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Abstract—The rise of third-party content providers and the
introduction of numerous applications has been driving the
growth of mobile data traffic in the past few years. The
applications’ various Quality of Service (QoS) requirements as
well as the use of multiple devices per user have increased the
traffic heterogeneity, pressing the telecommunications industry to
the deployment of dense Heterogeneous Networks (HetNets). At
the same time, the rise of the content providers has also led to the
decrease of the Mobile Network Operators’ (MNOs) revenues.
Under these circumstances, the MNOs need to guarantee the
users’ Quality of Experience (QoE) requirements, while ensuring
the sustainability of HetNet investments. To this end, we consider
a HetNet deployment where MNOs offer a multitude of services
with diverse pricing. We propose a heuristic, greedy, QoE-aware
resource allocation algorithm with fairness and overall user satis-
faction constraints to maximize the MNO profit, while providing
high QoE. Simulation results show that the proposed algorithm
can handle traffic heterogeneity by achieving substantial profit
and QoE gains, compared to state of the art algorithms.

Index Terms—Resource Allocation, Profit, Traffic Heterogene-
ity, QoE, Diverse Pricing.

I. INTRODUCTION

The exponential growth of mobile data traffic experienced
over the last years is expected to continue in the future. This
traffic growth is mainly the result of the surge in demand of
multimedia and video content (usually offered by independent
content providers) and the explosion in the number of devices
and broadband connections. For instance, according to [1], IP
traffic is expected to grow from 13 GB per capita in 2016
up to 35 GB per capita by 2021. Moreover, by 2021, the
mobile traffic will be heterogeneous from a dual perspective,
since there will be a wide range of possible Quality of Service
(QoS) requirements (e.g. video on-demand, online gaming and
messaging are very different in terms of QoS) and it will be
originated/received by diverse devices (e.g. tablets, laptops or
smartphones) [2]. In this context, it has been shown that the
quality perceived by the users can not be fully captured with
QoS metrics, thus making Quality of Experience (QoE) one
of the most important Key Performance Indicators (KPI) [3].
Therefore, in the future Mobile Network Operators (MNO)
will have to be able to meet not only the envisioned boost
of the traffic demand, but also its heterogeneity in terms of
QoS/QoE requirements.
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The densification of the Radio Access Network (RAN) is
one of the main strategies to catch up with the future intense
and diverse demand [4]. Mobile industry must invest large
amounts of capital in the deployment of dense Heterogeneous
Networks (HetNets) to be able to provide seamless connectiv-
ity and high QoS/QoE. Therefore, the densification strategy
to cope with the increase of the demand has a significant
impact on the balance sheet of the different stakeholders, and
particularly for MNOs (e.g. increase of the deployment cost).
These financial aspects/constraints are exacerbated by the so-
called traffic and revenue paradox/challenge [5]; specifically,
although it may seem contradictory, the described traffic boost
has increased the content providers’ profits while, simulta-
neously, has diminished the MNOs’ revenues. This occurs
because the MNO’s basic services (voice and messaging)
have been gradually replaced by their third-party counterparts.
Moreover, the MNO’s data service prices have been decreasing
over the years, due to the market competition.

Therefore, MNOs face a two-fold challenge: meet the QoE
requirements and maximize the profit. It has been proven that
the relation between QoS and QoE has a non-linear nature
[6]. This means that small degradations in the received QoS
can significantly impact on the perceived QoE level. Yet,
QoE is influenced by other factors such as pricing or device
characteristics [7]. In this context, it is necessary to design
network functionalities adapted to the new requirements, such
as QoE-aware Radio Resource Management strategies, and
always trying to maximize the profit (to compensate the
diminished MNOs’ revenues and the increasing deployment
investment).

The majority of works on Resource Allocation (RA) and
scheduling in the context of 4G and 5G networks focus mainly
on the provision of high QoS/QoE and other network aspects
(e.g. power allocation, fairness etc.), without taking into ac-
count the impact of their proposals on the financial aspects of
the MNOs (e.g. profit) [8]–[11]. For instance, a joint RA and
PA algorithm based on an iterative method for the maximiza-
tion of proportional fair energy efficiency in energy harvesting-
based wireless networks is proposed in [8]. Similarly, a QoE-
aware joint RA and PA algorithm with a satisfaction factor
that determines the percentage of served users is proposed in
[9]. A QoE-based proportional fair scheduling scheme, which
aims for the users’ QoE maximization, is proposed in [10]. A
concave utility function for QoE provision is used to achieve
global optimality through opportunistic gradient scheduling.
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The authors in [11] design a a hybrid coordinated multipoint 
transmission scheme for the downlink transmission in cloud-
RANs, and propose a stochastic gradient algorithm and a low 
complexity online learning algorithm for the joint RA and 
PA of delay-sensitive traffic. In [12], the authors study the 
bandwidth allocation for video streaming in HetNets. For the 
minimization of the delay per chunk, they propose a cross 
layer video streaming algorithm, which offloads users from 
the small cells to the macrocell. The authors in [13] evaluate 
the operation of dynamic adaptive streaming over HTTP for 
three open source players, propose solutions to rate adaptation 
misbehaviour and suggest guidelines for their improvement.

However, there is a limited number of works on RA or 
scheduling that consider both network (e.g. QoE or fairness) 
and financial aspects (e.g. MNO profit). The authors in [14] 
examine network-assisted mobile streaming, while accounting 
for the MNO’s network and economic factors. They propose a 
Markov Decision Process (MDP) based adaptation framework, 
which provides near-optimal profit for the MNO. A downlink 
packet scheduling scheme for QoS provisioning in wireless 
networks is proposed in [15]. The scheme’s objective is 
the satisfaction of users with various QoS requirements and 
priority classes, and the minimization of the network operator’s 
revenue loss. The authors in [16] propose an auction-based 
RA scheme. The auction is used to decide the users’ service 
levels fairly when a BS’s resources do not suffice for the 
satisfaction of all the users’ demands. The RA is formulated as 
a multi-objective optimization problem, which maximizes the 
Jain’s fairness index, the resource utilization, and the MNO’s 
revenue.

The authors in [17] propose a marginal-based pricing and 
RA framework for the improvement of the resource utilization 
and the profit of a wireless video broadcasting MNO as 
well as the individual user profit. However, the problem 
formulation as well as the proposed algorithm focus solely on 
the maximization of the MNO profit with minimum quality 
guarantees for the users. That is, the authors do not take into 
account the effect that constraints on fairness and overall user 
satisfaction may have on the MNO profit, as well as on the 
user experience.

