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Abstract
The standard model of particle physics classifies particles into elementary leptons and hadrons composed of
quarks. There exists an alternate ordering principle based on  a function Ψ that may be derived from the
framework of the Einstein field equations, giving a convergent series of particle energies, to be quantized as
a function of the fine-structure constant,  α, with limits given by the energy values of the electron and the
Higgs vacuum expectation value. The series expansion of the energy equation provides quantitative terms for
Coulomb,  strong and gravitational  interaction.  The value of  α can be given numerically  by the gamma
functions of the integrals involved, extending the formalism to N-dimensions yields a single expression for
the electroweak coupling constants. 
The model can be expressed without use of free parameters.

1 Introduction
Particle  zoo is  the  informal  though fairly  common nickname to describe  what  was  formerly  known as
"elementary  particles".  The  standard  model  of  particle  physics  [1]  divides  these  particles  into  leptons,
considered to be fundamental "elementary particles" and the hadrons, composed of quarks. Well hidden in
the data of particle energies lies another ordering principle based on an exponential function Ψ 1. Originally
the function Ψ was developed in a heuristic “ad hoc” approach to calculate particle energies inspired by basic
principles of quantum mechanics and the first  part of this article will  follow this line. This will  yield a
convergent series of particle energies to be quantized as a function of α 2. α can be given numerically by the
Γ-functions of the integrals for calculating particle energy in a point charge and a photon expression. The
expansion of the incomplete  Γ-function appearing in the point charge integral gives quantitative terms for
Coulomb, strong and gravitational interaction. The latter provides a link between the electron and the Planck
energy, allowing to identify the electron as ground state. The upper limit of the convergent energy series
coincides with the Higgs vacuum expectation value. The relation with Planck terms allows to express the
equations of the model “ab initio” as function of elementary charge, e, electric constant, ε, and gravitational
constant G. 
In the second part of this article it will be demonstrated that Ψ may be derived directly from the framework
of the  Einstein field equations (EFE). However, in 3 dimensional space an additional ad hoc term will be
required. An extension of the approach to 5D space-time, i.e. 4D space, starting with a Kaluza-type ansatz, is
currently in progress. Preliminary results show that the ad hoc term of 3D is related to solutions for the
Kaluza scalar, Φ [4]. 
The  geometric  approach  for  calculating  the  electromagnetic  coupling  constant,  α,  can  be  extended  to
different dimensions, yielding three electroweak coupling constants for three point charges g, e and g'  in 4, 3
and 2 dimensions. The solutions of the Kaluza scalar and the electroweak boson energies may be assigned to
dimensions  ≤ 4 as well suggesting a coherent classification in 4D space.
For both approaches it might be helpful to use the following visualization: a photon with its intrinsic angular
momentum  interpreted  as  having  its  E-vector  rotating  around  a  central  axis  of  propagation  3 will  be
transformed to an object that has the -still rotating- E-vector constantly oriented to a fixed point, the origin of
the local coordinate system used, resulting in a SO(3) object with point charge properties. The vectors E, B
and V of the propagation velocity are supposed to be locally orthogonal and subject to the standard Maxwell
equation, however, on the background of an appropriately curved space-time. Neutral particles are supposed
to exhibit nodes separating corresponding equal volume elements of opposite polarity. 
A  particularly  compact  description  of  this  model  may  be  obtained  by  using  a  system  of  natural
electromagnetic units,  attributing the value of the speed of light,  c0,  to the inverse value of  electric and

1 Ψ = f(α, e/(εr)), where the electric potential, ~e/(εr), is supposed to be extendible to the electromagnetic potential Aa in
a more general case (e =  elementary charge,  ε = electric constant, r = radius);
2 The relation of the masses e, µ, π with α was noted in 1952 by Y.Nambu [2]. M.MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [3]. 
3 Symmetry SO(2) as projected in propagation direction;
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magnetic constant, εc and μc, with units to be chosen to yield the elementary charge, ec, in units of energy.
Using SI units for length, time and energy this will result in:

c0
2  = (εc μc)-1 (1)

 with εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 

From the Coulomb term b0 = e2/(4πε0) = ec
2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary

charge: ec
2 = 9.671E-36 [J2]. In the following ec

 = 3.110E-18 [J] and ec/εc = 9.323E-10 [m] may be used as
natural unit of energy and length. Replacing the constant G/c0

4 in the EFE by 1/εc will give a correct absolute
scale for particle energies, see chpt. 3, and the necessary parameters of the model will be further reduced to
ec and εc.  
To focus on the more fundamental relationships some minor aspects of the model are exiled to an appendix,
related topics to be marked as [A]. The model may be used to calculate additional particle properties, see [5].
Typical accuracy of the calculations presented is in the order of 0.001 4. QED corrections are not considered
in this model.

2 Ad hoc approach
2.1 Energy terms
The model may essentially be based on a single assumption: 
Particles  can  be  described  by  using  an  appropriate exponential  wave  function,  Ψ(r),  that  acts  as  a
probability amplitude on an electromagnetic field. 

An appropriate form of Ψ can be deduced from three boundary conditions:
1.) To be able to apply Ψ to a point charge Ψ(r = 0) = 0 is required.
2.) To ensure integrability an integration limit is needed. 
3.) Ψ should be applicable regardless of the expression chosen to describe the electromagnetic object. In
particular requiring a point charge and a photon representation of a localized electromagnetic field (particle)
to have the same energy results in an exponent of 3 for r in the equation below (see 2.2).

Condition 1.) to 3.) are met by an expression (corresponding differential equation see [A1]):

Ψ n(r)  = exp(−(βn /2

r3
+[(β n/2

r3 )
2

– 4
βn/2

σ r3 ]
0.5)/2)       (2)

Up to the limit of the real solution, r = rn, with

rn = (σ βn /8)1/3 (3)

in all integrals over Ψ(r) given below equ. (4) may be used as approximation for (2):

Ψ n(r≤rn)  ≈ exp(−βn/2

r 3 ) (4)

Phase will be neglected on this approximation level, properties of particles will be calculated by the integrals
over Ψn(r)2  5 times some function of r which can be given by:

∫
0

rn

Ψ n(r)2 r−(m+1)dr  ≈ ∫
0

rn

exp(−βn/ rn
3)r−(m+1)dr  = Γ (m /3 , βn /rn

3)  
βn

−m/3

3
  =  ∫

βn /rn
3

∞

t
m
3

 −1
e−t dt  β−m/3

3
(5)

with m = {..-1;0;1;..}. The term Γ(m/3, β/r l
3)) denotes the upper incomplete gamma function, given by the

Euler integral of the second kind with βn/rn
3 = 8/σ as lower integration limit 6. For m ≥ 1 the complete gamma

function Γm/3 is a sufficient approximation, for m ≤ 0 the integrals have to be integrated numerically.
Coefficient  βn may  be  given  as  partial  product  of  a  value  for  a  ground  state particle,  βGS,  carrying  a
dimensional term, βdim   [m3], that will be demonstrated to have a particular useful expression using the unit
system defined in chpt. 1 as [see A3]:

4 Including e.g. errors due to the numerical approximation of Γ-functions;
5 Hence factor 2 in (2)ff
6 Euler integrals yield positive values, the absolute sign used for e.g. |Γ-1/3| is due to the sign convention of Γ-functions.
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βdim  = 
1

(4 π )2(ec

ε c
)

3

= 5.131E-30 [m3]       (6)

times particle specific dimensionless coefficients, αn, of succeeding particles representing the ratio βn+1 / βn: 

βn  = βGSΠ k=1
n αk  = 2σ αGS βdim Πk=1

n αk  = 2σ αGS βdim Π β, n            n = {1;2;..}      7 (7)

