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Abstract—The current challenge for several applications is to
guarantee the user’s privacy when using personal data. The
broader problem is to transfer and process the data without
exposing the sensitive content to anyone, including the service
provider(s). In this paper, we address this challenge by proposing
a protocol to combine secure frameworks in order to exchange
and process sensitive data, i.e. respecting user’s privacy. Our
contribution is a protocol to perform a secure exchange of data
between a mobile application and a trusted execution environ-
ment. In our experiments we show independent implementations
of our protocol using three different encryption modes (i.e., CBC,
ECB, GCM encryption). Our results support the feasibility and
importance of an end-to-end secure channel protocol.

Index Terms—SGX, secure channel, mobile security, GDPR,
trusted execution, data breach

I. INTRODUCTION

Recurrently, events such as data breaches1 put the user’s

privacy on the spotlight. At the business level, evolution of data

protection regulations (e.g. GDPR in Europe) are pressuring

service providers but there is a urge. The lack of enhanced

secure user authentication, specially in banking environments,

increases privacy concerns [1]. Some previous leakages of

worldwide players, such as Facebook, show that the trade-

off between security and convenience seems to always end

in big losses, i.e. identify theft and confidentiality failure. If

leaking personal conversations or pictures are considered big

issues, the problem become even more critical when using

sensitive personal data, such as biometric data. In the context

of this paper, we focus exclusively on biometric data as a use

case. Indeed, mobile banking is now a reality and so is the

fingerprint reader embedded on most of the mobile phones.

There is no doubt that biometric, implicit and continuous

authentication [2], improve security of mobile applications.

However it is paramount to take into consideration the threats

that a potential exposition of this data might cause.

The main manufacturers of smartphones have implemented

the extractor, matcher, database and decision system embedded

in the operational system to enable collection of biometric data

with the hardware sensor shipped within the device. In most

of the cases, the embedded authentication method works fine.

However, in case that a more complex process is required,

the biometric data must be transferred from the device to

an external server, which raises several concerns related to

potential data breaches.

Research supported by EC H2020 Project CONCORDIA GA 830927
1https://www.privacyrights.org/data-breaches

Fig. 1: Architecture overview to transfer and process data

In this paper, we propose a protocol to transfer sensitive

data (e.g. biometric data) from a mobile device to a trusted

execution environment, in which the data can be processed

securely, see Figure 1. In this context, we list below those

that we see as the main security concerns:

• Replay attack: An attacker with channel control between

the sensor and feature extractor can resubmit a biometric

template and gain new access;

• Bypassing the Extractor: If the attacker is controlling the

feature extractor, it can modify any incoming biometrics;

• Synthesise vector of characteristics: by knowing how

the biometric template is constructed, the attacker can

synthesise the vectors to fool the decision system.
Furthermore, when it comes to biometric systems, we must

consider vulnerabilities that could potentially be explored by

adversarial machine learning [5] as the matcher is usually

based on training models. What all these attacks have in

common is that they are initiated from the data source because

we consider, like most of today web applications, that the cer-

tificate authority of the service provider is not compromised.

Indeed, certificate based mechanisms are usually provided to

ensure that the requests are coming from an attested third

party. However when they come directly from the mobile apps

it is not possible to assure the origin of the requests. This

mainly happens because the certificate, usually pinned in the

app code, can be retrieved by a reverse engineering process.

In possession of the certificate, an attacker can build his own

app to send malicious requests to the bank API. With the

enforcement of the Payments Services Directive 2 (PSD2),

banks are opening their API to third party. This threat is

serious because it impacts security measure on HTTP requests.

PSD2 shall increase the HTTP requests coming from different

third parties applications making more difficult to decide in a

short time frame if the request is legitimate.
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Then, if the data is processed in a non-reliable cloud

environment, it is also necessary to protect the data from

the provider in order to prevent unauthorized disclosure and

tampering. Therefore, in order to provide a trusted execution

environment, the Intel Software Guard Extensions (SGX) was

chosen as the root of trust for the proposed protocol. In the

server side, all operations are processed inside a SGX enclave

to guarantee confidentiality and integrity.

The rest of this paper is organized as follows. Next Section

presents the threat model that we considered to develop our

protocol. Section III presents the architecture and describes the

protocol itself (subsection III-C). In Section IV we discuss the

implementation of the protocol and present results related to

the overhead of using SGX. Section V shows the related work.

In Section VI we discuss our ongoing future work. Finally,

Section VII concludes the paper.