A method for the simultaneous RA in both licensed and 
unlicensed bands in the SCs of a HetNet is proposed in 
[18]. The concurrent RA in both bands for the SC users is 
designed as an optimization problem. The authors solve the 
problem twice; first they maximize the users’ sum-rate, and 
then the MNO revenue. Both problems have constraints on the 
interference on macrocell users, and on the satisfaction of the 
SC users’ minimum rate requirements. However, as the authors 
consider only usage-based pricing, the revenue maximization 
problem provides the same results as the sum-rate maximiza-
tion problem. Moreover, as the considered business model 
does not take into account the system’s operational costs, they 
cannot study the trade-off between the QoS provided to the 
users and the MNO revenue (profit).

This paper, which is an extension of our prior work [19], 
studies the resource allocation problem aiming to maximize 
the MNO profit, while offering high QoE to the users, under 
fairness and overall user satisfaction (OS) constraints. We

consider HetNets composed of macrocell and SC base stations
(BSs), with dynamic traffic described by numerous QoS/QoE
demands. In contrast to the literature, we further consider
diverse pricing, that is, various service prices and different
pricing schemes. In order to address the challenges of traffic
heterogeneity and high network profitability, we propose a
QoE-aware resource allocation algorithm that exploits the
QoE-awareness and the network’s economic aspects (i.e. the
MNO profit). Our proposed algorithm consists of three greedy
sub-algorithms; a first algorithm that iteratively maximizes the
satisfaction of the user with the lowest resource requirements;
a second algorithm that adjusts the previous resource allocation
by increasing iteratively the BS profit under an OS constraint,
and a third algorithm that maximizes the BS profit in the
same manner with an additional fairness constraint. The main
contributions of the paper are summarized in the following:
• While in [19] we proposed a novel joint resource alloca-

tion and pricing algorithm for profit maximization under
an overall user satisfaction constraint, in this paper we
also introduce fairness among users, extend our analysis
on the connection among the individual and overall user
satisfaction, fairness, pricing and profit, as well as how
they impact each other, through a resources allocation
approach.

• We propose a heuristic, greedy, low-complexity, QoE-
aware resources allocation algorithm that maximizes the
MNO profit while imposing constraints on the minimum
overall users satisfaction and on the fairness among users.
Our simulation results show that the proposed algorithm
outperforms state-of-the-art algorithms.

• We shed light on the trade-off between users’ satisfaction,
fairness and MNO profit. The paper shows that, given the
non-linear relation between QoS and QoE, there is room
for profit maximization resources allocation solutions
without penalizing the quality perceived by the users.

• We show that the use of diverse pricing schemes (e.g.
data-based and time-based pricing) can lead to the pri-
oritization of some services over the others in pure
profit maximizing algorithms. Moreover, as the QoE is
affected by the price level, the manipulation of the service
prices by the MNO can affect both the profit and overall
satisfaction. In line with this, we provide an accurate set
of simulation results that shows the sensitivity of profit
and overall satisfaction with respect to pricing schemes
and price level, which complete our preliminary analysis
in [19].

The rest of the paper is organized as follows. We present the
system model in Section II. Section III describes the MNO’s
objectives. In Section IV, the profit optimization problem is
formulated, and in Section V a QoE-aware profit maximizing
RA algorithm is proposed. We validate our algorithm in
Section VI, and conclude the paper in Section VII.

II. SYSTEM MODEL

The considered network is composed of a set of macrocells
and a set of SCs, all of them deployed by a single MNO.
We denote this set of BSs, both macrocells and SCs, as B =
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TABLE I: Notation

Notation Description
B Set of BSs
U Set of users
Ui Set of users in BS i
Ut
i Set of time-based charged users in BS i
UB
i Set of data-based charged users in BS i
S Set of services
Q Set of QoE levels
D Set of devices
bi BS i’s available bandwidth
πk Service Profile (SP) k

sk, qk, pk Service, QoE class, service price of SP k
θBk Per data unit charging of service k
θtk Per time unit charging of service k
rj User j’s data rate
rkd Target data rate for SP k, device d
wij Resources allocated to user j by BS i
wi

∑
j∈Ui wij

εij Spectral efficiency between user j and BS i
Qkd

j QoE level of user j with SP k, device d
Qtg

k Target QoE level for SP k
Qdrop

k Service dropping QoE level for SP k
Q̂kd

j QoS-based component for QoE mapping
Qp Price-based component for QoE mapping

αkd, γkd, βkd SP-dependent constants for Q̂kd
j

vk User-dependent constant for Qp

σij Satisfaction of user j ∈ Ui
Ji Jain’s fairness index in BS i
OSi Overall User Satisfaction (OS) in BS i

OSmax
i Maximum possible OS in BS i
φi Relative OS in BS i, OSi/OS

max
i

φmin Relative OS threshold
Pi BS i profit
Ri BS i revenue
CBi BS i bandwidth utilization cost
ci, hi Cost adjusting factors

{1, 2, . . . , NB}, where NB is the total number of BSs. The
bandwidth allocated to each BS i ∈ B is hereafter referred to
as bi (in Hz). The notation used henceforth is summarized in
Table I.

The MNO serves a set of users U = {1, 2, . . . , NU}, where
NU is the total number of users. It is assumed that users are not
served by more than a single BS simultaneously, and therefore
we define the set of users served by BS i ∈ B as Ui, where U =
∪i∈BUi and ∩i∈BUi = ∅. MNOs have put the focus on the
QoS and QoE as the target KPI in the design of networks [3].
Accordingly, in our model each user has a contract with the
MNO that specifies a desired QoE for each service, denoted
in the sequel as Service Profile (SP). If we define the set of
services as S = {s : s = 1 . . . S} and the set of QoE classes
as Q = {q : q = 1 . . . Q} (Q is assumed to be a discrete and
finite set), a generic SP can be defined as πk = (sk, qk, pk),
where pk is the price of the service (in e ), sk ∈ S and qk ∈ Q.
Focusing on pk, it is worth noting that its definition depends
on the service sk. Thus, some services are charged based on
the amount of transmitted/received data and some others are
based on the connection time. Let us define the price for a
data-based charged service as θBk (in e /MB) and for a time-
based charged service as θtk (in e /sec). Moreover, we denote
by UBi ,U ti ⊆ Ui the sets of data-based and time-based charged
users served by BS i, respectively (i.e. UBi ∪ U ti = Ui and
UBi ∩U ti = ∅). The general expression of pk for a time period

T can be expressed as

pk =

{
Tθtk If user j ∈ U ti
T ·r
8 θBk If user j ∈ UBi

[e ], (1)

where r (in Mbps) is the user transmission rate1. As for the
perceived QoE, in general any user with a service profile πk
has a target QoE level, Qtgk , and a minimum QoE level below
which the session is dropped, Qdropk (in the Mean Opinion
Score (MOS) scale [6]). We assume that both values are
established in the contract between the user (as a customer)
and the MNO.