Index n will indicate solutions of (2) and serve in the following as equivalent of a radial quantum number.
For  the  angular  terms  of  Ψ(r,  ϑ,  φ),  to  be  indicated  by  index  l,  only  rudimentary  results  exist,  their
contribution has to be incorporated in parameter σ (to be discussed in 2.4 - 2.6).
Particle energy is expected to be equally divided into electric and magnetic part, W n = 2Wn,el = 2Wn,mag. To
calculate energy the integral over the electrical field E(r) of a point charge is used, equ. (5) for m = 1 gives:

Wpc,n = 2ε0∫
0

∞

E (r)2 Ψ n(r)2 d3 r = 2b0∫
0

rn

Ψ n(r)2 r−2 dr = 2 b0 Γ(1/3, βn/rn
3) βn

-1/3/3 ≈ 2 b0 Γ1/3 βn
-1/3/3 (8)

Using equation (5) for m = -1 to calculate the Compton wavelength, λC, gives:

λC,n  ≈ ∫
0

λC ,n

Ψ n (r)2 dr = ∫
β / λC,n

3

∞

t
-4/3

e
-t

dt  βn
1/3/3 =  Γ(-1/3, βn/λC,n

3) βn
1/3 /3  ≈ 36 π2  |Γ-1/3| βn

1/3 /3         8 (9)

to be used in in the expression for the energy of a photon,  hc0/λC :

Wphot,n = hc0/λC,n  =
hc0

∫
λC,n

Ψ n(r)2 dr

≈
3hc0

36 π 2|Γ −1 /3|βn
1/3   

(10)

It should be noted that in both equations (8)  and (10) the length  βn
1/3 is the  only variable parameter. The

dimensionless  constants  in  the  equations  are  π and  the  Γ-functions.  In  particular  |Γ-1/3|, as  coefficient
representing  length,  and  the  combination  of  these  constants  in  form  of  coupling  constants  will  be  of
importance in the following. 

2.2 Fine-structure constant, α
The energy of a particle is assumed to be the same in both photon and point charge description. Equating (8)
with (10) and rearranging to emphasize the relationship of α with the gamma functions (Γ1/3 = 2.679; |Γ-1/3| =
4.062) gives as first approximation (note: h => ħ):

4 π Γ 1/3|Γ−1/3|
0.998

 = 
9 hc0

18 π b0

=
ħ c0

b0

= α-1                  (11)

In  (11)  Γ1/3 represents the limit  of Γ(1/3,  βn/rn
3) for  the lower bound of integration in the Euler integral

approaching zero, β/r3-> 0. Using the analog limit for Γ(-1/3, βn/λC,n
3) that may approximated by:

Γ(-1/3, βn/rx 
3) = ∫

β n/rx
3

∞

t−4 /3 e− t dt ≈ 3 (βn /rx
3)-1/3                   (12)

gives a more precise expression depending on λC,n and βn:

Γ 1/3 λC ,n

3 π βn
1/3  = α−1

(13)

With (13) the precision for the calculation of α is identical to the precision for calculating particle energy
with the respective βn, e.g. with βe of (63): αcalc = 1.0001 α.
In  chapter  4  it  will  be  demonstrated  that  this  formalism  may  be  extended  to  other  than  three  spatial
dimensions to give a general expression for electroweak coupling constants 9.

7 Πβ,n denoting the sum of all particle coefficients in the partial product for βn except for the ground state particle 
(electron), related to the equivalent factor ΠW,n in the energy expression (21) by Πβ,n = ΠW,n

-3  Factor 2 see note 5;
8 Factor ≈ 355 ≈ 36 π2 may be calculated numerically from the Euler integral (5) for m = -1, using βn of (19), (63) or 
from a fit of particle energy and angular momentum.
9 As with all calculations in this work the calculation for coupling constants refers to a rest frame and thus corresponds 
to an IR limit. The geometric character of the “constants” implies that their values are subject to relativistic effects in 
other reference frames.
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2.3 Quantization with powers of 1/3n over α
Inserting (7) in the product of the point charge and the photon expression of energy, (8) and (10), gives for
Wn

2 = Wpc,n Wphot,n 

W n
2  = 2b0 hc0  

∫
rn

Ψ n (r)
2 r−2 dr

∫
λC ,n

Ψ n (r)2 dr

~
1

βn
2/3 ~

α1
1 /3 α2

1/3 .....αn
1 /3

α1 α 2 ....αn

                     (14)

The last expression of (14) is obtained by expanding the product Πβ,n
- 2/3 included in βn

- 2/3 of (7) with Πβ,n
1/3. 

The only non-trivial solution for Wn
2 where all intermediate particle coefficients cancel out and Wn becomes

a function of coefficient α1 only is given by a relation αn+1 = αn
1/3. Identifying α1 as α1 = αµ = α3  would give an

expression using the muon as reference state: 

Πk=1
n (α ^(3/3k)

α ^(9 /3k)) = 
α ^ (3 /3n)

α3                                                                             n = {1;2;..}    10 (15)

and with its root

(α ^(3 /3n)
α 3 )

0.5

 = 
α ^(1.5/3n)

α1.5  = Π k=1
n α ^(−3 /3k)                                                 n = {1;2;..}    (16)

the corresponding term for particle energies would be:

W n  = W µ  Πk=2
n α ^(−3/3k)              n = {2;3..}   11  (17)

for spherical symmetry. 
In an equation of type (17) no state is singled out in particular as a ground state in the equations. The partial
product of (17) may be extended to include the electron by inserting  ad hoc an additional factor ≈ 3/2 to
represent an irregularity due to the energy ratio of e, µ, Wµ /We = 1.5088 α-1 (see 2.4, [A2]). In chpt. 2.8 it
will be demonstrated that a fundamental relationship exists between the electron and the Planck energy 12,
implying the electron to correspond to a ground state term. With the ratio of electron and Planck energy
given as:

We/WPl = 4.903 E-22  = αo  ,   (18)

βGS of the ground state, the electron, can be approximated in a particular simple expression:

βGS = βe = σ*α0 β dim= 
σ0 *α 0

(4 π )2 (e c

εc
)

3

 = 1.286E-43 [m3]       13 (19)

With We as ground state Wn would be given by (14) as 14  ( n = {1;2;...}):

W n=3
2 (4 π b0

2

   α
 
∫
rn

Ψ n(r)
2 r−2dr

∫
λC , n

Ψ n(r )2dr )
0.5

=3
2 (4 b0

2 Γ 1/3
2

9 [α 4 π Γ1 /3|Γ−1/3|]β n
2/3 )

0.5

=3
2 (2b0 Γ1 /3(4 π )2 /3

3  (σ *α 0)
1/3 (εcec ))α ^(1.5 /3n)

       α1.5  (20)

and with adding a factor yl
m  for the contribution of non-spherical symmetric states 15 as:

Wn /We  ≈ 3 /2( yl
m)−1/3  

α ^ (1.5 /3n)
α 1.5  = 3/2( yl

m)−1/3 Πk=1
n α^(-3/3k ) = 3 /2( yl

m)−1/3 ΠW ,n     n = {1;2;..} 16 (21)

see table 1.

