<per;i++)
mem3B[start3B+j*perPLUSshift3B+incr3B*i]=...

For memory port mem3B the extracted parameters are
the following: iter=iter, per=per, start = start3B,
incr=incr3B, and shift = perPLUSshift - per. This
shows that the extraction of nested loop configuration param-
eters from the memory expressions command is trivial.

The delay parameter is calculated automatically by the
compiler. This is useful automation as the manual calculation
of this parameter is the most difficult aspect of programming
Versat in assembly language. The algorithm for calculating the
delay uses the memory expression tree and the FU latencies:
the delay of a branch is simply the difference between the
latency of the longest branch and the latency of the branch in
question. (Hence, the delay for the longest branch is always
0.)

The compiler verifies the memory port parameters. If there
are two different configurations for the same memory port in
the loop nest body, the compiler issues an error. If the same
port is in two different trees in the loop nest body, the compiler
verifies if the calculated delay parameter has the same value
in the two trees, returning an error otherwise.

While processing memory expressions, the compiler knows
which FUs (other than the explicitly instantiated memories)
have been used by means of a resource allocation table. An
error message is issued if there are not enough resources to
implement a memory expressions command. The release of re-
sources occurs only when the method de.clearConfig()
is called.

Anytime an FU is configured it is marked as an used
resource by the compiler. Therefore, when creating datapaths
using a mix of memory expressions and manual configurations,
one should proceed as follows: (1) do the necessary manual
configurations to allocate the resources; (2) do the memory
expressions, which are guaranteed not to use the resources
manually configured in (1); (3) do the connections between the
manually configured resources and the resources allocated with
memory expressions. After this, manually configuring more
resources is not recommended before releasing the current
ones, because those resources may have been used by the
memory expressions.

After writing memory expressions, the de.run() and
de.wait() methods will have as implicit arguments the list

of FUs allocated by the memory expression. The user should
pass only the manually configured FUs as arguments of these
methods.

Memory expressions configure the duty parameter au-
tomatically with a value equal to the per parameter. The
exception is when the programmer needs to build datapaths
with feedback, which cannot be done with memory expressions
alone. In this case, the automatic calculation of the duty
parameter should be disabled using the de.autoDuty()
method (table IV), and the duty parameter should be config-
ured using the setDuty() method (table V).

D. DMA

The intrinsic methods for the DMA Engine (section II-D)
are given in table VIII.

TABLE VIII: DMA intrinsic methods.

Method Description
config(ExtAddr, IntAddr,
Size, Direction)

Configures the DMA. ExtAddr and IntAddr are the
external and internal memory addresses, respec-
tively, which can be given by register expressions.
Size is the number of 32-bit data words to transfer;
the maximum is 256. Direction is the direction of
the transfer: 1 if from external memory to Versat
and 2 otherwise.

run() Executes the DMA.
wait() Waits for the DMA to end execution. In case of

error in the data transfer, this method terminates
with an error reported in register R1.

setExtAddr(expression) Sets the external memory address.
setIntAddr(expression) Sets the internal memory address.
setSize(Size) Sets the transfer size only.
setDirection(Direction) Sets the transfer direction.

Note that the external memory is normally in a separate
chip, while the internal memory comprises the instruction,
configuration and data memories of Versat.

E. Variables

The Versat compiler supports only one type of variables:
the node type. These variables are used to represent the
output of FUs and can be assigned in memory expressions.
The following example, a dot product of two complex vectors,
illustrates the use of nodes:

node X;
node Y;
alu0.setOper(’+’);
alu0.connectPortB(alu0);
alu1.setOper(’+’);
alu1.connectPortB(alu1);
for(j=0;j<255;j++) {

X=(mem0B[1+j]*’mem1B[1+j])-
(mem0A[j]*’mem1A[j]);

Y=(mem0A[j]*’mem1B[1+j])+
(mem0B[1+j]*’mem1A[j]); }

alu0.connectPortA(X);
alu1.connectPortA(Y);

In this example, variables X and Y are used to capture the
output of the two memory expressions inside the for loop,
as shown in figure 6. X and Y are the real and imaginary
parts of the complex multiplication of vector elements stored



in mem0 and mem1. X and Y are connected to the input of the
accumulators implemented by alu0 and alu1, which cannot
be instantiated in the memory expressions due to feedback.
The *’ operator instantiates a multiplier with the non-default
parameters lonhi = 1 and div2 = 1 (table V).