Although the perceived QoE is influenced by multiple
factors, as it will be detailed in Section III, we now focus on
the impact of the user device. Nowadays, a single user can get
connected to the network with different devices (tablet, laptop,
smartphone, etc), each one with specific characteristics. These
characteristics of the device, such as the screen quality or
screen size, are relevant since they may improve or worsen the
perceived QoE. For instance, to perceive similar QoE levels,
lower image resolution and hence lower transmission bit rate
(i.e. lower QoS) is required for a user using a video service
in a small-sized screen smartphone than for the same user
with a large screen tablet [20]. Therefore, the characteristics
of the device must be taken into account to design efficient
radio resources management algorithms. We define the set of
devices as D = {d : d = 1 . . . D}, and the mapping function
that links the device-SP pair with the required transmission
rate, rkd, as f : (πk, d) → rkd. According to the definitions,
the QoE perceived by a user j ∈ U with a SP πk and using a
device d ∈ D, namely Qkdj , will be higher than the target QoE
Qtgk if the transmission rate from the serving BS to the user j is
higher than rkd. In other words, the target QoE is met at time
period t if rj(t) = wij(t)εij(t)bi ≥ rkd = f(πk, d), where
rj(t) is the actual transmission rate of user j ∈ Ui (in Mbps),
wij(t) ∈ [0, 1] is the portion of BS i ∈ B radio resources
allocated to user j, and εij(t) is the spectral efficiency of
the link between user j and BS i (in bps/Hz), which can be
approximated as εij(t) = log2(1 +SINRij), where SINRij
is the Signal to Interference and Noise Ratio received by user
j, when served by BS i.

Note that, for a given device d and service sk, each
QoE class is translated into an equivalent QoS level (e.g.
different rkd values are required for streaming SD and HD
video). This means that the user can choose among Q QoE
classes on a contract basis for each service, depending on the
personal preferences (e.g. preference for high browsing speed
but SD video), and this choice impacts on the minimum QoS
requirements. In turn, for a given service sk and a QoE class
qk, the user can receive the service through a diversity of
devices. For each device, the required transmission rate can
also differ.

Based on the definitions stated above, it is clear that the
satisfaction of users is tightly coupled with the perceived QoE.
Specifically, if the satisfaction of user j served by BS i, namely
σij(t), is defined within the interval [0,1], when Qkdj (t) ≤

1The user rate in (1) is divided by 8, so that it is expressed in MB/sec, and
hence the price pk in monetary units (i.e. e ).
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Qdropk , the session is dropped and the satisfaction is equal to
0. Conversely, when Qkdj (t) ≥ Qtgk , the satisfaction is equal
to 1. Thus, according to [7], the satisfaction is defined as

σij(t) =


0 if Qkdj (t) ≤ Qdropk
Qkd

j (t)−Qdrop
k

Qtg
k −Q

drop
k

if Qkdj (t) ∈ (Qdropk , Qtgk )

1 otherwise.

(2)

III. MNO OBJECTIVES

In order to propose a resource allocation scheme based on
network and economic functions, we first need to identify and
analyse the two MNO’s objectives. First, they must offer to the
users the QoE agreed in the SP, and guarantee fairness when
the system is congested. Second, the network must be managed
so as to maximize their economic profit. In the following, the
analyses of the QoE, fairness, overall user satisfaction and the
profit are detailed.

A. Network Performance Metrics

Based on the analysis described in [7], the perceived QoE
Qkdj (t) can be divided into two components: the QoS-based
component (Q̂kdj (t)) and the price-based component (Qp(pk)).

Qkdj (t) = Q̂kdj (t) ·Qp(pk). (3)

The QoS-based component, Q̂kdj (t) ∈ [1, 5] (in the MOS
scale), shows the effect of QoS level on QoE. In the literature,
the QoE is usually modelled to have an exponential interde-
pendency with the QoS, also known as the IQX hypothesis
[6]. Using the transmission rate rj(t) as the reference QoS
metric, and according to the IQX hypothesis, we can express
Q̂kdj (t) as

Q̂kdj (t) = αkjdje
−βkjdj

∆rj(t) + γkjdj , (4)

where ∆rj(t) = rkd − rj(t) , αkjdj , γkjdj > 0 (both in
the MOS scale) and βkjdj > 0 (in sec/bit) are SP-device
dependent constants. Regarding the price-based component, it
captures how the perception of the quality improves (worsens)
as the price falls (rises). As in [7], Qp(pk) is modelled as

Qp(pk) = 1− vkpk, (5)

where vk > 0 is an adjusting factor measured in e−1.
Particularly, vk is the factor that determines the sensitivity of
the perceived QoE to price variations for a user j and a service
sk. We assume that the value of vk and hence Qp(pk) can be
different for each user j, in order to capture the effect of pk
on each user individually. As it can be observed in (5), if the
user does not pay for the service (i.e. pk = 0), the price-based
component reaches the maximum value, Qp(0) = 1, thereby
increasing the perceived QoE in (3). That is, the more a user
pays for a service, the higher the expectations on the received
quality are.

It should be pointed out that Qtgkj corresponds to the QoE
level a user j wants to perceive, it is constant, and does not
depend on the service price. Hence, the MNO’s objective is
to offer user j a service with Qkdj = Qtgkj by providing the
required QoS and corresponding price combination.

Fairness: MNOs aim to offer fairness among users both
when the available resources suffice to provide them all with
the target QoE (i.e. Qkdj = Qtgk , for all j ∈ U) and when
not all of them can be appropriately served (i.e. Qkdj < Qtgk
for some users). In this paper, we adopt the well-known Jain’s
fairness index [21] of the users’ satisfaction level σij(t) as the
QoE-fairness metric. Hence, at a specific time period t a BS
i’s Jain’s index can be expressed as

Ji(t) =

(∑
j∈Ui σij(t)

)2

|Ui|
∑
j∈Ui σ

2
ij(t)

∈ [0, 1], (6)

where |Ui| denotes the cardinality of Ui (i.e. the number of
users served by BS i).

Overall User Satisfaction: We observe in (6) that Ji(t) de-
pends on the standard deviation of the users’ satisfaction in BS
i; the lower the standard deviation, the higher the Ji(t). Hence,
a high Ji(t) can be achieved even when both the average and
the standard deviation of the users’ satisfactions (σij(t)) are
low. This means that high fairness does not guarantee high
QoE for the users. To this end, we define the Overall User
Satisfaction (OS) in a BS i as the sum of of the satisfaction
of all the users connected to i, OSi(t) =

∑
j∈Ui σij(t).

Similarly, the total OS in the system is defined as the aggregate
satisfaction of all the users, OS(t) =

∑
i∈B OSi(t). Thus, the

objective of the MNO is to achieve high overall satisfaction
(OSi) and high Jain’s index (Ji) values ∀i ∈ B.