10 For illustration purposes with n = 4: α1 α1/3 α1 /9α1 /27

α3 α1α1/3 α1/9
 = α

1/27

α3

11 Series starts with n=2 since n=1, i.e. α-coefficient of µ already included in Wµ.
12 as defined by (33);
13 In the following subscript 0 in σ0 will refer to spherical symmetry, l = 0. σ0* = σ0/1.51333, see 2.4, [A2,3]. 
14 factor 3/2 added ad hoc; expanding by Γ1/3 and using (11) to eliminate term in square brackets; We given in bold; 
With equ. (33) for WPl this will give We = 0.997 We, exp 
15 yl

m= ∫∫Ψ (φ ,ϑ )2sin (ϑ )dφ dϑ  / 4 π holds for l = 1; a general term is not known yet.
16 Implying a coefficient for the electron in W of αW,e ≈ 2/3 α-3 and in βn of αβ,e ≈ (3/2)3 α9 ;

4 OPZ200220



2.4 Angular momentum, coefficients σ and α
A simple relation with angular momentum J for spherical symmetric states will be given by applying a semi-
classical approach using 

J  = r2 x p(r1)  = r 2 W n(r1)/c 0 (22)

with Wkin,n=1/2 Wn , using term 2b0 of (8) as constant factor, integrating over a circular path of radius  |r2| = |r1|
and setting rn of (3), 8/σ0 according to (27) as integration limits. This will give:

|J| = ∫
0

rn

∫
0

2 π

J n(r)dφ dr  = 4 π
b0

c0

 ∫
0

rn

Ψ n (r)
2 r−1 dr (23)

From (5) follows for m = 0:   

∫
0

rn

Ψ n(r)2 r−1 dr  = 1/3∫
8 /σ

∞

t -1 e-t dt  = α−1

8π
 ≈ 5.45  ≈ Γ1/3|Γ−1/3|/2  17 (24)

Inserting (24) in (23) gives:

 |J| = 4 π
b0

c0

 
α -1

8π
= 1/2 [ħ] (25)

Analyzing the components of σ0, in addition to the mandatory term for length of  |Γ-1/3| βn
1/3

 /3 of the integrals
(5) for m = -1, rn and σ0 contain a factor ≈1.51 α-1, very close to the ratio Wµ/We  = 206.8 = 1.5088 α-1. The
exact value of 1.5133 for ≈1.51 has been chosen due to a geometrical interpretation of the terms in σ0 

18:

1.51 α-1 |Γ-1/3| /3 ≈  |Γ-1/3| /Γ1/3  4π |Γ-1/3| Γ1/3/0.998   |Γ-1/3|/3  ≈
4 π|Γ -1/3|

3

3
=  (σ0/8)1/3        19 (26)

The various useful terms for σ may be summed up as:

σ0 = 8 rn
3 /βn = (1.5133 α-1 2/3 |Γ-1/3|)3  = 1.51333 σ* = 8(4 π|Γ-1/3|

3

3 )
3

= 1.772E+8 [-]       (27)

2.5 Upper limit of energy
According to the geometrical interpretation given in 2.4 non-spherical particles should exhibit lower values
of σ (and rn). The variable part in σ is given by the term (1.5133 α-1)3, leaving the minimum for σ, defined by
(2/3|Γ-1/3|)3, i.e. the term in the integral expression for r, and the integers in the square bracket of equ.(2) to be:

σmin = (2/3 |Γ-1/3|)3 (28)

The maximum angular contribution to Wmax would be :

ΔWmax, angular  = 1.5133 α-1   (29)

The limit of the partial product in (21) for a given l is  α-1.5, the limit term of  ≈  3/2 by 1.5066 [A2], thus
according to (21) and (29),  the maximum energy will  be Wmax = We 1.5066*1.5133 α-2.5 = 4.103E-8 [J]
(=1.041 Higgs vacuum expectation value, VEV = 246GeV=3.941E-8 [J] [6]).
In the simple visualization sketched in the introduction the “rotating E-vector” might be interpreted to cover
the whole angular range in the case of spherical symmetric states while an object with one angular node, as
represented by the spherical harmonic Y1

0 or an atomic p-orbital, might be interpreted as forming a double
cone. Increasing the number of angular nodes would close the angle of the cone leaving in the angular limit
case, l -> ∞, a state of minimal angular extension representing the original vector, however, extending in both
directions from the origin and featuring parity p= -1. Considering only „half“ such a state, extending in one
direction only and having p = +1, would notably feature an energy of 1.024 W Higgs, suggesting the energy
value of the Higgs boson as possible high energy end for particle energy of (21). From (28) follows that such

17 The integral in (24) may be calculated numerically. However, obviously, to obtain J=1/2 the integral in J = 4π α ħ ∫Ψ2

r-1dr, (23), must yield αe
-1/8π ≈ Γ1/3 |Γ-1/3|/2. 

18 An additional reason is a 3rd power relationship between 1.5088 and 1.5133, (see [A2,3]), resulting in factor 1.5133 
being also part of a minor term depending on the radial quantum number, n. Thus in the following βn  may be split into 
σ* =  σ/1.51333 = 5.112E+7 [-] and α(n)-terms containing factor 1.51333. 
19 The term 4π |Γ-1/3|3/3 is used for σ0 in all calculations. In chpt. 4, [A7] it will be demonstrated that αg= αweak can be 
calculated using an equivalent 4D term.
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a particle includes a term |Γ-1/3|/3, i.e. the characteristic coefficient representing length, in the denominator of
the energy expression to be referred to in chpt. 4.2.

Table 1: Particle energies for y0
0 (bold), y1

0   20; col. 2: radial, angular quantum number; col. 3: energy values
of [7] except* (see (33)); col. 4: α-coefficient according to the energy terms of (21), including (2/3) α-3 of
electron; col. 5: coefficients in βn of (7); col. 6: Wcalc calculated using the slightly more precise [A3 (62)f] in
place of (21); ** see 2.5; 
Blanks in the table are discussed in [A4].

2.6 Other non-spherical symmetric states
Except for the limit case of 2.5 angular solutions for particle states are not known yet and to extend the
model to such states assumptions have to be made.
Assuming the angular part of Ψ to be related to spherical harmonics and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1st angular state, Y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 (V = volume) is applicable for non-spherically symmetric states as well, this would give
W1

0/W0
0 =  31/3  =  1.44.  A  second  partial  product  series  of  energies  corresponding  to  these values

approximately fits the data, see tab. 1.
A change in angular momentum has to be expected for a transition from Y0

0 to Y1
0  which is actually observed

with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 

20 up to Σ'0 all resonance states given in [7] as **** included;  Exponents of -9/2, 27/2 for Δ and tau are equal to the limit of 
the partial products in (7) and (21); rn calculated with (3); 1.5133 approximated by 3/2;

6 OPZ200220

n, l J

Planck 1.0 E+21* - -

0, 0 0.51 1.0001 1/2 1412

1, 0 105.66 1.0001 1/2 6.83

1, 1 139.57 1.0919 0 4.74
K 495 see [A5] see [A5] 0

2, 0 547.86 0.9934 0 1.32

2, 1 775.26 1.0124 1 0.92

2, 1 782.65 1.0029 1 0.92
K* 894 1

3, 0 938.27 1.0017 1/2 0.76

n 3, 0 939.57 1.0004 1/2 0.76
958 see [A5] see [A5] 0

1019 see [A5] see [A5] 1

4, 0 1115.68 1.0107 1/2 0.63

5, 0 1192.62 1.0047 1/2 0.61

Δ 1232.00 1.0026 3/2 0.59
1318 1/2

3, 1 1383.70 0.9797 3/2 0.53

4, 1 1672.45 0.9725 3/2 0.45

N(1720) 5, 1 1720.00 1.0047 3/2 0.43

1776.82 1.0025 1/2 0.40

Higgs 1.25 E+5 1.0230 0 0.006

VEV 2.46 E+5 1.04 0 0.003

W
n,Lit      

 
[MeV] 

α-coefficient (energy)            
equ (21) 

α-coefficient  in ß    
                

equ (7)

W
calc

/ W
Lit

 r
n
 [fm]

(-1,∞)  (2/3 α-3)3 3/2 α-1 2                    
source term, relative to e ! 

