
1

Accelerating PNG Encoding in Hardware
João F. Cardoso and José T. de Sousa

INESC-ID/IST Lisboa, Email: jts@inesc-id.pt

Abstract—The objective of this work is to develop
an Intellectual Property (IP) subsystem for Portable
Network Graphics (PNG) encoders, capable of operating
at 30 frames per second (FPS) with the Video Graphics
Array (VGA) standard when embedded system on chip
hardware. The developed IP subsystem comprises an
ARM Cortex A9 CPU running at 667 MHz, coupled
with a hardware IP module that implements the
LZ77 algorithm, running at 100 MHz. The LZ77
compression step is the most time consuming of the
tasks involved in the encoder when done in software,
and the LZ77 hardware module accelerates its execution
by a factor of 40 when compared with the software-only
implementation running on the ARM system. The
operation of the LZ77 IP is similar to that of a content-
addressable memory, which is a well known technique
to implement dictionaries in hardware. The proposed
solution is implemented on an FPGA board, using a
Xilinx Zynq 7000 device. Although the LZ77 IP has
achieved 82.2 fps in VGA, thus exceeding the objective
set for this work (30 fps) by roughly two times, the
whole PNG encoder is only capable of achieving 3.5 fps,
which is three times thrice as fast as its software-only
implementation. For the encoder to be capable of
operating at 30 fps, other functions need hardware
acceleration as well, such as the input image filter, the
entropy coder, and the bit stream packer. Additionally,
the whole software base needs significant optimizations
for that to be possible.

Keywords: PNG encode, LZ77, Deflate, Hardware
Acceleration

I. INTRODUCTION

In recent years, the advances in optical integration
technologies have resulted in rapid proliferation of
devices — such as cameras, displays, tablets, etc.
— that can capture and display pictures, some of
them with using resolution standards such as High
Definition (HD) or Ultra High Definition (UHD). With
the proliferation of these devices, there are growing
expectations about the next-generation services for
the distribution of HD contents via broadcasting and
network delivery. However, the use of higher definition
and resolution implies more data, and bigger files. Even
though memory space has become cheaper in the last
years, it is always better to make the most efficient
use of the available space. This can be achieved with
encoders, which compress the original file data into
smaller files.

The last wave of technological advances, e.g., neural
networks, artificial intelligence, image processing[6],
and the Internet of Things (IoT), among others, have

increased between different systems, the need to trans-
fer more and more image data between different sys-
tems, and at higher rates. With it, there is an accompa-
nying need for faster image compression, so as to keep
up with the growing demand for image transmission.
this trend is clearly apparent in the latest research
works, in which use of image processing is used,
to correct errors and detect changes or patterns for
such different purposes as health monitoring, security,
control, etc.

The Portable Network Graphics (PNG) format [8]
uses data compression schemes without information
loss, (commonly referred to as ”lossless data compres-
sion”). It is an extensible image storage format. Fur-
thermore, it supports black and white (binary mask),
grayscale, indexed-colours, and truecolour images.

Hardware acceleration is the use of hardware to
perform some function faster and more efficiently than
would be possible in software running on a general-
purpose central processing unit (CPU). The hardware
that performs the acceleration, when separated from
the CPU, is referred as the ”hardware accelerator”.

Traditional processors are sequential (instructions
are executed one by one), and are designed to run
generic algorithm. Morden CPUs can, in fact, achieve
some degree of parallelism via Instruction Level Par-
allelism, Data Level Parallelism or Thread Level Par-
allelism, but they remain essentially sequential.

Hardware accelerators improve the execution of a
specific algorithms by allowing greater concurrency,
providing specific data-paths, and possibly reducing
the overhead of instruction control. Modern processors
are multi-core and often feature parallel Single Instruc-
tion Multiple Data units, but hardware acceleration still
yields considerable benefits. Hardware acceleration is
suitable for any repetitive intensive key algorithm, and
it can vary from small to large logic blocks. Hardware
acceleration has more benefits, like reducing the power
needed to perform the task. This is crucial, since as
modern systems become more and more power hungry,
it becomes crucial to minimize power consumption
and, in some cases, extend battery duration.