Since the number of users connected to a BS and the
satisfaction of each user depends on their spectral efficiency
and on the allocation of resources, the maximum overall user
satisfaction varies along time. Let us define, for a given time
interval t, the maximum achievable Overall User Satisfac-
tion at BS i as OSmaxi (t) = max

∀wij(t)
{OSi(t)}. Based on

the definition, the Overall User Satisfaction achieved with a
specific resource allocation can be expressed as a fraction of
the maximum value. Therefore, we define the relative overall
user satisfaction φi(t) = OSi(t)/OS

max
i (t) ∈ [0, 1] as a QoE-

aware performance metric. The objective of the MNO is then
given by

φi(t) ≥ φmin,∀i ∈ B, (7)

where φmin is a minimum threshold defined by the MNO.

B. MNO Economic Profit

The objective of the MNO is the maximization of the profit
while satisfying the QoE required by the users. Specifically,
the total profit P (t) of the MNO is the sum of the individual
profits of each BS Pi(t), i.e. P (t) =

∑
i∈B Pi(t). In [22],

Pi(t) is expressed as the revenue obtained from the traffic
served at time t, Ri(t), minus the cost incurred when serv-
ing the traffic, which depicts the bandwidth utilization cost,
CBi(t). Therefore,

P (t) =
∑
i∈B

Pi(t) =
∑
i∈B

(Ri(t)− CBi(t)), [e ]. (8)

The revenue of BS i, Ri(t), is usually the price of the services
paid by the users in Ui. That is, Ri(t) =

∑
j∈Ui Rij(t), where
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Rij (t) = pkj is the revenue paid by user j with a SP πkj , 
when connected to BS i at time period t for a duration of T 
seconds. With regard to CBi(t), it is a convex and increasing
exponential function of the total resources used by BS i,
wi(t) =

∑
j∈Ui wij(t) [22], and for a duration of T seconds

it can be written as

CBi(t) = cie
hiwi(t)biT, (9)

where ci (in e /sec) and hi (in MHz-1) are adjusting factors
that capture the differences in the operational cost of the
different BSs (e.g. macrocells and SCs have different transmit
power, maintenance cost, site rent, etc). Substituting (1) and
(9) into (8), and denoting the SP of a generic user j as πkj ,
the profit of BS i at time period t with a duration of T seconds
when Qkjdjj (t) ∈ (Qdropkj

, Qtgkj ] is given by

Pi(t) =
∑
j∈Ui

pkj − cie
hi

∑
j∈Ui

wij(t)biT (10)

= T

∑
j∈UB

i

εij(t)wij(t)bi
8

θBkj1(σij(t) > 0)

+
∑
j∈Ut

i

θtkj1(σij(t) > 0)− ciehi

∑
j∈Ui

wij(t)bi

 ,

where 1(·) is the binary indicator function, which is equal to
1 if the condition is true and 0 otherwise. We use the binary
indicator function in order to emphasize that a BS i will not
receive revenue if the allocated resources to user j, wij(t), do
not suffice for a satisfactory service with σij(t) > 0.

It can be seen in (10) that the profit is influenced by
multifarious factors, such as the perceived QoE (which in
turn depends on multiple factors), the cost, the radio resources
usage, etc. The maximization of the profit involves all these
factors.

IV. PROFIT OPTIMIZATION

As explained in the previous section, the MNO aims to
maximize his profit in each BS i Pi(t), while satisfying the
required QoE of all users. However, when not all users can be
served with the required QoE due to network congestion, the
MNO must ensure fairness among them and the highest pos-
sible QoE level. Based on (10), the BS i’s profit maximization
problem at time t is formulated as

max
wij ,j∈Ui

Pi(t) = T

∑
j∈UB

i

εij(t)wij(t)bi
8

θBkj1(σij(t) > 0)

+
∑
j∈Ut

i

θtkj1(σij(t) > 0)− ciehi

∑
j∈Ui

wij(t)bi

 ,

(11)
wi ∈ [0, 1], ∀i ∈ B, (11a)

Ji(t) ≥ Jmin, ∀i ∈ B, (11b)

φi(t) ≥ φmin. (11c)

In the optimization problem, the maximum bandwidth allo-
cated by BS i is bi, that is

∑
∀j∈Ui wij(t) = wi(t) ≤ 1

(11a), and QoE fairness must be guaranteed for a minimum
Jain’s index value, Jmin (11b). Finally, the relative overall user
satisfaction must be higher than the minimum threshold φmin

(11c). Since we use the binary indicator function in Pi(t),
the optimization problem in (11) is a Mixed-Integer Non-
linear Programming (MINLP) problem, whose computational
complexity is NP-hard [23]. As this maximization problem
cannot be solved in polynomial time due to its complexity,
in the following section we propose a heuristic, QoE-aware
resources allocation algorithm.

V. PROFIT MAXIMIZING RESOURCE ALLOCATION

As it can be observed in (11), the resources allocation for
profit optimization is constrained by minimum fairness and
overall user satisfaction values. In this section we analyse
the interaction between satisfaction, fairness and profit, and
propose a greedy, heuristic, QoE-aware resources allocation
algorithm for profit maximization.

Based on (11), the MNO profit can be maximized by
reducing the cost and/or increasing the revenue. However, it
is noteworthy that for a given association of users to BS i, Ui,
the bandwidth utilization cost depends on the total amount
of resources allocated to users, regardless of how they are
distributed among the users. Therefore, the utilization cost
(CBi(t)) is fixed for a given number of total resources (wi(t)).

In turn, (1) shows that the revenue presents a differentiated
behaviour for time-based charged services and data-based
charged services. Whereas the revenue generated by a user
with a time-based charged service remains constant as long as
the connection is not dropped, the revenue generated by users
with a data-based charged service increases with the amount
of transferred data. In other words, after providing time-based
charged users with the minimum amount of resources required
to guarantee that the perceived QoE is above the minimum
QoE level, the revenue can be increased by allocating the rest
of resources to data-based charged users. Note that in terms
of QoE the aforementioned resources allocation strategy is
translated into low satisfaction of time-based charged users
(their σij(t) is low but above 0) and higher satisfaction of
data-based charged users. These differences between the two
types of services lead to resources allocation unfairness (i.e.
low Jain’s index values, Ji(t)) and could result in low relative
overall user satisfaction (φi(t)). This is the reason why (11b)
and (11c) impose minimum fairness and minimum relative
overall user satisfaction levels, respectively, and this is also
the reason why the heuristic algorithm presented in the sequel
takes both aspects into account. This analysis shows that
there is a trade-off between the MNO profit and the network
performance, as the optimization of one of the two objectives
comes at the expense of the other.