0.9994  

rel. to e ! 

e+-  2/3 α-3  (3/2)3 α9

µ+-  α-3α-1  α9α3

π+-  α-3α-1 31/3  α9α3/3

η 0  α-3α-1α-1/3  α9α3α1

ρ0  (α-3α-1α-1/3) 31/3  α9α3α1 /3
ω0  (α-3α-1α-1/3) 31/3  α9α3α1 /3

p+-  α-3α-1α-1/3α-1/9  α9α3α1α1/3

 α-3α-1α-1/3α-1/9  α9α3α1α1/3

η'

Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27  α9α3α1α1/3α1/9

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81  α9α3α1α1/3α1/9α1/27

∞, 0  α-9/2  α27/2

Ξ

Σ*0  (α-3α-1α-1/3α-1/9) 31/3  α9α3α1α1/3 /3
Ω-  (α-3α-1α-1/3α-1/9α-1/27) 31/3  α9α3α1α1/3α1/9 /3

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) 31/3  α9α3α1α1/3α1/9α1/27 /3
tau+- ∞, 1  (α-9/2) 31/3  α27/2 /3

∞,∞ 
**

 (α-9/2) 3/2 α-1 /2  (α27/2)/(3/4 α-1)3 

∞,∞ 
**

 (α-9/2) 3/2 α-1  (α27/2)/(3/2 α-1)3 



2.7 Expansion of the incomplete gamma function Γ(1/3, βn/r3)
The series expansion of Γ(1/3,βn/r3) in the equation for calculating particle energy (8) gives [8]:

Γ (1/3,  β n/(r3))  ≈ Γ 1/3  - 3( βn

r 3 )
1/3

+ 3
4 ( βn

r 3 )
4 /3

 = Γ 1/3  - 3
βn

1/3

r
 + 3

4

βn
4/ 3

r 4 (30)

and for Wn(r): 

W n(r)  ≈ W n  - 2b0

3 βn
1/3

3 βn
1/3 r

 + 2b0
3
4

βn
4/3

3 βn
1/3 r 4  = W n  - 

2b0

r
 + b0

βn

2r4       21 (31)

The 2nd term in (31) drops the particle specific factor βn and gives twice  22 the electrostatic energy of two
elementary charges at distance r. The 3rd term is an appropriate choice for the 0 th order term of the differential
equation [A1]. It is thus supposed to be responsible for the localized character of a particle state and may be
identified with the “strong force” of the standard model.

2.8 Gravitation
2.8.1 Planck scale
Expressing  energy/mass  in  essentially  electromagnetic  terms  suggests  to  test  if  mass  interaction  i.e.
gravitational  attraction  can  be  derived  from  the  corresponding  terms.  Assuming the  expansion  of  the
incomplete  Γ-function  for  the  integral  over  r-2,  Γ(1/3,βn/r3)  (30)f,  to  be  an  adequate  starting  point  for
gravitational attraction as well, implies that the Coulomb term b0 will be part of the expression for FG, i.e. the
ratio between gravitational  and Coulomb force,  e.g.  for  the electron,   FG,e  /FC,e = 2.41E-43,  should be a
completely separate, self-contained term. 
This  is  equivalent  to  assume  that  gravitational  interaction  is  a  higher  order  effect  with  respect  to
electromagnetic interaction and as such should be of less or equal  strength compared to the latter.  This
suggests to use the expression

b0 = G mPl
2 = G WPl

2 /c0
4               (32)

as definition for Planck terms , giving for the Planck energy, WPl
 :

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αhc0/G)0.5 = 1.671 E+8 [J] (33)

Equation (33) allows to give the quantitative relationship used in (18) for the ratio of We and WPl as:

1.0006
W e

W Pl

 = 1.51332 α10/2 = 4.903 E-22  = αo     (34)

i.e. the relation between the electrostatic part of We, elst =  We/2 and the electrostatically defined WPl is given
by the cube of the electron coefficient for energy (see note 16) times the angular limit factor according to
(29). In the next chapter a derivation will be given for this relation originating in the third term of the energy
expansion (31). 
Using (61) to express factor 1.5133 gives:

( W e

W Pl
)

2

 = ( FG, e

FC, e
)

calc

 ≈ ( 1.51333 α9

1.5133 α−1 2)
2

 = ( (4π )2|Γ-1/3|
4 α12

2 )
2

 = 1.000752  ( FG, e

FC , e
)

exp

 = 
GW e

2

c0
4 b0

 = α 0
2  (35)

Using (11) and (64) for calculating We would turn G into a coefficient based on electromagnetic constants:

Gcalc  ≈ 
c0

4

4 π ε c
( 1

3 π2 /3  (|Γ−1/3|
Γ1/ 3

)
4

α 12)
2

 ≈  
c 0

4

4 π ε c

 
2
3

 α24  = 1.0008G exp   (36)

2.8.2 Virtual superposition states
Within this model particles might interact via direct contact in place of boson-mediated interaction. The
particles are not expected to exhibit a rigid radius. Within the limits of charge and energy conservation a
superposition of many states might be conceivable, extending the particle in space with radius ~ r n, λC,n etc.
appropriate for energy of each virtual particle state (VS)  23, providing a source of energy at a distance rVS

21 Signs not adapted to conventional definition. 
22 Due to the assumption used in (8): Wn = 2Wn,el = 2Wn,mag = Wn,el + Wn,mag

23 The superposition states considered here would be not virtual in a Heisenberg sense, the energy is provided by the 
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from the  primary particle and in turn contributing to the stress-energy tensor responsible for curvature of
spacetime that manifests itself in gravitational attraction.  
Virtual states are not supposed to consist of analogs of e.g. spherical symmetric states covering the complete
angular range of 4π but  to be an instantaneous,  short  term extension of the E-vector thus requiring the
angular limit factor of (29).
A long range effect of the 3rd, the strong interaction term, of (31) may be exerted via virtual particle states. To
estimate such an effect in first approximation the following will be used:

- the 3rd term of the energy expansion equ. (31) with β according to (7), (19), 
- the angular limit state of  σ*min according to (28), σ*min ≈ 1, 
- βdim = (4π)-2 (ec/εc)3 ≈ (α-1 re)3, which might be considered to represent the cube of a natural unit of   

         length, R.
For any VS at r = α-1  rVS = Πβ,VS

1/3 (α-1 re), i.e. the radius of the VS in natural units,  RVS, equ. (37) will hold:

W VS( r)≈ 
b0 βVS /2
(α−1  rVS)

4
 ≈ 

b0 α0Π β ,VS(α
−1re)

3

(α−1 rVS)
3(α−1 rVS)

≈ 
b0α0 Πβ ,VS(α

−1re)
3

(Πβ ,VS
1 /3 α−1 re)

3(α−1 rVS)
 = 

b0 α0

(α−1rVS)
 = 

b0

RVS

 (FG ,e

FC ,e
)

0.5
    24 (37)

Considering that the composition of the stress-energy tensor from virtual states is expected to be based on a
much more complex mechanism requiring consideration of all possible virtual states at a particular point and
appropriate averaging, (37) has to be a first approximation. The crucial factor that turns the r -4 dependence of
the strong interaction term into r-1 of gravitational interaction is the proportionality of βn to the cube of any
characteristic particle length, rn, λC,n etc. which is valid for each particle state subject to the relations of this
model.
Equ. (37) is a representation of the gravitational energy of the electron, terms for other particles may be
obtained by inserting their energy values relative to the electron according to (21) in (37) which might be
interpreted as the intensity/frequency of the emergence of virtual states being proportional to the energy of
the primary particle.
As a consequence of (37) the highest possible particle energy value will be α0

-1, i.e. the value of the Planck
energy relative to the electron.  This is the fundamental cause for relation (34) and in turn corroborates the
assumption used in the definition of equ. (32)f.

3 Derivation from the Einstein field equation
The quantitative relationship of the model for calculating particle energies with gravitational interaction via a
mechanism that provides energy at a distance from a primary particle and thus a contribution to the stress-
energy-tensor and curvature of space-time suggests to test if the equations of this model may be derived
directly from the Einstein field equations.