This paper will first summarize the PNG encoder
algorithms and establish the necessary background.
Since and an open source PNG encoder software
(LodePNG) was adopted as a starting point for the
hardware implementation presented here, an analysis
of the execution time of its main functions is then pre-
sented, in order to choose the best candidate functions

2

to be accelerated in hardware. A new hardware design
for the LZ77 function is then presented, to replace the
software/based version of the algorithm, thus leading
to the desired IP. As will be shown, the results show
that the proposed hardware IP accelerated the LZ77
algorithm by a factor of approximately 40 when used
with VGA-sized images. The overall performance of
the PNG encoder is then discussed.

II. BACKGROUND

The PNG format is essentially the combined re-
sult of a first filtering step(prediction), followed by
compression step, which uses the Deflate algorithm.
The filtering action in the first stage and is, in fact,
a pre-compression method that tries to make the raw
image data more compressible, by transforming the
data before compression so as to extract the maximum
efficiency from the compression algorithm (Deflate).In
the second stage, a non-patented lossless data compres-
sion algorithm based on a combination of LZ77 and
Huffman coding (the Deflate algorithm), will compress
the processed data. The parameters and specifications
for each step of the PNG encoder have only been
specified for Method 0, the only method currently
specified in the PNG specification [8], which describes
how to encode a file into the PNG format

II-A. Filtering

As mentioned above, before the compressing stage,
the scanlines (image’s lines) are filtered, to increase
the Deflate compression ratio. This ’filtering action’,
results in a sequence of bytes of the same size as the
incoming sequence plus one byte. It does not reduce or
compress the scanlines, but changes the representation
of the data sequence, and precedes it with a byte
indicating the filter type. It is important to note that
PNG filters are lossless, that is, no information is
lost [8].

The scanlines can use different filter types. The used
filters are specified by the filter type byte, at the start
of each scanline. Even though this byte is not part of
the image data, it is included in the datastream sent to
the compression step.

The choice of which filter to apply is left to the
encoder, which means that different encoders may use
different filters for the same image [8]. Currently,
the PNG standard contains only the specification of
Method 0, which defines five basic filter types. If ever
extended, a different number will be used to define
the new set. As has been said, there is no golden rule
dictating which filter to apply to each scanline; the
decision is left to the encoders.

The filtering algorithms are applied byte-by-byte,
independently of the image pixel depth or the colour
types. The existence of the alpha channel does not
change the way in which the image is filtered. There

are no other divisions inside each image line, except
for bytes. The filtering algorithm sees a byte datastream
without any kind of types division (RGBA or pixels).

II-B. The Deflate Algorithm

The use of the Deflate compression algorithm is
specified in the PNG compression Method 0, and
is based on a sliding window of 32,768 bytes. The
deflate compression is derived from the LZ77 algo-
rithm, adding Huffman coding to improve compression
results. The data streams after Deflate compression,
in PNG format, are stored in the ”ZLIB” format. The
ZLIB compression method code must specify method
code 8 (”deflate” compression) and a window size
of not more than 32,768 bytes (constraint specified
in Method 0) for LZ77. Note that ZLIB compression
method number and PNG compression method number
are not the same and the additional flags must not spec-
ify a pre-set dictionary. A PNG decoder by definition
must be able to decompress any valid ZLIB data stream
that satisfies these additional constrains.

If the data to be compressed contains 16,384 bytes or
fewer, the encoder can set the window size by rounding
it up to a power of 2, being 256 the minimum value
possible. This does not affect the compression ratio
and decreases the memory required for both encoding
and decoding.

A compressed data set consists of a series of blocks,
each block is compressed using a combination of the
LZ77 algorithm and Huffman coding. The Huffman
trees for each block are independent of those from
the previous or subsequent blocks; the LZ77 algorithm
may use a reference to a duplicated string occurring in
a previous block, up to 32kB before [5].

The division of the data into different blocks allows
to keep the compression efficiency, by using fresh trees
for each block. And avoid the compressor buffer from
overflowing in case the input datastream been bigger
than what the compressor was designed for.

Each block consists in two parts: a pair of Huff-
man code trees that describe the representation of
the compressed data, and the compressed data. The
compressed data consist of a series of elements of two
types: literal bytes, and pointers to duplicated strings.
A pointer is represented as a pair <length, backward
distance>. Each type of value (literals, distance,
and lengths) in the compressed data is represented
using a Huffman code, using one code for literals
and lengths and a separate code tree for distances.
The code trees for each block appear in compact
form just before the compressed data for that block.
The Huffman trees themselves are compressed using
Huffman encoding[5].