II. THREAT MODEL

By pinning the certificates into the mobile app, the de-

velopers can assure that an original instance installation is

communicating with the proper server. However, the server

has no guarantee that incoming requests are from the original

app. An attacker capable of modifying the source code can

repack the app to redirect connections to a malicious server

or even start to send forged requests directly to the server APIs.

While distributing a fake app is an heavy attack requiring

skilled engineers, sending direct requests to the APIs will only

demand an attacker to extract the certificate from the mobile

app. In the former scenario, securing the app distribution by

hashing and signing the binary is possible but require user

awareness. In the later scenario, once the attacker knows how

to generate the credentials payloads, he can start to feed the

system with fake biometric templates until the system starts

to accept it as a original one. The attack surface can be

seen in Figure 22. Explicitly, our protocol mitigates attacks

targeting the communication channel and the client app side,

as mentioned above.

III. ARCHITECTURE

Our main goal is to create a secure tunnel between the

mobile app, more specifically the biometric sensor and the

SGX enclave. As a SGX enclave can only be called by a host

application, all the data coming from the mobile is forwarded

to the enclave, but with an end-to-end encryption.

A. Software Guard Extensions (SGX)

Intel SGX isolates an execution environment by creating an

abstraction called enclave with a protected physical memory.

Enclave code and data have their access controlled by the

CPU. Thus, a host application can create an enclave but

cannot access its data unless explicitly passed through function

variables. Developers need to separate the untrusted code from

the one processed in the Trusted Computing Base (TCB). This

property allows running code even when the environment is

not fully trusted such as a cloud provider.

2This Figure is an adaptation from [6].

Fig. 2: Attack surface of a biometric system

Unfortunately, this benefit comes at a cost of memory

and computation. The cache memory available to the TCB

is 128 MB and part of it is used by itself, leaving only

around 90 MB to the developers. The newer versions of SGX

allows paging between cache and the main memory but to

maintain the security, the pages are all encrypted, increasing

the computation of the enclave code. A detailed explanation

about SGX operation can be found in [14].

B. Properties

In order to cover the threats stated in the section II, the

architecture offers the following properties:

1) Prevention to replay attacks: as the data leaves the

application encrypted with an one time key, an attacker

simply re-posting the message will not succeed.

2) Block upload of synthetic data (see Fig. 2 item 4): by

closing a secure channel using an out-of-band server, it is

unfeasible to insert synthetic data without tampering the

mobile app and consequently modifying its signature.

3) Forward secrecy: even a future breach of SGX would

block a Man in The Middle (MiTM) attacker of seeing

previous data stored flowing through the channels or

even inside the cloud provider.

C. Protocol

The Figure 3 presents a sequence diagram of the proposed

protocol. A detailed description is provided below:

• Session cookie establishment (step 1): The protocol starts

by establishing a TLS channel from the mobile app to

the host app. This procedure should result in a session

cookie, allowing the host app to identify the following

requests coming from the mobile app. By pinning the

host certificate in its code, the mobile app guarantee the

communication with the known host.

• Mobile app and enclave key agreement (steps 3, 4, 5 and

8): A shared secret is reached by performing a Elliptic-

curve DiffieHellman (ECDH) between the mobile app and

directly the enclave by changing the public keys (PKm

and PKe respectively). For auditing purposes or in case
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Fig. 3: Protocol Sequence Diagram

the mobile app developer does not trust the host app

provider, an enclave remote attestation can be included

to certify that the mobile app is communicating with the

right enclave.

• Out of band cryptographic elements for encryption mode

(steps 5, 7 and 9): The enclave generated initialization

vector (IV) and seed for the KDF are sent through an

out of band server (OBS) along with their enclave signed

signatures.

• Key Derivation Function (KDF) (steps 6 and 10) The key

to be used for encryption shall be derived on both sides

combining the shared secret agreed on ECDH and the

seed coming from the OBS to generate the secret key

(SK).

• Encryption of data (steps 11 to 14): This last step delivers

the encrypted data to the enclave. For this purpose, the

mobile app encrypts the data using symmetric encryption

with the SK and the IV. The generated cipher is POSTed

to the host app that uploads it to the enclave. The enclave

is already in possession of the cryptographic elements

necessary to decrypt.