The minute factor G/c0
4 in the EFE is responsible for this equation not being particularly suited to attempt a

calculation of particle energies based on this formalism. The interpretation of gravitation as a higher order
effect with respect to electromagnetism suggests to replace G/c0

2 [m/kg] or G/c0
4 [m/J] by an equivalent

electromagnetic term. A term of order 1/εc [m/J] may provide the appropriate units and the necessary order of
magnitude, suggesting to use a substitution such as:

  (8 π)G /c0
4      =>     ≈ 4 π

εc

  (38)

In the following the central concept will be the vizualisation of the “rotating E-vector” of the introduction.

The basic question will be: What kind of metric will yield an undisturbed photon propagation according to
the Maxwell equations that manifests itself as a localized object in flat space-time ? 

In a spherical coordinate system the rotation of an object with extension in angular direction will result in
some kind of self interaction increasing with r ->0 unless space(-time) is curved in such a way as to prevent
that. This will be the case if the r2-term in the angular coordinates is canceled, implying positive curvature

primary particle.
24 The term for gravitational attraction, Fm,n; R between two particles, m and n at a distance rm,n, would be obtained by 

using 1/b0 as proportionality constant: Fm , n; R  ≈ 1
b0

 WVS (m ,r)W VS (n ,r )  ≈ b0  
ΠW ,m ΠW , n

   Rm ,n
2

 α0
2
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and an expansion of curved space-time with r2 at any given r, i.e. the Ricci scalar should be R(r) ~ - 1/r2  . 

The general approach will be to set all terms in an appropriately constructed Ricci scalar to be zero, except a
1/r2 component, thus obtaining a homogenous 2nd order differential equation. 

In a simple 4-D metric of type gµν = (+1, −1, -r2,  -r2 sin2θ ) 25 a factor of -1 arises in the Ricci components R22

and R33 due to the derivative of the term Γ23
3 = Γ32

3 = cotθ with respect to θ, resulting in in a term +1/r2 in the
Ricci scalar. Changing the sign of +1/r2 in R in such a 4D-metric can be formally achieved by changing the
sign of -r2 or the use of an imaginary value of θ in gµν. 

In the following this concept is illustrated as a formal, general approach, where the Ricci scalar will  be
required to be:

R = - 2/r2 (39)

and an exponential ansatz will be used for g00,11:

gµν = (+exp(a v(r)), − exp(b v(r)), +r2,  +r2 sin2θ)   

This will result in the following Ricci scalar (with the components belonging to ct, r and θ , φ still separated),
(see [A5]):

R  = (e
−bv[−av ' '  - 

a2 v '2

2
 + 

ab v '2

2
−

(a−b)v '
r ]

00,11
 + e

−bv[ (b−a)v '
r

 - 
2

r2 ]
22 ,33

) - 2/ r
2

(40)

To get R = -2/r2 one has to set the term in curved brackets to zero. 

The equation (40) refers to local coordinates and has to be solved for these or transformed to flat coordinates.
The  latter  will  be  attempted  by  transforming  the  spherical  object  of  a  particle  back  into  a  photon  of
appropriate wavelength, assuming ad hoc that 

1.) for  r ->0 the angular coordinates have to reflect the expansion ~ 1/r2, while

2.) the energy-space-time relation of a photon, i.e. Wph ~1/r, ~1/T reflects a contraction of space-time linear
in coordinates ct, r .

A coefficient ρ [m] will be needed to obtain dimensionless terms . This gives:

R  = (e
−bv[−av ' '  - 

a2 v '2

2
 + 

ab v '2

2
−

(a−b)v '
r ]

00,11
 
r
ρ

 + e
−bv[ (b−a)v '

r
 - 

2

r2 ]
22 ,33

 
ρ2

r 2 ) - 
2 ρ2

r2r2 (41)

and 

[  - a v ' '  - a2 v '2

2
 + ab v '2

2
 - 

(a−b)v '
r ]

00 ,11

 r
ρ

  +  [(b−a) v '
r

 - 2
r2]

22 ,33

 ρ
2

r2
 = 0 (42)

(In a 5D approach terms (ρ/r)N will appear in the Ricci tensor due to the ansatz for the Kaluza scalar, Φ, see
chpt. 4.)

An equation of type (42) will in general feature solutions of type exp(v) = exp (- x/r3), which is a sufficient
criterion to obtain equations (11), (15)ff i.e. the numerical expression for α and the quantization of particle
energies. Setting e.g. a = b gives:

 - av ' '  
r
ρ

  -  
2

r2  
ρ2

r2  = 0      =>     a v ' '  =  - 
2 ρ3

r 5 (43)

and corresponds to equ. (4) if choosing an appropriate value for a. Using polar coordinates in flat space and
setting a = b = 1/3 and v = (-ρ/r)3 gives:

ev /3  = Ψ (r) = exp(−ρ3

3r 3 )    =>     
−4 ρ3

r5  + 
2 ρ3

r5  =  - 
2 ρ3

r5    (44)

The Einstein tensor component G00 will be:

G00 = [- v''/(6)  - v'/(3r)] + ev/3 ρ2 /r4 =  ev/3 ρ2/ r4 (45)

Equating with the component of the stress-energy tensor, G00 = T00, and using the coefficient given in (38) will

25 coordinates t, r, θ, φ = x0, x1, x2, x3; only diagonal elements considered, µ=ν;
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give (w = energy density):

ev /3 ρ2

r4  ≈ 
4 πw

ε c

     =>     
εc ev /3 ρ2

4 π r4  ≈ w     (46)

The volume integral over (46)f gives the particle energy according to

W n  = 
ε c  ρ2

4 π ∫
0

rn

ev /3

r 4
d3 r  = 

Γ1/ 3

3
 31/3ρ ε c

(47)

To recover (8), (19) for the electron, ρ in (46)f has to be given by 

ρ3  = 8
3

σ* α0(4 π )(ec

ε c
)

3

      26   (48)

i.e. a derivation from the EFE with 4π/εc in place of 8πG/c0
4 reproduces the basic equation (4) with essentially

the same set of coefficients as used in chapter 2.

4 Extension to 5 dimensions
Several aspects of this model hint at a possible 5 dimensional background.  The ansatz of chpt. 3 may be
improved in a 5D model based on the work of T. Kaluza [4] and extended by P.Wesson and collaborators [9].
Elements  of  the  electroweak interaction  and the  Higgs mechanism may be interpreted geometrically  as
objects in 4D-space. 

To extend this model to N spatial dimensions the following definition for ΨN will be used:

Ψ N (r) = exp(−( ρ
r )

N

)                      ρ  ~ (ec

εc
) (49)

4.1 Kaluza theory
Several terms in Kaluza's work may be simplified using terms of this model. The electromagnetic coupling
constant in the metric, κ, of Kaluza may be replaced by c0 (using (38)) 27:

κG  = (16 π G εc

c0
2 )

0.5

   =>    κc  ≈ c 0 (50)

A major problem in Kaluza's model addressed by himself is that the mass to charge ratio of e.g. the electron
results in values for the derivation of the 4 th spatial coordinate dx4/ds in an excessive order of magnitude, a
problem which will be avoided if the substitution (50) is used 28.
For vacuum solutions, RAB = 0, Kaluza's ansatz yields the following differential equation for a scalar field Φ:

∇ Φα  = − 1
4

κ2 Φ3 Fµν F μν (51)

(F = electromagnetic tensor)  which has approximate solutions for r-> 0 of type  Φn  ~ exp(-(ρ /r)N/2), i.e.
components of the functions Ψ = f(ρ/r) used in this model might provide appropriate candidates for Φ:

 ΦN  ≈ ( ρ
r )

N−1

eν / 2  = ( ρ
r )

N−1

exp(-( ρ
r )

N

/2)               with   ν  = −( ρ
r )

N

(52)

see [A6]. Inserting such solutions for Φ in a 5D metric will produce various terms of (ρN/rN+2) in the Ricci
tensor and the equations gain considerably in complexity.