II-B1 LZ77 Algorithm: This algorithm introduced
the concept of a ’sliding window’ which brought about
significant improvements in compression ratio over
more primitive algorithms [1]. The base concept of this

3

algorithm is a dictionary based on pointers to represent
repeated strings in a byte sequence. The pointer is
formed by the following three parts:

1) An offset that points out how far, from the start
of the file, a given string is at;

2) A run length, that tells how many characters past
the offset are part of the string;

3) The deviating character, that is, an indication that
a new string was found;

The string is equal to the string from offset to
offset+length plus the deviating character.

The dictionary used changes dynamically based on
the sliding window as the file is parsed for. The
larger the sliding window, the larger the entries in the
dictionary will be.

Fig. 1. LZ77 Algorithm - Sequence Search

The LZ77 algorithm method has the following logic:
it searches, in the sliding windows, for the same value
as the one on its current position (Figure 1 blue
area). This search is backward (Figure 1 ”value search
direction” arrow), it starts from the values closer to
the current position. When a value is found it checks
the following bytes (Figure 1 ”match search direction”
arrow), comparing them to the bytes following the
current position (Figure 1 blue area), registering only
the match with the bigger length.

The algorithm after checking all previous bytes for
a sequence, writes the pointer for the largest sequence
found, and moves for the next byte after the sequence.
This next byte on the example of the figure 1 is the
third byte ’B’ outside, after the current byte and outside
the sequence. If the search does not finds a sequence
it writes the current byte and moves to the following
byte.

In the Deflate specification, the pointer is made up
by the distance (offset) and the length only. The
encoded data is made up by literals (the literals refers
to the representation of symbols on the LZ77 output,
as it will be explained further ahead) and a pair of
offset&length.

The smaller division that LZ77 uses for the symbols
is the byte, meaning the symbol value is a decimal
between 0 and 255. The LZ77 algorithm uses values
between 0 to 285 to represent the pointers, and the
literals.

The output of LZ77 is a mix of pointers and literals.
The literal represents literally the symbol in the output
datastream, having the values from 0 to 255, meaning
no change has been made to the symbols binary
form,(that is why it is called literal).

The remaining values 257 to 285 are used to repre-
sent the offset and the length. For these representations
extra bits are needed, to save the pointer correctly,
since the length can have values between 3 to 258 and
the distance can be between 1 to 32,768.

The value 256 is reserved. This value is used to mark
the end of the block, it means the end of the LZ77’s
datastream.

II-B2 Huffman Coding: Huffman coding creates
an unprefixed tree of non-overlapping intervals, where
the length of each sequence is proportionally inversed
to the probability of the symbol needing to be en-
coded. The more likely a symbol is to be encoded,
the shorter its bit sequence will be [12]. The output
from Huffman’s algorithm can be viewed as a variable-
length code table for encoding a source symbol (such
as a character in a file). The algorithm derives this
table from the estimated probability or frequency of
occurrence (weight), for each possible value of the
source symbol. Huffman’s method can be efficiently
implemented, finding a code in time linear to the
number of input weights if these weights are sorted.

A deflate compression can use fixed Huffman codes
or dynamic Huffman codes. These two options dic-
tate where the algorithm gets the code table for the
symbols. The fixed Huffman codes uses a pre-made
table for the Huffman Coding, decreasing the pro-
cessing time necessary for the execution of Huffman
Coding. The Dynamic application will use the current
datastream to construct the table, ensuring the best
compression since the most frequent symbols (in the
current datastream) will have a shorter code.

These two options have different impacts on the
compression and execution time of the deflate.

II-C. Software-only PNG Encoder Profile

The profiling was performed on a Digilent ZedBoard
Zynq-700 ARM/FPGA Soc Development Board, con-
taining a Xilinx Zynq 7020 device. Its objective was
to obtain real time data concerning the LodePNG [2]
encoding speed and verifying the sections where the
hardware acceleration will be implemented to improve
the encoder to the required specifications. The profile
obtained during experiment has been done with non-
orthodox methods since it was not possible to use the
profile option in Xilinxs tool. The method used to
count the algorithm time is as follows: using specific
functions to count the actual CPU cycle, and register
these values before (start time) and after (end time)
calling a function, or at the start (start time) and end
(end time) of the function. The subtraction of this
value gives the number of cycles that the selected part

4

took. Printing the obtained times values to a log file or
to another output.