In order to overcome the complexity of the maximization
problem stated in (11), we propose a low complexity resource
allocation algorithm, O(n2), presented in Algorithm 1, that
maximizes the MNO profit for a minimum fairness and OS
level (i.e. Jmin and φmin). This greedy, Profit Maximizing
resource allocation algorithm (referred to as PM) takes as input
the users associated to a BS at period t, and each user’s SP-
device pair (pk, d).



6

Algorithm 1: Profit Maximizing RA Algorithm (PM)

1 Set U ′i = Ui, wi(t) = 0 and compute wij(t) ≤ 1 to
maximize σij(t) for each j ∈ Ui

2 while U ′i 6= ∅ do
3 Find user j ∈ U ′i with min(wij(t))
4 if wij(t) ≤ 1− wi(t) then
5 wi(t) = wi(t) + wij(t)
6 else if σij(t) ≥ σminij for wij(t) = 1− wi(t) then
7 wij(t) = 1− wi(t) and wi(t) = 1
8 else
9 wij(t) = 0

10 end
11 U ′i ← U ′i − {j}
12 end
13 Set OSmaxi (t)=OSi(t), φi(t) = 1 and σstep = σmaxstep

14 while φi(t) ≥ φmin and σstep ≥ σminstep do
15 forall j ∈ Ui do
16 σ−ij(t) = max (σij(t)− σstep, 0)

17 σ+
ij(t) = min (σij(t) + σstep, 1)

18 Calculate the total profit Pi(t) and φi(t) with
σij(t) = σ−ij(t) and σij(t) = σ+

ij(t)

19 Store the maximum profit Pi(t) s.t.
φi(t) ≥ φmin and wi(t) ≤ 1 in P ′ij(t) and the
corresponding φi(t) and σij(t) in φ′ij(t) and
σ′ij(t)

20 end
21 j∗ = arg max

j

(
P ′ij(t)

)
22 if P ′ij∗(t) > Pi(t) then
23 Pi(t) = P ′ij∗(t), φi(t) = φ′ij∗(t),

σij∗(t) = σ′ij∗(t) and the corresponding
wij(t) values are updated

24 else
25 Reduce σstep
26 end
27 end
28 Calculate Jain’s index Ji(t) and set σstep = σmaxstep

29 Repeat steps 14-27 while Ji(t) < Jmin

30 Select the maximum P ′ij(t) in 21 that reduces
|Ji(t)− Jmin|

PM is divided into three parts. In the first part, PM
determines the resource allocation that maximizes BS i’s
Overall Satisfaction OSi(t) (steps 1-13). Subsequently, using
as input the resource allocation obtained from the first part
of the algorithm, PM determines the resource allocation that
maximizes Pi(t), while satisfying φi(t) ≥ φmin (steps 14-27).
Finally, the profit maximizing resources allocation determined
in the previous step is iteratively modified until the minimum
overall user satisfaction and the minimum fairness constraints
are satisfied (steps 28-30).

The first part of Algorithm 1 (steps 1-13) is a greedy
algorithm that aims to determine the resources allocation (i.e.
the value of wij(t) ∀j ∈ Ui) that maximizes the OSi. The
algorithm initially computes the resources required to meet
the maximum user satisfaction for each user. By substituting

(2) in (3), wij(t) can be expressed as

wij(t) =
1

εij(t)biβkjdj

[
rkdβkjdj (12)

+ log

(
σij(t)(Q

tg
kj
−Qdropkj

) +Qdropkj

αkjdjQp(pkj )
−
γkjdj
αkjdj

)]
Subsequently, the algorithm assigns resources iteratively to the
user j ∈ Ui with the least resource requirements. Particularly,
each user is allocated the resources calculated previously until
the total available resources are depleted. In case of resources
depletion, the resources allocated to the remaining users are
reduced as long as the user satisfaction is above the minimum
acceptable satisfaction value σminij or are set to 0 otherwise.
With this, the overall user satisfaction is maximized, but
fairness is not taken into account.

The second part of PM (steps 14-27) is a greedy profit
maximization algorithm on the basis of the resources alloca-
tion resulted from the first part of the algorithm (steps 1-13).
Specifically, for each user the user satisfaction is decreased
(step 16) and increased (step 17) with σstep (the resources
allocation wij(t) is calculated from (12)), and then the profit
is calculated for both satisfaction values. Only σij(t) values
that increase the profit are considered as feasible results. This
procedure is repeated iteratively for each user and for different
values of σstep as long as the relative overall user satisfaction
is above the minimum threshold. The resources allocation is
updated with the distribution of resources that provides the
maximum profit for a relative user satisfaction level above
φmin, that is, the optimal solution in a single iteration. There-
fore, the resulting resources allocation of the second part of
the PM algorithm converges to a local optimal solution of the
profit maximization problem for a given minimum satisfaction,
which at times can be a global maximum [24].

The last part of the PM algorithm (steps 28-30) introduces
the fairness. Thus, starting from the resources allocation
obtained in the second part of the algorithm, PM executes
the same greedy process run in the second part (steps 14-
27) but this time only solutions that converge to Jmin are
selected (i.e. with declining |Ji(t) − Jmin| values). This last
part, and hence PM, is terminated when there are no alternative
resource allocations that satisfy the relative overall satisfaction
threshold and the convergence of Ji(t) to Jmin.

It should be noted that PM consists of three greedy iterative
algorithms, which in each of their iterations make the optimal
decision for a subproblem (e.g. maximize the OSi or Pi by
allocating resources to a single user at a time). However, it is
probable that it converges to locally optimal solutions instead
of the global optimum [24]. Thus, PM may not always perform
optimally, which we will examine in Section VI.

Feasibility: The feasibility of our system model and Al-
gorithm 1 require the monitoring of the user rate rj(t) for
calculating the user satisfaction σij(t), as well as the calcula-
tion of the revenue Rij(t) for the diverse pricing we examine.
In LTE-A, real-time monitoring of the User Equipment (UE)
application layer data throughput performance is used for
measuring the provided QoS [25]. Similarly in LTE-A, Rij(t)
can be obtained in real time with a module such as the Policy
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Fig. 1: Simulation scenario topology

and Charging Control (PCC), which can control the QoS,
apply different charging models, and control usage monitoring
to make dynamic policy decisions [26].

VI. PERFORMANCE EVALUATION

A. Scenario description and parameters

The scenario used for the performance evaluation consists
of a cluster with 6 SCs deployed in the coverage area of a
macrocell sector. The cluster is circular shaped and centred at
location c = (xc, 0), as shown in the layout depicted in Fig.
1. Along simulations, xc is randomly selected according to
a uniform distribution with xc ∈ [100, 190]m. The Inter-Site
Distance (ISD) between two SCs equals RISD = 50m.