Fig. 6: Datapath that shows the use of variables.

V. RESULTS

Experimental results using a set of programs, which had
been previously written in assembly, are presented. The test
programs are: vector addition (vec add), complex dot product
(cdp), Fast Fourier Transform without partial reconfigurations
(fft), Fast Fourier Transform with partial reconfigurations
(fft pr), first and second order low pass filters (lpf1 and
lpf2). All test programs operate on 1024-point vectors. The
experimental results characterize the compiler in terms of
compilation time, generated assembly code size and execution
time.

A. Compile time

The compile time for the test programs is provided in
table IX. The results have been obtained on a PC (@2.13GHz,
4GB RAM) running the Ubuntu 12.04 OS.

TABLE IX: Compile time.

Program Compile time [ms]
vec add 3.458
cdp 5.202
fft 7.507
fft pr 11.408
lpf1 5.041
lpf2 5.346

The results show that the VC++ programs compile quickly.
The most complex part of the compiler algorithm is the
analysis of memory expressions. In a memory expression, the
tree that represents a hardware datapath is traversed twice: once
to generate the data engine circuit and another to calculate the
delay parameter for each memory port. The maximum size
of a tree is 15 nodes, which represents the entire data engine.
Since there are no optimization steps, the complexity of the
compiler algorithm is proportional to the number of nodes in
the analyzed trees.

B. Code size

The code size of the VC++ and assembly programs, both
compiled and handwritten, is studied in this section. The results
are shown in table X.

TABLE X: Number of lines of the test programs

Program VC++ Compiled Handwritten Overhead [%]
vec add 7 47 38 23.7

cdp 31 145 102 42.2
fft 98 959 830 15.6

fft pr 258 1236 870 42.1
lpf1 23 61 54 13.0
lpf2 33 111 85 30.1

The difference between the number of lines in the VC++
programs and the number of lines in the handwritten assembly
programs shows that the developed compiler can significantly
reduce the programmer’s effort, which is what is expected from
a compiler.

As one would expect, the number of lines of the compiled
assembly code is higher than the number of lines of the
handwritten assembly code (about 42% in the worst cases).
Though this is true for most compilers, in ours the main reason
for this is the fact that the compiler does not memorize the
accumulator and configuration register contents, and frequently
reloads them with the same values they already have. This
rarely happens when the programs are written in assembly,
and the problem worsens if manual configurations (IV-A) are
extensively used. In the fft pr example, the difference between
the compiled assembly and the manual assembly is largest
because there are more manual configurations in this example
than in the other programs.

Even so, the generated assembly code size is close to
the manual assembly code size. This happens because the
programs follow a similar structure, configuring and running
the data engine several times, which is basically how Versat
works.

C. Execution time

An unfabricated UMC 130nm VLSI design exists for
Versat [7], which can be emulated in FPGA. The execution
time of each test program has been measured using the
SP605 evaluation board featuring the Spartan-6 XC6SLX45T-
FGG484 -3C FPGA. A Microblaze processor has been used
as the host system. It is used for loading the external memory
with data, loading the Versat programs, starting Versat and
measuring execution times. For each example, we compare
the run time of the assembly code produced by the present
compiler with the run time of the assembly code handwritten
by a human programmer. The results are provided in table XI.

The results show that the execution time of the compiled
programs is close to the execution time of the handwritten
assembly programs, which means the compiler produces ef-
ficient assembly code. The worst result occurs for the fft
program (9.3% time overhead), which is written very com-
pactly in VC++ using memory expressions, but generates less



TABLE XI: Execution time of test programs in clock cycles.

Program Compiled Handwritten Overhead [%]
vec add 329 318 3.5
cdp 681 642 6.1
fft 14246 13038 9.3
fft pr 12259 12112 1.2
lpf1 2647 2645 0.1
lpf2 4227 4211 0.4

efficient assembly code. The reason for this is the fact that the
configuration time is not completely hidden by the execution
of the DE. When using manual configurations to perform more
aggressive partial reconfigurations (fft pr) the overhead drops
to 1.2%. Also note that for lpf1 and lpf2, which do not use
memory expressions, the overhead is close to zero.

Versat should be used for programs that benefit from
acceleration in the DE. The controller plays an important role
in configuring the DE and sequencing operations, but it should
do so preferably while the DE is running – hidden control.
When this is not possible, the controller becomes the only
element active in the system – unhidden control. The number
of clock cycles used by the DE and the number of unhidden
control cycles are shown in table XII. These results show that
most of the control clock cycles are effectively hidden.