This method has to be implemented carefully, when
the counter section includes another section with coun-
ters the result will be incorrect. The obtained time
values will be higher than reality, inducing errors on
the profiling.

The program profile used 3 Benchmarks. The first
two benchmark (Paint and Forest) are two different
images types in different resolutions. These benchmark
were used to gain more knowledge about the PNG
encoder. The third benchmark is composed by pho-
tographs with the original VGA standard resolution
(640x480 pixels). This benchmark is used to evaluate
the speed up obtained after applying hardware accel-
eration.

Table I present the duration of the encoder and its
two phases (Filtering and Deflate) for the 3 bench-
marks. This table allow to evaluate which phase spends
most time.

TABLE I
CPU TIME (MS)

Picture Encoder Filtering Deflate
Forest144 70.63 11.23 53.47
Forest240 197.92 31.36 152.08
Forest360 452.86 69.84 350.96
Forest720 1,796.45 278.62 1,388.13
Forest1080 4,145.07 616.98 3,241.07
Paint144 39.26 7.82 27.35
Paint240 90.98 21.47 59.65
Paint360 175.60 47.12 107.47
Paint760 653.77 187.86 372.99
Paint1080 1,350.95 414.06 739.70
VGA-01 772.92 84.56 643.06
VGA-02 881.67 87.91 754.56
VGA-03 676.88 85.97 550.74
VGA-04 811.14 86.11 685.24
VGA-05 708.81 84.03 586.99
VGA-06 990.40 85.67 867.52

The comparison between the Forest and Paint bench-
mark allows to conclude that the Deflate duration is
dependent of the image data. The Forest type image
has a more diverse colour pattern than Paint type.
Increasing colour diversity prolongs Deflate duration.

Table II summarizes the Deflate main operations
(LZ77 encoding, Huffman Tree creation, Deflate writ-
ing) execution time.

In Deflate the most time consuming algorithm is the
LZ77 as it can be observed in Table II. The VGA
benchmark corroborates the conclusion taken from the
first two benchmarks. We can conclude that the LZ77
should be the first one to be accelerated.

II-D. Related Work
This section summarizes the characteristics of the

implementations and works related to the PNG format
algorithms.

TABLE II
CPU TIME - DEFLATE (MS)

Picture LZ77
Huffman

Trees
Write
Data

Forest144 32.40 1.45 17.46
Forest240 93.29 3.92 48.36
Forest360 225.87 6.83 109.36
Forest720 918.60 10.79 419.88
Forest1080 2,198.62 23.67 931.40
Paint144 22.31 1.80 2.76
Paint240 49.42 4.39 5.10
Paint360 91.12 6.71 8.47
Paint720 342.27 8.28 19.62
Paint1080 687.73 18.28 29.17
VGA-01 502.34 7.65 127.10
VGA-02 632.76 6.39 108.63
VGA-03 399.47 7.32 135.08
VGA-04 552.02 6.95 119.48
VGA-05 445.85 6.73 120.86
VGA-06 761.24 6.91 93.88

During the research phase, it was difficult to find
related works and available IP implementations for a
PNG encoder or its algorithms. The only hardware
PNG Encoder found is a commercial product from
Visegni that works with a rate of 1 pixel per clock
cycle [13]. However, there are 3 solutions for a Deflate
Hardware implementation: One commercial product
from CAST-Inc, which achieves a throughput of 100
Gbps [4]; and two open source implementations. The
LZ77 Algorithm has a variety of works about increas-
ing its speed, despite none of these implementations
being available.

Table III indicates the implemented algorithm and
if it includes the LZ77. The frequency, the throughput
achieved in each approach and its implementation size
is presented next. The window size used is indicated in
the last column, when the approach involves the LZ77,

The Hash approach has good working frequency
and throughput, however the hash system may reduce
the compression rate, failing to detect older sequences
inside the window.

In the Table III is possible to observe that from the
available implementations, most use small search depth
(window size) and have a slower throughput. The most
recent CAM implementation achieve better results than
a systolic array with the same frequency, making it a
good example to follow and to try to improve it further.