Users are uniformly distributed within a radius of RSIM =
75m from c, and the SP of each user is selected with
equal probability among the SPs defined in Table II. As it
can be observed in Table II, three services are considered,
each one with two QoE classes Q = {Basic, Premium}:
Service 1 is a data-based charged service, and Services 2
and 3 are time-based charged services. Likewise, 3 different
devices are considered, and the corresponding transmission
rates associated to each SP, rkd, are also included in Table II.
Note that for each SP, rkd is the transmission rate required to
perceive the service’s target QoE level, Qtgk . In the simulations,
the transmission rate that results in a perceived QoE equal to
Qdropk is set to rdropkd = 0.7rkd for all SPs. Therefore, when a
user is served with a data rate below or equal to 0.7rkd, the
connection is dropped. Moreover, vk is selected randomly so
as to have a price-based QoE component Qp(pk) ∈ [0.8, 0.9]
in (5), and

αkd =
Qtg

k

Qp(pk) − γkd, (13a)

βkd = − 1

∆rdropj

ln
(
Qdrop

k −γkdQp(pk)

Qtg
k −γkdQp(pk)

)
, (13b)

where ∆rdropj = rkd−rdropkd , and γkd = 1, for all
SPs πk, devices d ∈ D and target and drop QoE
levels (Qtgk , Q

drop
k )=(3.5, 2.5) for Basic QoE class and

(Qtgk ,Qdropk )=(4.5, 3.5) for Premium QoE class of all services.
Parameters used for the BSs, both eNBs and SCs, are

listed in Table III. For the carrier bandwidth allocated to each
tier, we adopted 3GPP LTE-A’s channel models described in

TABLE II: Service Profiles’ parameters

Service QoE class {rk1, rk2, rk3} (Mbps) θtk or θBk
Service 1 Basic 5.5 1.5e /GB

(Data Based) Premium 7 2e /GB
Service 2 Basic {3.5, 4, 5} 4e /h

(Time Based) Premium {4, 4.5, 5.5} 7e /h
Service 3 Basic {4.5, 5.5, 6} 4e /h

(Time Based) Premium {5, 6, 7} 7e /h

TABLE III: BS parameters

Parameter Macrocell Small cell
ci (e /sec) 5 · 10−5 5 · 10−5

hi (MHz-1) 0.28 0.275
bi (MHz) 20 20

Transmission Power (dBm) 43 30

[27], and the antenna gains are set to 0 dB. For the cell
selection, we associate the users to the BS with the highest
SINR, as it is common practice in mobile networks [28].
For PM, the values for the change in user satisfaction are
σstep = {0.01, 0.05}. Moreover, the minimum acceptable
satisfaction level for all algorithms is σminij = 0.01 (note
that with null user satisfaction, i.e. σij(t) = 0, the session
is dropped). The results shown in the following subsections
were acquired through Monte-Carlo simulations, where each
simulation iteration examines a single network instance of a
T = 1sec duration. It should be noted that we assume perfect
channel estimation, and hence we do not inspect the network
and economic impact of imperfect channel estimations or rate
fluctuations during consecutive instances.

B. Impact of fairness and Satisfaction constraints

Initially, we present how the fairness and relative overall
satisfaction objectives (i.e. Jmin and φmin) affect the user
satisfaction, the network performance and the MNO profit,
when we apply PM on a system with NU = 80 users. We
also present the results generated by the optimal solution of
the problem in (11) (henceforth labelled as Opt).

In Fig. 2 and 3 we show the expected user satisfaction of the
data-based and time-based charged users, denoted by E[σBij ]
and E[σtij ], respectively. Unserved users are not considered
in the calculation of E[σtij ] and E[σBij ], since when users
are not served the satisfaction of the user is σij(t) = 0.
We observe that for low to medium relative overall user
satisfaction levels φmin and no fairness constraint (Jmin = 0)
there is a substantial difference between the user satisfaction
of data-based and time-based charged users (i.e. 521% and
69% higher mean satisfaction of data-based charged users
(E[σBij ]) than of time-based charged users (E[σtij ]), when
relative overall satisfaction is φmin = 0 and φmin = 0.6 re-
spectively). As explained in section V, a BS i can maximize its
profit by serving time-based charged users with the minimum
acceptable satisfaction (thus with the minimum allocation of
resources wij(t)). At the same time, the data-based charged
users require to be served with high rates (and satisfaction) in
order for BS i to gain high revenue. However, as the fairness
requirement increases (Jmin ↑), the difference between the
mean satisfaction of data-based and time-based charged users
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Fig. 2: Expected user satisfaction for data-based users (E[σBij ])
versus target minimum Jain’s index (Jmin) for NU = 80 users
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index (Jmin) for NU = 80 users

(E[σBij ] and E[σtij ]) decreases. In order to increase fairness
(Ji(t)), the standard deviation of the satisfaction among the
users in BS i must be decreased (as explained in Section V).
This can only be achieved by increasing the resources allocated
to time-based charged users at the expense of reducing the
resources allocated to data-based charged users. Finally, we
observe that for high relative overall satisfaction constraints
(i.e. φmin = 1, or in other words, the overall user satisfaction
must be always the maximum one, OSmaxi ), the PM algorithm
skips the second and the third parts of Algorithm 1, since the
overall user satisfaction achieved in the first part of PM (step
13) can not be reduced. Therefore, users are either served with
maximum satisfaction (σij(t) = 1) or dropped2. Regarding the
optimal results, we observe that they show the same trend as
PM, and small differences for medium to high Jmin values.

Table IV shows the percentage of users served according to
their service’s pricing scheme, for target minimum Jain’s index
and relative overall users satisfaction (Jmin and φmin) equal
to 0 and 1 (i.e. minimum and maximum levels) for NU = 80

2As resources are allocated until their depletion, the last user served could
receive resources that result in 0 < σij(t) < 1 (steps 6-7).

TABLE IV: Percentage of Served Users for NU = 80

PM Data-Charged Users Time-Charged Users
φmin / Jmin 0 1 0 1

0 52.69% 54.13% 67.12% 68.74%
1 52.68% 52.68% 65.05% 65.05%

users, according to the PM results3. Note that Jmin is the
objective, but the actual value of the Jain’s index Ji(t) could
not reach Jmin if there are users with very low SINR levels.
We observe that for a given number of users NU , fairness
and relative overall satisfaction objectives (Jmin and φmin)
have little or no effect on the percentage of served users.
However, we observe that more time-based than data-based
charged users are served in all cases (i.e. [23, 27]% more time-
based charged users). This occurs because in general time-
based charged services have lower requirements in terms of
transmission rate than data-based charged services. Therefore,
although more time-based charged users are served (see Table
IV), they are served with lower satisfaction, for low and

3The corresponding optimal results are approximately the same with
absolute differences below 1%, and hence they are omitted.
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medium relative overall satisfaction objectives (see Fig. 2 and 
3).