4.2 Electroweak interaction and Higgs mechanism
This model originates from establishing a relation between a photon which represents SO(2), U(1) symmetry
29 and rotating objects -particles- of SO(3), SU(2) symmetry i.e. it involves the symmetries of electroweak 

26 The term σ* α0 has to appear in the denominator since ρ2 appears in the nominator of equ (46), not affecting the 
validity of the equations of this model. 
27 Essentially turning Kaluza's ansatz into an in 1st order electromagnetic one;
28 dx4 /ds  = e c /(me κG )  ≈ 3E+29 [m/s]    >> c 0        =>       dx4/ds  = ec / (me κc )  ≈ 1E+4[m /s]    << c0

29 U(1), the symmetry group for electromagnetism and its isomorphic rotation group SO(2) characterize a photon of 
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interaction. Symmetry SO(3) is directly related to the property “mass” via the reasoning in chpt. 3.
The concept of chpt. 2.2 for calculating the fine-structure constant α may be extended to other dimensions,
N, based on the integral over the (square) of the N-D point charge term (SN being the geometric factor for n-
dimensional surface, in case of 3D: 4π): 

∫
0

r

Ψ N (r)2r−2( N−1 )  dN r  = SN∫
0

r

Ψ N (r)2r−(N−1)d r (53)

multiplied by a complementary integral to yield a dimensionless constant. This results in (see [A7]):

α N
−1  =  

(2π )δ(2 N−4)

(2π )(N−2)  ∫
0

r

Ψ N (r)2 r−(N−1) dr∫
0

r

Ψ N (r)2 r(N−3)dr (54)

with N = {2; 3; 4} 30 or in terms of the Γ-functions:

α N
−1

 =  Sn

Γ+(Ψ N )Γ -(Ψ N)

N2  arg(Γ (Ψ N ))2
(55)

with Γ+/- (ΨN) being the positive and negative Γ-functions attributed to ΨN and arg(Γ(ΨN)) being the argument
of the Γ-functions attributed to ΨN  31, i.e. the three coupling constants of the electroweak charges g', e and g
can be combined in a single function of spatial dimension only.

Table 2: Values of electroweak coupling constants

The ratio of αe and αg represents the Weinberg angle, θW, and may be expressed as:

sin
2
θW  = 

αe

αg

 = 
π2

4 Γ1/3|Γ−1 /3|
 = 0.2267   (56)

(Experimental values: PDG [10]: sin2θW = 0.2312, CODATA [11]: sin2θW = 0.2223)
and cos θW = mW/mZ = 0.8794 = 0.998  (mW/mZ)exp  [12]. 

Comparing (53)f with equation (52) for the Kaluza scalar, Φ, demonstrates that except for a constant factor
the terms are identical, ΦN ~ ΨN r - (N-1). Together with the identification of a particle with the energy of the
Higgs boson to represent a 1D object, characterized by |Γ -1/3|/3, see 2.5, and a speculative mapping of all
electroweak bosons relative to the expectation value of the Higgs field, <Φ>0 = VEV/√2 = 246GeV/√2, one
might tentatively merge coupling constants / their corresponding charges ~ αN

0.5,  electroweak bosons and
solutions for Kaluza's Φ in a 4D spatial scheme, see table 3 32: 

Table 3: Comparison of values of coupling constant charges with electroweak energy scale and ΦN

spin 1 if one considers the projection of the rotation of the E vector on the plane orthogonal to the axis of propagation.
30 Note: in the respective spherical coordinate systems r in 3D represents a conventional coordinate of type “length” 
while in 4D r is supposed to represent the inverse of energy, cf. [9].
31 I.e. in 4, 3 and 2D Γ+/- (ΨN) will be Γ+/-1/2, Γ+/-1/3 and Γ(0, 8/σ2D) = 7.872 = (2π3)0.5 (numerical calculation);  
arg(Γ(ΨN)) will be 1/2, 1/3, and for 2D ad hoc arg(Γ(0)) = 1;
i.e. while 4 D is a straightforward extension of 3D, 2D fits in (54)f only with additional assumptions;
32 For W+/- 3/Γ1/3 is used as a first guess for the boson energy relation, since Γ1/3 is the characteristic coefficient for 
energy and W ~1/r holds.
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4D

2D

3D 137.036

Dimension - 
space

coupling 
constant

Value of inverse of coupling constant, α
N

-1

α(g) 2π2 Γ+1/2 |Γ-1/2| 4/16  =  π3  = 31.006

α(g') 2π Γ(0, 8/σ2D)2 /4  =  π4  = 97.409

α(e) 4π Γ
+1/3 

|Γ
-1/3

| 9/9 = 4π Γ
+1/3 

|Γ
-1/3

| =

Point charge
W  [GeV]

4D g 1 174.1 4

1D Higgs boson 125.4 0.720 128.6 1
2D g' 0.541 91.2 0.524 95.0 2
3D e 0.476 80.4 0.462 84.8 3

Elements of electroweak / Higgs mechanism
Dimension 
- space

Value 
relative to g

Electroweak 
bosons + VEV

W relative to 
VEV/√2

Γ-coefficient 
relative to VEV

VEV/√2 divided 
by Γ-coeff.

Kaluza coeff. 
N of (52)

VEV/√2

|Γ-1/3|/3

Z0 (|Γ-1/3|/3)2

W+/- (|Γ-1/3|)
2    /(3Γ+1/3)



5 Discussion
The authoritative theory to describe particles is the standard model of particle physics (SM). However, the
standard model has a major blind spot: it is not particularly efficient in calculating particle mass/energy and
gravitational  phenomena  are  explicitly  not  part  of  the  SM  which  in  turn  restricts  its  applicability  for
addressing problems in cosmology. 
Lepton and quark masses are treated as parameters in the SM while the calculation of light hadron masses
[13],  [14],  [15]  with  lattice  QCD methods  typically  uses  2-3  quark  masses,  a  coupling  constant  and  a
reference particle for the absolute energy scale, i.e. about 4-5 parameters, to calculate mass of ~9-12 particles
with an accuracy in the range of 1%. The model presented here achieves comparable results “ab initio” and
includes  both  leptons  and hadrons.  The  standard  model  distinguishes  quite  rigidly  between both  types,
postulating that a set of physical objects characterized by an almost identical set of experimental observables
is based on completely different physical principles. A major distinctive observable for both particle groups
is assumed to be the strong force which is postulated to be zero for leptons, which per se is not verifiable
beyond experimental accuracy. 
According to this model it is suggestive to interpret strong interaction as evidenced in scattering events to be
due to wave function overlap depending on [16]:
1) comparable size and energy of wave functions,
2)  sufficient  net  overlap:  If  regions  with  same and opposite  sign  balance  to  give  zero  net  overlap,  no
interaction occurs. 
From condition 1) it is obvious that the wave functions of neutrino or electron can not be expected to exhibit
effective interaction with hadrons  33. In the case of the tauon the second rule is crucial. In this model the
tauon is at the end of the partial product series for y1

0 and should exhibit a high, potentially infinite number of
nodes, separating densely spaced volume elements of alternating wave function sign prohibiting net overlap
and effective interaction with hadrons of higher symmetry, such as the proton. 

The completely different approach of this model compared to the QFT methods of the SM certainly produces
more discrepancies  than the  lepton  /  hadron classification  34 and  in  this  early stage it  is  impossible  to
anticipate if there will always be a more or less appropriate method to reconcile those. However, this model
covers the “blind spot” of the SM quite thoroughly and might be a useful tool to complement it 35: not only
can mass/energy be calculated with a minimum of assumptions 36 and no free parameters but gravitational
phenomena  are  an  integral  part  of  the  model,  i.e.  it  gives  a  coherent  description  for  source  and field.
Moreover,  these results  seem to be founded within the established theory relating mass and gravitation:
general relativity (GR), in particular its 5D Kaluza version, as evidenced by :

- the possibility to derive its basic equations - yielding quantized particle energies - from the Einstein field     
  equation,
- obtaining absolute values for particle energies by replacing G/c0

4 in the EFE by 1/εc = 2.998E+8[m/J],
- the electroweak coupling constants, in particular the fine-structure constant α, having a geometric
   interpretation related to curvature of space-time,
- the possibility to obtain a quantitative term for gravitational interaction from the expansion of the energy
  equation, implying curvature of space-time to be in general identical to (the presence of) energy, and spatial
  coordinate and energy to be intertwined inextricably,
- suggesting a close relationship of several mass/energy related phenomena - particle energy, elements of the
  Higgs mechanism, Planck energy - with GR.