III. IMPLEMENTATION

The LZ77 IP is designed to accelerate the deflate
algorithm, removing this workload from the processor.
It should be able to produce an index (distance) to the
repeated word sequence very fast. The PNG profile
shows that most of the execution time is spent in
the search of the best match. Even with software
optimizations, this process is still very time consuming.
The LZ77 algorithm can be divided in three parts:

5

TABLE III
RELATED WORKS CHARACTERISTICS

Approach Algorithm LZ77 Frequency Size Troughput
window

size
VISENGI
PNG Encoder

Deflate yes NA NA
1

Byte/clk
32 KiB

CAST
ZipAccel-C

Deflate yes NA
20K-100K

Gates
100 Gbps 32 KiB

HDL-Deflate Deflate yes 100 MHz
9823
LUT

31.79 MiB/s 32 B

HT-Deflate-FPGA Deflate yes NA NA NA NA
Novel Adaptive
Version

Huffman no 56 MHz
3,250
LUT

NA -

VLSI Design LZ77 yes 40 MHz
18,397

transistors
12.7 MiB/s NA

FPGA-based
Systolic Array

LZ77 yes 105 MHz NA 15.5 MiB/s 1 KiB

Shiftable
CAM device

LZ77 yes 12.5 MHz
1,590
Gates

12.5 B/s 16 B

CAM Approach LZ77 yes 101.309 MHz
7870
Slices

96.62 MiB/s 64 B

Hash Architecture LZ77 yes 130 MHz
2171
Slices

108.7 MiB/s NA

• the search for the start of the match (first three
bytes must match);

• the matching of the rest of the sequence;
• the writing of the result;
The first two parts repeat until the best sequence is

found – these two parts are the most time consuming.
The last part is a simple write of one or four integers
containing the information of the LZ77 compression.
This part is a single step and can not of course be
improved. In conclusion the first two parts must be
improved, aiming at reducing the time spend on the
sequence search and matching (length calculation),
using pipeline and parallelization.

The solution is to use a CAM-like memory allowing
to find the start of the input sequences in parallel,
reducing the LZ77 search time. With this methodology,
the compression time equals the stream transmission
time. The spatial complexity of the circuit grows
proportionally to the window size used.

The datapath consist of three blocks: “Pointer
Search”, “Length/Distance Coding” and “Output
Buffer”. These blocks are serially connected, and have
pipeline implemented to reduce the critical path. This
datapath is very simple, therefore the hardware system
does not need a control unit for the stream management
or for its configuration. The datastream management
is implemented by a simple combinatorial circuit. It
freezes the system whenever the input is not valid or
the output can not be received by the next system. This
control method is only possible due to the simplicity
of the LZ77 algorithm.

The LZ77 compression produces a datastream com-
posed by coded literals and coded pointers. These
codes in the LodePNG LZ77 are saved in integers (32-

bit). Keeping the hardware datastream in the same for-
mat prevents extra work in the software. The software
is spared from formatting datastream.

The LZ77 IP inputs a string of bytes and outputs
a 128-bit word consisting of 4x32-bit LZ77 codes,
containing literals and/or pointers expressed according
to the LZ77 data structure.

III-A. Shift Register

The shift-register is the system memory. It im-
plements in hardware the ’sliding window’ concept
introduced by the LZ77 algorithm.

III-B. Pointer Search

The ”Pointer Search Block”, shown in Figure 2,
searches in the window for the longest matching
sequence. It is in the ”Pointer Search Block” block
that the repeated sequences are found and the best is
selected and coded as a length/distance pair. Its input
connected to the Shift Register and the output con-
nected to the Length/Distance Coding block. It reads
all the data saved in the shift-register, and compares
each byte with the current byte, allowing all matches
to be found in one clock cycle.

The block can be divided in two different sub-
blocks: ”Word Search” that performs the search;
”Selector” that selects the longest sequence;

The ”Word Search” is composed of as many ”Char
Matcher” units as positions in the Shift Register, which
find the sequences. The block size is proportional to the
window size used. The size of the remaining datapath
is independent of the window size value.