Fig. 4 and Fig. 5 depict the MNO profit P and the total 
overall satisfaction OS for NU = 80 users, respectively. In 
these two figures, we can observe the trade-off among the 
MNO profit P , the Overall Satisfaction (OS), and the objective 
minimum fairness (Jmin). Particularly, profit is maximized 
when there are no satisfaction and fairness constraints, which 
also leads to the lowest Overall Satisfaction. This occurs 
because the lack of fairness and satisfaction objectives turns 
the PM algorithm into a pure profit maximization solution. 
Conversely, when the objective relative overall satisfaction 
(φmin) is high, the profit is substantially lower than the 
maximum (i.e. [65, 87]% profit gain for φmin = 0 over 
φmin = 1). This decrease of the profit is caused by the fact that 
the proposed algorithm initially maximizes the satisfaction; 
then, it modifies the solution to increase the profit as long as 
the minimum relative satisfaction objective (φmin) is satisfied. 
Therefore, the higher the value of φmin, the closer to a pure 
satisfaction maximization algorithm PM is. Similar to Fig. 2 
and 3, the optimal results follow the same trend as the PM 
results, with differences appearing for medium to high Jmin 

values. Regarding the MNO profit, we see that PM performs 
close to the optimum in most cases. The highest differences are 
observed for the low and medium OS requirements (i.e. 3.3%
and 8% difference for φmin = 0 and φmin = 0.6 respectively), 
whereas there are minuscule differences when the OS must be 
maximized (i.e. φmin = 1).

From the results in Fig. 2-5, it can be concluded that when 
there are two pricing schemes (data-based and time-based 
charging), the profit can be maximized only when data-based 
charged users are prioritized over the time-based charged users 
in terms of average user satisfaction (which leads to low 
fairness). At the same time, serving more time-based charged 
users allows the MNO to gain revenue with a low cost. Finally, 
the trade-off between Profit and Overall Satisfaction shows 
that the increase of one of them implies the decrease of the 
other, as specified in the analysis in Section V.

C. Comparison with SoA algorithms and impact of pricing

In the following (i.e. Fig. 6-10 and Table V), we compare
PM with two algorithms referred to as Alg-2 [9] and Alg-3
[17], and the optimal solution of (11) (i.e. Opt).

Alg-2 [9] is an iterative resources allocation algorithm that
maximizes the user QoE. In each iteration, Alg-2 allocates
enough resources to satisfy a single user, starting from the
user with the highest spectral efficiency towards the user with
the lowest spectral efficiency.

Alg-3 is an iterative resources allocation algorithm proposed
in [17]. In the scenario proposed in [17], a MNO offers
wireless video broadcasting services, and aims to maximize
his profit. Particularly, the MNO broadcasts a set of video
contents (e.g. tv channels) to different users groups. Each user
has her own utility function, which is defined as the perceived
QoE minus the charge for the service. In order to maximize
the profit, Alg-3 increases the rate of a single content until

either all contents are served with their “ideal rate”4 or the
available bandwidth is fully utilized. The content whose rate
will be increased is the one that maximizes the marginal MNO
profit, provided that it is non-zero.

In order to compare Alg-3 with PM, we assume that each
user demands a content, which is unique to herself. The “ideal
rate” of a broadcast content described in Alg-3 corresponds to
the user’s SP-device pair required transmission rate rkd, in our
system model. Therefore, Alg-3 has to broadcast NU unique
contents, whose rate requirements are defined by each user’s
SP-device pair. Hence, the broadcasting resources allocation
problem is transformed into the typical resources allocation
problem, where each user’s rate (i.e. QoE) is decided sepa-
rately.

It should be noted that we do not concur with pure profit
maximizing policies that result in low quality service provi-
sion, as presented previously. To that end, the results provided
in the following for PM and Opt are obtained with strict fair-
ness and satisfaction objectives, that is (Jmin, φmin) = (1, 1),
which maximize the OS. In order to study the price variations
on PM, two additional price values have been defined with
respect to the price stated in Table II: p∗k = 0.5pk and
p∗∗k = 1.5pk. However, initially we only compare PM, Alg-2,
Alg-3 and the optimal results with price equal to pk.

Comparison of PM, Alg-2, Alg-3 and Opt: Fig. 6 and
7 show the percentage of served data-based and time-based
charged users respectively, whereas Fig. 8 and Table V
show the expected satisfaction for data-based and time-based
charged users (E[σBij ] and E[σtij ] respectively5). Initially, only
the price pk is considered. As expected, we observe in Fig. 6
and 7 that the percentage of served users decreases as the total
number of users NU is increased, for both data-based and time-
based users. This fact is caused by the network congestion and,
consequently, by the lack of resources to serve all the users.

With Alg-2, both the percentage of served users (Fig. 6 and
7) and the expected user satisfaction for data-based charged
users (E[σBij ] in Fig. 8) and time-based charged users (first
row of Table V) is almost the same. This occurs because
resources allocation algorithms that are exclusively aimed to
QoE maximization (like Alg-2) do not prioritize services based
on their pricing scheme. Conversely, with Alg-3 substantially
more time-based charged users are served ([45, 81]% more
time-based than data-based charged users are served when
comparing Fig. 6 and Fig. 7), but with significantly lower
expected user satisfaction (in line with PM results when
φmin = 0 - see Fig. 2 and 3). This is explained by the fact
that Alg-3 is aimed to maximize the profit. If the BS allocates
to time-based users the minimum amount of resources to
avoid their connection being dropped: i) resources are better
distributed among users; ii) dropping is reduced; and iii) the
number of served time-based users and the profit are increased.
Similarly to Alg-3, it can be observed in Fig. 6 and Fig. 7 that
PM always serves a larger percentage of time-based charged
users, and this difference increases with the total number of

4In [17], “ideal rate” is defined as the rate that satisfies perfectly all the
users that share a particular content.

5The results in Table V are included as a table because they are constant
for NU ∈ [50, 120] users.
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Fig. 8: Expected satisfaction for data-based charged users.

users NU ([17, 29]% more time than data-based charged users
are served). This can be explained by the fact that the time-
based charged users have lower rate requirements on average
than the data-based charged users due to the use of different
devices, as it can be seen in Table II. Therefore, time-based
charged users with low rate requirements are prioritized over
data-based charged users in order to achieve the high user
satisfaction performance observed in Table V.