Last not least GR is a general concept connecting geometry with energy and related phenomena and its
applicability in the subatomic range would drastically underscore its universal validity.

33 As for energy density ~ Wm/Wn
4

 : e/p ~ E-13, µ/p ~ 6E-4;  µ/π ~ 1/3, i.e. in case of µ/π  some measurable effect 
should be expected; different symmetry may play an additional role. 
34 Involving the three generation model, attributing a neutrino to each charged lepton, as well. This is not reflected in 
this model, which gives only some speculative information about neutrinos [5]. 
35 Other particle properties such as magnetic moments may be calculated with this model as well, see [5].
36 Ad hoc introduction of an exponential function Ψ, see 2.1 or those used for derivation of Ψ in chpt. 3.
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Conclusion
This  article  suggests  a  consistent  and coherent  model  quantitatively connecting the concepts  of  general
relativity with the properties of subatomic particles giving in particular the following results:

- a geometric expression for the electroweak coupling constants, in particular the fine-structure constant, α,
  as a coefficient defined by the product of the Γ- functions in the integrals over Ψ(r) related to photon and 
  point charge symmetry, 4π Γ+1/3 |Γ-1/3| ≈ α-1,
- a quantization of energy levels with terms  α^(-1/3n)
- electron and the Higgs VEV energy as lower and upper limit of a convergent series for particle energy,
- additional information about particle properties e.g. the lepton character of the tauon, 
- a series expansion for particle energy, including terms for rest energy, electromagnetic interaction and a 3 rd

   term which at short range yields effects associated with strong interaction, at long range gives a quantitative
  term for gravitational interaction.

The basic terms of the model may be derived directly from the framework of the Einstein field equations and
can be expressed without use of free parameters.
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Appendix
[A1] Differential equation
The approximation Ψ(r<rn) of equation (4) provides a solution to a differential equation of type

− r
6

d2 Ψ (r)
dr2

 +  
β n/2
2r3

dΨ (r)
dr

 −  
βn/2
r4

Ψ (r )  =  0  (57)

which corresponds approximately to the limit l -> ∞ (σ -> ≈1) while has to be amended by σ in the denominator of the
last term for the general case.  
With the 3rd term in (31) used for potential energy, V:

V(r) = b0 βGS/(2 r4) = b0 [ σ* α0 (ec/εc)3 /(4π)2] /(2r4)     (58)

and a corresponding expansion by (ħc0)2α-2 /b0
2 for the first term, the approximate differential equation for this model

may be given as:

−
(ħc0)

2 r

α−2 b0

 
d2 Ψ (r)

dr2
 +  r V (r)  

dΨ (r)
dr

 −  
V (r)

σ
Ψ (r)  =  0 (59)

Equations (57)ff give a satisfactory description for spherical symmetric states only. 
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[A2] Coefficient 1.51
Factor 1.5088 of the ratio Wµ/We is subject to a 3rd power relationship of the same kind as the α coefficients:

(1.5133
1.5088) = (1.5133

1.5 )
1/3

(60)

indicating that the radial terms of Πβ,n in βn and the angular components of σ are not correctly separated yet or may not
be separable even in the case of spherical symmetric states.
The limit of a corresponding partial product in the energy expression is given by 1.5133 Π0

∞ (1.5/1.533)^1/3k ≈ 1.5066.
The corresponding term in  β  will be: 1.5133-3 Π0

n (1.533/1.5)^3/3k , n={1;2;...}, for particles above the electron, see
[A3].
The following relation holds:

1.5133  = 0.998|Γ−1/3|/ Γ1 /3  = 4 π Γ -1/3
2  α (61)

[A3] Particle parameter β
A more detailed expression for β than given in (19) will be attempted in the following.
The term (60) will be used within the particle specific factor (square brackets), thus coefficient 1.5133 of σ will be
placed there, giving for the general term (i.e. excluding the electron):

βn  = σ * 1
(4 π)2 (ec

εc
)

3

 2
(2 π)3

 1.5133−3Πk=0
n [α3(1.5133

1.5 )]^( 3
3k)          n = {0;1;2;...}    (62)

factor 1.5133-3 represents ≈3/2 for the ratio of Wµ/We, to be omitted in the term for the electron:

βe  = σ *  1
(4 π)2 (ec

εc
)

3

 2
(2 π )3  [α 3( 1.5133

1.5 )]  3
 ≈  σ *  1

(4 π )2(e c

εc
)

3

 α0          37 (63)

the particle specific factor is given in square brackets (α0 in bold). The other factors are due to
- factor 2: Ψ appearing squared in the integrals,
- factor 1/(2π)3 : representing 2π of the integral limit in (23) ,
- factor 1.5133-3: due to anomalous factor 2/3 in We/Wµ,
- 1/(4π)2: the power of 2 instead of the power of 3 as for the other components might be due to b0 appearing squared in 
  (59) and its analog in the asymmetry of the ρ/r components of (42)
Using (63) We may be given as:

W e  = 2b0

Γ+1/3

3 (9π 5 /3α
|Γ -1/3| (εc

ec
)[ α−3

1.5133 ])  = 1.5π 2 /3

1.5133
Γ +1/3

|Γ -1/3|
ec

α2 =1.0001 We,exp (64)

[A4] Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.

[A4.1] Partial products
Additional partial product series will have to start with higher exponents n in α^(-1/3n) giving smaller differences in
energy while density of experimentally detected states is high. There might be a tendency of particles to exhibit a lower
mean lifetime (MLT), making experimental detection of particles difficult  38. To determine the factor yl

m requires an
appropriate ansatz for the differential equation yet to be found. 
One more partial product might be inferred from considering d-like-orbital equivalents with a factor of 5 1/3 as energy
ratio relative to η giving the start of an additional partial product series at 51/3 W(η) = 937MeV = 0.98 W(η'), i.e. close to
energy values of the first particles available as starting point, η', Φ0. However, in general it is not expected that partial
products can explain all values of particle energies.

[A4.2] Linear combinations 
The first particle family that does not fit to the partial product series scheme are the kaons at ~ 495MeV. They might be
considered to be linear combination states of π-states. The π-states of the y1

0 series are assumed to exhibit one angular
node,  giving a charge  distribution of  +|+,  -|-  and +|-.  A linear  combination of  two π-states  would yield the basic
symmetry properties of the 4 kaons as:

 + -  -   +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -  (+/- = charge)

 + - -                  -
providing two neutral kaons of different structure and parity, implying a decay with different parity and MLT values.
For the charged Kaons, K+, K-,  a configuration for wave function sign equal to the configuration for charge of K S

o and

37  Note: 2 (2/3)3 /(2π)3  ≈ (1.5133 α-1 2)-1, i.e. indicating a relation to the angular limit factor of chpt. 2.5.
38  Which might explain missing particles of higher n in the y0

0 and y1
0 series as well.
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KL
o might be possible, giving two versions of P+ and P- parity of otherwise identical particles and corresponding decay

modes not violating parity conservation.