6

Fig. 2. Pointer Search Block Diagram

The ”Char Matcher” is shown in Figure 3. Each
block searches a sequence with a distance/offset value
pair. Essentially, each byte in the window will be
associated with a ”Char Matcher”, allowing the simul-
taneous search and discovery of any possible sequence
in as many cycles as the length of the sequence.

A very simplified version of ”Char Matcher” logic
is presented oin this figure with the block divided into
three pipeline levels. In the first level the compar-
isons between different registers from the shift-register
are performed. The second level guarantees that only
matches with the minimum size are valid sequences.
The third level marks the state of the ”Char Matcher”
and starts/ends the matching process in the correct
timing.

The ”Char Matcher” only starts the matching pro-
cess, when no other ”Char Matcher” is running. When
a ”Char Matcher” is working, it inhibits the others
from starting. This condition is critical to avoid the
corruption of the detected sequences. When all the

Fig. 3. Char Matcher Block Diagram - 3 pipeline levels

”Char Matchers” are idle, an idle signal is generated by
the ”idle” block. The ”Char Matcher” uses this signal
to unlock the matching, switching to working state.

The ”Char Matcher” units start to work after they are
idle-reset and find an initial matching of 3 equal bytes,
using the current byte and the ”preview” registers,
which unlock the matching process. For this initial
match of three bytes, it is required to have already
in the shift-register the next two bytes. These next two
bytes are saved in the ”Preview” registers. The ”Char
Matcher” only compares three bytes in the first match,
after this initial match the comparisons will be of one
byte per cycle.

After all the ”Char Matcher” units stop working,
the ”Word Search” block switches to idle. When the
”word search” is idle the longest sequence is selected
as the block output. Since all ”Char Matcher” units
start working at same time, the longest sequence will
be given by the ”Char Matcher” with the longest
execution. When no sequence is found the literal is the
selected output. When a sequence is found the pointer
is the selected output. This block outputs six signals:
three flags (valid, last, pointer) and three different
values (literal, offset, length). The ”last” control signal
is not shown on the picture.

The ”Word Search” has also implements additional
logic that guarantees that the length for a sequence
is restrained to the maximum allowed value. When
the length reaches the maximum value, a flag called
”maxlen” restarts the matching, forcing the block
”Word Search” into idle state. This forced change to
idle state ends the current matching, and the next block
(”Selector”) selects the sequence with the lowest offset.
The ”Word Search” starts a search for a new sequence,
immediately after the flag ”maxlen” is activated.

III-C. Length/Distance Coding

The ”Length/Distance Coding” (Figure 2) codifies
the information from the ”Pointer Search” block out-
put, that can be one of different types:

7

• The literal;
• The pointer;
The code for any literal value, as previously men-

tioned, is the value itself. The pointer describes the
sequence found in the ”Pointer Search” block. The
pointer is a structure (normally denominated ”length
distance pair”), constituted by two pairs, the length and
the offset values, which are routed together in the logic.
In each pair, the first member is the ”base code” of the
value (length or offset), and the second member is the
”extra bits”, which distinguish different values sharing
the same base code. (more details in [3])

III-D. Output Buffer
Since literal and pointer data have different sizes,

they require an output buffer, that groups the output
into a constant data size, sending it on an AXI Stream
interface. (more details in [3])

The Output Buffer Block is essentially a Ping Pong
Buffer that groups different size outputs to produce one
unique datastream.

IV. EXPERIMENTAL RESULTS

This section presents the execution time results for
the VGA sized images. The tests consist in encoding
the images using the prototype and recording their
execution times. The execution times (Table IV) are
broken down in their two main steps: filtering and
deflate.

TABLE IV
EXECUTION TIME (MS)

Picture Filtering Deflate
Total

Encoder
VGA-01 85.33 159.02 289.85
VGA-02 88.80 137.64 268.22
VGA-03 86.68 170.05 303.66
VGA-04 87.37 150.97 284.62
VGA-05 84.65 154.75 283.30
VGA-06 86.79 126.83 253.80

It is possible to observe a decrease in the Encoder
and Deflate duration. The encoder execution time is
reduced in half and the Deflate duration is one third of
its previous value. It is also possible to note that the
execution times for the different VGA images have a
low variation variation between them. This is because
the execution time depends only on the image size.