TABLE XII: DE Cycles vs. unhidden control cycles.

Program DE cycles Unhidden cycles Total cycles
vec add 279 50 329
cdp 540 141 681
fft 11474 2812 14246
fft pr 11474 785 12259
lpf1 2586 61 2647
lpf2 4124 103 4227

VI. CONCLUSION

In this work a first version of a compiler for the Versat
CGRA architecture is presented. Central to this work is the
proposal of an Intermediate Representation (IR) that conve-
niently captures the high-level parameters and compute graphs
in loop nests, used for creating hardware datapaths in Versat.
If standard compiler frameworks such as GCC or LLVM had
been used, such high-level information would be crushed and
it would be necessary to re-extract it from their more powerful
but lower-level IR.

The proposed IR is simply a list of commands, but some of
them are high-level. They are translated to assembly code by
the order in which they appear in the list. The simplicity of this
IR stems from the application domains considered: basic vector
operations, digital filters, transforms and big data algorithms
such as deep learning and k-means clustering.

The resulting Versat language (VC++) is a small subset
of the C++ language. At a low level, VC++ has a number
of predefined variables, objects and intrinsic methods, which
expose the hardware modules to the programmer. With such
constructs, structural description of hardware datapaths is
always possible. At a high level, the compiler converts entire

for loop nests into configurations of the data engine, using a
single command in the newly developed IR.

A set of test programs previously written in assembly have
been rewritten in VC++, compiled, and the resulting assembly
code compared in terms of size to the original assembly code.
The results show that the compiler produces code that is less
than 42% larger than handwritten assembly code.

The compilation time for the benchmarks was always lower
than 12ms, which can be considered fast. This is due, not
only to the small size of the kernels used, but also to the
linear complexity of the compiler algorithm, which does not
have any optimization or place and route (P&R) steps. The
full mesh topology of Versat dispenses with P&R.

The execution time of the compiled programs is very
close to the time taken by the same programs handwritten
in assembly language. Moreover, the amount of time when
only the controller is running is very small compared to the
total execution time. This means that, using the compiler, the
control and reconfiguration times can be effectively hidden.

As future work we propose to raise the level of abstraction
even more, supporting more behavioral descriptions and re-
ducing the need for structural descriptions. Additionally, since
the compiler is tailored to the architecture of Versat, it should
be updated for use with a similar architecture having different
numbers of units in the DE.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013.

REFERENCES

[1] Bingfeng Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauw-
ereins. Architecture exploration for a reconfigurable architecture tem-
plate. Design & Test of Computers, IEEE, 22(2):90–101, March 2005.

[2] Ming hau Lee, Hartej Singh, Guangming Lu, Nader Bagherzadeh,
and Fadi J. Kurdahi. Design and implementation of the MorphoSys
reconfigurable computing processor. In Journal of VLSI and Signal
Processing-Systems for Signal, Image and Video Technology. Kluwer
Academic Publishers, 2000.

[3] J.T. de Sousa, V.M.G. Martins, N.C.C. Lourenco, A.M.D. Santos, and
N.G. do Rosario Ribeiro. Reconfigurable coprocessor architecture
template for nested loops and programming tool, September 25 2012.
US Patent 8,276,120.

[4] L. Liu, D. Wang, M. Zhu, Y. Wang, S. Yin, P. Cao, J. Yang, and S. Wei.
An energy-efficient coarse-grained reconfigurable processing unit for
multiple-standard video decoding. IEEE Transactions on Multimedia,
17(10):1706–1720, Oct 2015.

[5] Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts. Handbook
of Signal Processing Systems, chapter Coarse-Grained Reconfigurable
Array Architectures, pages 553–592. Springer, 2 edition, 2013. ISBN:
978-1-4614-6858-5.

[6] Reiner Hartenstein. Coarse grain reconfigurable architecture (embedded
tutorial). In Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, ASP-DAC ’01, pages 564–570, New York, NY,
USA, 2001. ACM.

[7] J.D. Lopes and J.T. de Sousa. Versat, a minimal coarse-grain reconfig-
urable array. In Proc. of the 12th Int. Meeting on High Performance
Computing for Computational Science, VECPAR, Porto, Portugal, June
2016.

[8] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Ar-
chitecture and CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, Norwell, MA, USA, 1999.