TABLE V: Expected satisfaction for time-based charged users
(E[σtij ])

Time-Charged Users
Price level PM Alg-2 Alg-3 Opt

pk 0.9909 0.9901 0.01 0.9929
p∗k 0.9903 - - -
p∗∗k 0.6427 - - -

Summing up, given a particular relative overall satisfaction
constraint (φmin) and two charging schemes (i.e. data and
time-based charging), the profit will be maximized by serving
as many time-based charged users as possible. Additionally,
if the objective of the MNO is the maximization of the profit
without any fairness and satisfaction constraint (i.e. PM with
(Jmin, φmin) = (0, 0) and Alg-3), the data-based charged
users will have higher expected satisfaction than the time-
based charged users.

Fig. 9 shows the comparison of the system’s overall user

satisfaction OS. As expected, Alg-2 and PM offer the highest
OS, whereas for Alg-3 OS is kept low and slightly increasing
with the number of users NU . As mentioned earlier, Alg-2
sorts the users according to their spectral efficiency, and then
allocates the resources until they are exhausted. This means
that Alg-2 will first serve the users with the highest spectral ef-
ficiency regardless of their service’s requirements. Conversely,
PM finds iteratively the user with least resource requirements
wij(t) and serves her with the maximum satisfaction. In Fig.
9, the difference between PM and Alg-2 in terms of Overall
Satisfaction (OS) is within the range [1.14, 2.36]%. Alg-2
performs well when there is a single service with a single
rate requirement. However, in a scenario with heterogeneous
traffic as well as diverse pricing, a more elaborate algorithm
such as PM is required in order to serve the users with even
higher satisfaction, while gaining large MNO profit.

Fig. 10 presents the comparison of the MNO profit for the
PM, Alg-2, Alg-3 and Opt. As expected, we observe that Alg-
3 gains the highest profit, which increases with the number of
users NU . Due to the use of strict OS and fairness constraints,
PM achieves lower profit than Alg-3. Nevertheless, it outper-
forms notably Alg-2 (i.e. [10.92, 15.96]%), even though they
share an almost equal OS performance. Regarding the results
from the optimal solution of (11), we observe that in all of the
Fig. 6-10 and Table V PM and Opt have the same performance.
A small difference is visible only in Fig. 10, where we can
see that Opt generates more profit than PM by a small margin
(i.e. [1.18, 1.73]% profit gain for Opt over PM). This gain in
profit corresponds to an even smaller loss in OS performance
(i.e. < 1% smaller OS than PM).

In light of the results presented above, PM is a profit
maximizing resource allocation algorithm, which guarantees
similar QoE performance results to the ones achieved with
Alg-2 (a QoE maximizing algorithm), thanks to the satisfaction
and fairness constraints (in Fig. 6-10 Jmin = φmin = 1).
However, the good performance in terms of QoE is not
translated in a decrease of the profit. Specifically, PM achieves
higher profit than Alg-2 for all scenarios. Finally, when strict
satisfaction and fairness constraints are applied, PM provides
approximately optimal results for the solution of problem (11).
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Impact of price level: Results of Fig. 6-10 have been so far
analysed with the price level pk stated in Table II. Now, we
examine in the same figures how the price levels affect the
PM algorithm in terms of users satisfaction, the percentage
of served users, the MNO profit and the Overall Satisfaction.
In order to do this, the price values pk, p∗k = 0.75pk and
p∗∗k = 1.5pk are considered.

Taking the above into consideration as well as the corre-
sponding results, it can be observed that the decrease of the
price (pk → p∗k) results in an increase of the percentage of
served users (see Fig. 6 and 7) and the mean users’ satisfaction
(see Fig. 8 and Table V). Note that the reduction of the price
improves the perception of the user thanks to the price-based
component of the QoE (as shown in expression (5)). The
opposite behaviour is observed when the price is increased
(pk → p∗∗k ). Consequently, as we observe in Fig. 9 and 10 the
higher MNO profit gained by the higher price p∗∗k (a gain in the
range of 105-121%), comes at the expense of lower expected
user satisfaction E[σBij ], E[σtij ] (with a decrease around 35%),
and lower Overall Satisfaction OS (around 35%). Conversely,
when pk is decreased to p∗k = 0.75pk, there is a slight increase
in the percentage of served data-based and time-based charged
users (in the range of 1.1-2% for data-based charged users and
1.4-2.1% for time-based charged users), and in the Overall
Satisfaction (1.4− 2.2% gain). However, the improvement in
the percentage of served users and in the overall satisfaction

is achieved at the cost of a significant profit loss (around
45 − 53% drop of the profit). Thus, a decrease of the price
improves the perception of the users (i.e. higher satisfaction)
while it reduces the MNO profit, and vice versa.

Summary of results:
• The trade-off between Profit and Overall Satisfaction

shows that the increase of one of them implies the
decrease of the other.

• Given a particular minimum relative overall satisfac-
tion (φmin) and two charging schemes (i.e. data and
time-based charging), profit (P ) will be maximized by
serving as many time-based charged users as possible.
Additionally, if the MNO maximizes the profit without
any fairness and satisfaction constraints, the data-based
charged users will have higher expected satisfaction than
the time-based charged users.

• PM guarantees similar QoE performance results to the
ones achieved with Alg-2 (a QoE maximizing algorithm),
thanks to the satisfaction and fairness constraints, while
achieving higher profit than Alg-2 for all scenarios.

• When fairness and relative overall satisfaction are forced
to be maximum (Jmin = φmin = 1), PM provides
approximately optimal results for the solution of problem
(11).

• Decreasing the price improves the users’ perception while
it reduces the MNO profit, and vice versa.

VII. CONCLUSIONS

In this paper, we study the resource allocation problem in a
HetNet characterized by traffic heterogeneity and diverse pric-
ing (i.e. two different schemes and various service prices). The
objective of this paper is the maximization of the MNO’s profit
while providing high QoE to the users. With this objective, we
propose a low complexity heuristic, greedy resource allocation
algorithm, namely PM, which maximizes the profit of the
MNO as long as fairness and overall users satisfaction (a QoE
performance metric) levels are kept above specific thresholds.
We highlight the overall satisfaction-fairness-profit trade-off
and show that the proposed resources allocation algorithm
achieves similar results in terms of users’ satisfaction when
compared to QoE maximization algorithms (e.g. Alg-2), while
outperforming them in terms of profit gains. Moreover, we
show that our algorithm approximates the optimal solution
of the profit maximizing problem. With the analysis of two
pricing schemes (one for data-based charged users and another
for time-based charged users), we further show that pure profit
maximizing algorithms prioritize the satisfaction of data-based
charged users over time-based charged users, and we show that
PM with strict fairness and satisfaction constraints smooths
this effect. Finally, we shed light on how the changes in
price levels can improve or worsen the user experience, and
the corresponding effects of these changes on the network
performance and the MNO profit.
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