The Deflate execution time is expanded in Table V to
show the time spent in its most important components.
It is possible to observe in that the LZ77 algorithm
time is reduced immensely when the IP is used. For
an uninterrupted datastream transfer, for VGA images,
the expected LZ77 IP execution time is 9,220.8 µs.
However, the experimental execution time of the pro-
totype for the LZ77 IP is about 12ms. The difference
can explained by the DMA interruptions and other
communication and processing overheads.

TABLE V
EXECUTION TIME - DEFLATE (MS)

Picture
LZ77

(ARM)
LZ77
(IP)

Huffman
Trees

Write
Data

VGA-01 502.34 13.52 7.64 125.25
VGA-02 632.76 13.50 6.38 106.03
VGA-03 399.47 13.51 7.33 134.49
VGA-04 552.02 13.51 6.97 116.64
VGA-05 445.85 13.51 7.09 120.92
VGA-06 761.24 13.50 6.93 93.28

IV-A. Compression Ratio

Table VI compares the datastream size before and
after the LZ77 compression, for both the prototype and
the original encoder. The column named Relative is
computed using the following equation:

R = C/U

,
where: RS is the relative size; C is the compressed

data size; U is the uncompressed data size.

TABLE VI
LZ77 COMPRESSION WITH/WITHOUT HARDWARE

ACCELERATION (UNIT)

Picture
LZ77 Compression

Software IP
Relative (%) Relative (%)

VGA-01 87.24 82.34
VGA-02 85.83 80.38
VGA-03 97.73 89.29
VGA-04 87.34 81.73
VGA-05 99.66 88.92
VGA-06 79.37 75.84

This table shows that the designed LZ77 IP also
increases the compression rates in addition to providing
speedup. The reason is the fact that the IP finds all
sequences in parallel and chooses the best one while
the LZ77 software searches sequentially and stops after
a 128-long sequence is found.

It is important to note that images used in these
tests do not favour the algorithm. They are the most
challenging, since big repetitive sequences are hard
to find in this kind of pictures. The images used are
good to show the best possible acceleration obtained
for the worst case. Other types of images if with the
same resolution will have the same execution time. As
explained before, the LZ77 throughput is constant and
its execution time is only dependent on the data size.

IV-B. Speedup

Table VII presents the speedups achieved by the
prototype over the base software encoder. The results
are given individually for the LZ77 algorithm, for the

8

TABLE VII
ENCODER SPEEDUP

Picture LZ77 Deflate Encoder
VGA-01 37.15 4.04 2.67
VGA-02 46.87 5.48 3.29
VGA-03 29.56 3.24 2.23
VGA-04 40.85 4.54 2.85
VGA-05 33.00 3.79 2.50
VGA-06 56.39 6.84 3.90
average 40.64 4.66 2.91

Deflate algorithm (which includes LZ77), and finally
for the whole encoder.

It is clear that the prototype is faster than the original
version. The LZ77 IP is on average 40x faster than the
software-only encoder while running at a frequency
6.667x lower. Unfortunately, this acceleration does not
decrease the overall Deflate speed by the same factor,
only reducing its execution time by 77.19%. The full
encoder execution time is only reduced in half, which
means that to reach the initial goal of this work – a
performance of 30 FPS – much still needs to be done.

IV-C. Throughput
The LZ77 IP is designed to have the same execution

time for datastreams of the same size. The small
variations are caused by the communication between
the processing system and the IP. The throughput for
the IP at a frequency of 100 MHz is 95.37 MiB/s (100
MB/s), since it can consume one byte per clock cycle.
The IP image throughput is measured in FPS and it
is presented on Table VIII. This table compares the
expected FPS with the value in the presence of the
communication overheads.

TABLE VIII
LZ77 IP FRAMES PER SECOND

Image
Resolutions

FPS
Theoretical Experimental

VGA 108.50 82.19
HD 36.17 32.52
FHD 16.08 14.55
QHD 9.04 8.189
UHD/4K 4.02 3.65
8K 1.00 0.91

Table VIII shows that the IP achieves the 30 FPS
goal for the first two resolutions. It is important to
note that these results are for a single IP that processes
image blocks serially. The PNG encoder algorithm
divides the image data into different blocks which
could be compressed independently by multiple IP
blocks. This possible parallelization provides a solution
to further improve Deflate with multiple LZ77 IPs.