[A5] Metric
Coordinate variables: x0=t, x1=r, x2=θ, x3=φ

gµν = (+exp(a v(r)), − exp(b v(r)), +r2,  +r2 sin2θ)   

gµν =  (+1/exp(av(r)), − 1/exp(bv(r)), + 1/r2,  +1/r2 sin2θ)

Γ01
0 = Γ10

0 = a v' /2 Γ00
1 = a v' e (a-b)v /2 Γ11

1 = b v' /2

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = 1/r Γ22
1 = + r e-bv Γ33

1 = Γ22
1 sin2θ 

Γ23
3 = Γ32

3 = cotθ Γ33
2 = - sinθ cosθ

R00 =  e(a-b)v [- a v''/2 - a2v'2/4 + ab v'2/4 - a v'/r] R11 = [+ a v''/2  + a2v'2/4 - ab v'2/4 - b v'/r] 

R22 = e-bv [(b-a) v'r /2 - 1] -1 R33 = R22 sin2θ 

g00R00 + g11R11 = e-bv [- a v'' - a2v'2/2 + ab v'2/2 - (a-b) v'/r]

g22R22 + g33R33 =  e-bv [(b-a) v'/r - 2/r2] -2/r2 
 
[A6] Scalar potential Φ
Starting point for the following is the work of P.Wesson and J.Overduin [9], their equations are indicated in parenthesis
(with their system of natural units used). The 5D metric is given as (6.68):  

gAB  = [(gαβ−Φ2 Aα Aβ) −Φ2 Aα

−Φ2 Aβ −Φ2 ] (65)

(Roman letters correspond to 5D, greek letters to 4D, Aα = electromagnetic potential). Setting RAB = 0 this results in a set
of equations (6.75) describing Einstein- and Maxwell-like equations and a wave equation for the scalar potential, equ.
(51). For the 4D part of the metric and the electromagnetic potential, A, (6.76) is used:

ds2  = eν dt 2−eλ dr2−eμ r2(dϑ 2+sin2 ϑ dφ2) (66)

Aα  = (A0 ,0,0 ,0) (67)

With coefficients ν, λ, μ and A0 depending only on r, equ. (51) gives (6.77): 

Φ ' ' +( ν'−λ '+2 μ'
2

+ 2
r )Φ '  = 

1
2

Φ3 e−ν ( A0 ')2
(68)

Using (52) the left side of equation (68) has approximate solutions for ν = λ = μ of type (52) where for r -> 0 equ. (68)
will be dominated by the term of highest order, ~ ρ3N-1 /r3N+1 ev/2:

Φn ' '   ≈  ( ρ3N−1

r3N+1 )eν/2  ≈ Φn
3 e−ν (A0 ')2  = [( ρ

r )
N−1

eν /2]
3

e−ν( ρ

r2 )
2

   =   ( ρ
r )

3 N−3

e ν/2  ( ρ

r2)
2

(69)

[A7] Coupling constant in 5D
3D case:
Equations (54)f have their origin in the integrals over ΨN to be recapped and examined in more depth for the 3D case: 
αe may be expressed directly via the volume integral over 1/r2 representing a point source in 3D times the corresponding
integral symmetric in the Γ-function to give a dimensionless term:

2∫
0

r

Ψ 3(r)2r−2 d r∫
0

r

Ψ 3(r)2 dr  =2[ Γ1 /3

3 ][2π 2π 9
Γ−1/3

3 ]  = 4 π Γ 1 /3 Γ−1 /3  2 π  = 2 π  αe
−1 (70)

The term of 2*2π indicates that the volume integral over the square of 1/r2 is involved, as actually used in the derivation
of  (8)ff, ∫Ψ 3(r)2 r−4  d3 r  = ∫Ψ 3(r)2r−4 4 π r2  d r .  One of  the 2π terms originating from the second integral  of
equation (70) is required for turning h into ħ. Unless (70) is divided by 2π it would give a dimensionless constant αe' = h
c0 4π ε/e2. The term 2π may be traced back to the more detailed expression for β, equ. (62)f, including the cube of 2π
and it is a matter of choice to include it in the dimensionless coupling constant.
According  to  (12)  the  exact  value  of  (70)  depends  on  the  integration  limit  of  the  second integral,  i.e.  the  lower
integration limit, rlow, of the corresponding Euler integral which can be expressed as 3D volume with |Γ-1/3| as radius:

r low  = βn/ λC ,n
3  = 8 /(31.5 σ )  = (30.5 4 π

3
 |Γ - 1/3|

3)
−3

     39 (71)

to be multiplied by 1/arg(Γ(n)) = 3. For this limit the result of the second integral of (70) is given by
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 ∫Ψ3(r)
2dr=3(31.5σ/8)1/3= 30.54π|Γ-1/3|3 ≈ 36π2|Γ-1/3|

4D case:
The results for 3D have an exact analogon in 4D: 
Using Ψ4 according to the definition (49) and an equivalent expression for (71) in 4D:

r low  = βn/r4 , n
4  = 8 /σ 4  = ( π 2

2
 |Γ - 1/4|

4)
−4

     39 (72)

as integration limit the non-point charge integral in 4D will be given by:

∫
0

r

Ψ 4(r)
2r dr  = ∫

8 /σ 4

∞

t−1.25e−t dt  ≈ 4(π 2/2 |Γ−1 /4|
4)  ≈ 32 π 4|Γ−1 /2| ≈ 1/11390 (73)

The 4D equivalent of (70) may be given as:

∫
0

r

Ψ 4(r)
2r−3dr∫

0

r

Ψ 4(r )2r dr  =[ Γ1 /2

4 ][2π 416
|Γ−1/2|

4 ]  = π 2

2
Γ 1/2|Γ−1/2| 4 π2  = π 34 π2   = αg

−1 4 π2 (74)

The term 4π2 is the square of the 2π term in the last expression of (70) since the integrals in (74) refer to β0.5 and thus to
the square of energy and h,  ħ.

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

Ψ 2(r)2r−1 dr  = Γ (0 ,β2/r2
2)  /  2        39 (75)

features Γ(0, x), with  Γ(0, x) -> ∞  for x -> 0 the simple relation between integral limit and integral value of 3D, 4D is
not valid in this case. Using nevertheless the 2D equivalent of the integration limit

r low  = βn/ λC ,n
2  = 8 /(3 σ2)  = (30.5 π  |Γ −1 /2|

2)−2
 ≈ 1 / 4676      (76)

and calculating Γ(0, β2/r2
2) numerically gives ∫Ψ2(r)

2 r-1 dr ≈ 7.872/2 and  (∫Ψ2(r)
2 r-1 dr)2 ≈ 2π3/4. This will give a value of

αg' ≈ π4 if multiplied by a factor 2π. Unlike to the 3D, 4D case 2π will not appear in the denominator of the expression
for α, since the 2D integrals yield dimensionless terms and refer to angular momentum rather than energy. Though the
reason for the appearance of 2π in the nominator of the integral term is not obvious it is possible to include the 2D case
in the unified expressions given by equations (53)f. 40

[A8] Values used
π = 3.141592654 
Γ1/3 = 2.678938535
|Γ-1/3| = 4.062353818
α-1 = 137.035999084    
c0 = 2.99792458 [m/s]
e = 1.602176634 E-019 [C]
ε = 8.854187813 E-12 [F/m]
b0 = 2.307077552 E-28 [Jm]
G = 6.67430 E-11 [m5/(Js4)]
We, exp = 8.187105777 [J]  
λC,e = 2.426310239 E-12 [m]  
ec = 3.109751438 E-18 [J]
βdim = 5.131205555 E-30 [m3]
σ = 8(4π |Γ-1/3| 3/3)3 = 177155864 [-]
re   =  1.413269970 E-12 [m]                       

39 Note: In (71), (76) λc is used in place of rn, their relationship is given by λc ≈ 30.5 =  rn. In 4D the coordinate r4,n is 
already supposed to be related to energy: r4,n ~ 1/W. Factor 2 representing electric and magnetic contributions in the 3D 
equations will be dropped in the 4D case.
40 Inserting a factor 2π in one of the two integrals ∫Ψ2(r)

2 r-1 dr would turn this integral into the volume integral over the 
square of 1/r1 in analogy to the derivation of the 3D term.
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