V. DISCUSSION

Even though the developed IP did, in fact, surpass
the acceleration objectives, the underlying objective of

reaching an overall encoding speed of 30 FPS (which
has been defined in order to address some motion pic-
ture scenarios) would require further interventions in
other aspects of the encoder other the LZ77 compres-
sion, as has been discussed. In particular, and besides
the need for a general software optimization, three
main bottlenecks have been identified in the LodePNG
encoder, which should be addressed in future work,
so that the improved PNG encoder may reach the 30
FPS goal. These three bottlenecks, and the approaches
proposed to address each one of them in future work
are the following:

V-A. Deflate Writing Acceleration

It has been observed that long execution times are
required when writing the Deate output. This results
from the need to build a data stream out of the variable
length codes produced by the Huffman coding step,
an operation that is not efficiently done by regular
processors. By designing specific hardware for this
task, it will be possible to render this execution time
negligible, which will have in fact eliminate this bot-
tleneck.

V-B. Filtering Acceleration

Another bottleneck lies in the filtering step, which
applies a sequence of filters to each line of the image
entering the processor. This task can be parallelized
in hardware, by applying all filters simultaneously
to the scanline. This parallelization will reduce the
filtering time by 80% of its original duration. This will
eliminate the second identified bottleneck.

V-C. LZ77 IP Improvements

Finally, it must be noted that the presented LZ77
IP still has room for improvement. The main improve-
ments that should be worked on are reducing the re-
quired logic and increasing its frequency of operation.
The design of the search unit can be improved, so as
to maintain the efficiency while reducing the required
implementation logic. An increased working frequency
will allow a higher performance in terms of the number
of processed FPS, further accelerating the encoder.

VI. CONCLUSION AND FUTURE WORK

In this paper, a hardware accelerated PNG encoder
was proposed and implemented, in an attempt to allow
the use of such encoders in small and low energy
devices, which cannot afford to have a powerful pro-
cessor to run these algorithms entirely in software,
and for which there are surprisingly few solutions
in the market, open source repositories, or even in
the literature. Even though the overall objective of
encoding at 30 fps has not been achieved, important
results have been obtained concerning the encoders

9

inner workings, and a major limitation to its encoding
speed has been eliminated: the software-based LZ77
implementation. Additionally, several interesting di-
rections for future work have been discovered. The
three bottlenecks identified above should be addressed
in future work. Eliminating them will hopefully be
sufficient to attain the desired objective of having the
PNG encoder achieve an overall encoding speed of 30
FPS.

ACKNOWLEDGEMENTS

This work was supported by national funds
through Fundação para a Ciência e a Tecnologia
(FCT) under projects PTDC/EEI-HAC/30848/2017 and
UID/CEC/50021/2019.

REFERENCES

[1] History of lossless data compression algorithms.
[2] Lodepng - open source png encoder/decoder.
[3] J. F. Cardoso. Verilog png encoder, November 2019.
[4] CAST. Zipaccel-c.
[5] L. P. Deutsch. Deflate compressed data format specification

version 1.3. 1996.
[6] M. Egmont-Petersen, D. de Ridder, and H. Handels. Image

processing with neural networksa review. Pattern recognition,
35(10):2279–2301, 2002.

[7] V. Z. Grajeda, C. F. Uribe, and R. C. Parra. Parallel hard-
ware/software architecture for the bwt and lz77 lossless data
compression algorithms. Computación y Sistemas, 10(2):172–
188, 2006.

[8] e. a. G.Randers-Pehrson. Png (portable network graphics)
specification, version 1.2, July 1999.

[9] S. Jones. 100 mbit/s adaptive data compressor design using
selectively shiftable content-addressable memory. IEE Pro-
ceedings G (Circuits, Devices and Systems), 139(4):498–502,
1992.

[10] N. Ranganathan and S. Henriques. High-speed vlsi designs
for lempel-ziv-based data compression. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing,
40(2):96–106, 1993.

[11] A. E. Salama, A. H. Khalil, et al. Design and implementation
of fpga-based systolic array for lz data compression. In 2007
IEEE International Symposium on Circuits and Systems, pages
3691–3695. IEEE, 2007.

[12] M. Sharma. Compression using huffman coding. IJCSNS Inter-
national Journal of Computer Science and Network Security,
10(5):133–141, 2010.

[13] VISENGI. Png encoder.