In our implementation, we have used a hardcoded seed and

IV (see Section IV for more details). Nevertheless, below we

list potential out of band servers to be considered:
OTP devices: One Time Password would fit for generating

the randomness to derive the cryptographic elements such as

the seed for KDF. Unfortunately, this is already susceptible to

social engineering, in special for bank apps, as it relies on the

generated password that can be leaked by the user.
SMS: Cryptographic elements could be sent through SMS,

nevertheless, countless attacks to this infrastructure have and

are still being conducted all over the world as some financial

institutions insist to send transaction authentication numbers

(TAN) through this channel. The attacks include intercepting

SMS at the Mobile Network Operator (MNO), device SMS

leakage [11] and mobile phone line kidnapping. The latter

consists on faking IDs of the owner and making the MNO to

transfer the phone line to the fake customer, a very common

attack in developing countries, such as Brazil.

ATM: Banking apps can count on their ATMs to agree on

a first key or the first seed and/or IV. However, this would

bind those cryptographic elements to an instance of the app

installed on the device. If the user changes its device or even

re-install the mobile app, then the process would need to be

repeated. This reduces the user experience, but on the other

hand provides high security mechanism.

Push notifications: In case of Android app, the IV can

be sent through the Firebase push notification. As Firebase

can validate the mobile app signature before delivering the

message, an MiTM attacker would not receive the crypto-

graphic elements necessary for the KDF and encryption steps.

Therefore, the attacker will not be able to send data to the

enclave and this implicitly guarantees that the enclave will

receive it from the mobile app. In terms of performance,

Google claims to deliver 95% of the messages within 250 ms.

Apple users would also count on the same sort of mechanism.

IV. EXPERIMENTS

In this section we present our experiments to assess the over-

head of our SGX enclave implementation over three different

encryption modes (i.e., CBC, ECB and GCM). On the server

side, the experiments have been conducted on the Confidential

Computing platform of Azure providing SGX support. An

3.7GHz Intel XEON E-2176G backs these machines along

with 8GB RAM running on Ubuntu 16.04. On the client side,

and Android app was created and installed on Google Pixel

XL with Android 9. The measurements are averaged on 10

runs.
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Fig. 4: Execution of CBC, EBC and GCM Encryption with

and without SGX enclave implementation.

A. The implementation

We have developed the host and enclave applications in

C, using the Open Enclave framework. All the required

cryptographic functions, namely ECDH, AES, ECB, CBC and

GCM are included in the MBEDTLS library shipped with the

framework.

In the host application a TLS 1.2 socket listens to the

connection coming from the client. Once the TLS tunnel is

created, the host application receives the first POST request

containing a public key from the client to begin the ECDH.

Then the host application starts the first servlet that creates

the enclave and call the enclave key generation function. Upon

completion of the function, the enclave public key is forwarded

to the client. Meanwhile, the enclave completes its part of the

ECDH and stores in its memory the secret. This secret is then

used by the enclave when the host application calls the KDF,

which consisting in applying SHA-512 8192 times along with

a seed. For the tests we hardcoded the seed, however, that

should go through the out-of-band channel along with the IV to

be used in the encryption part. The source of random numbers

for cryptographic elements shipped in the MBEDTLS version

of the openenclave is insecure3. Instead, we used the function

sgx read rand that calls SGX Random Number Generator

(RNG).

After answering the first POST with the PKm, the host

application calls the KDF function to generate and expand the

secret and the seed to the 256 bits SK. This implementation

order allows the client app to proceed with their part of the

key exchange without waiting for the enclave KDF processing.

The enclave is kept alive until the host application receives

the second POST containing the cipher, so that the secret

never leaves the enclave. Finally, the host application calls

the decryption function with the cipher. For testing purposes,

the AES encryption and decryption were implemented in

operation modes ECB, CBC and GCM. In AES/GCM we

implemented three versions of the function: static, optimized

3https://github.com/microsoft/openenclave/blob/master/3rdparty/
mbedtls/mbedtls/yotta/data/README.md

Fig. 5: SGX implementation overhead

and dynamic. The static receives two arguments, the plain text

and the cipher text with a fixed length of 1 MB, while the

optimized only receives one buffer, reducing the TCB to at

most this 1 MB less. The dynamic allocates memory to an

unique buffer.

Some operations modes do not accept to use the same

buffer for the plain and cipher texts, nevertheless, as the

encryption and decryption are applied for each 16 bytes, the

unique buffer passed from the host application to the enclave

is replaced block by block. By using the Native Development

Kit (NDK) provided by Android, the client app implemented

the same cryptographic functions in C from the MBEDTLS.

Both POST messages (Key Exchange and Cipher Upload)

were implemented as asynchronous tasks to allow the Android

app to call them upon demand. In the mobile side, we used the

SecureRandom class with a strong RNG provided by Android

to generate the ECDH seed4.

B. Results

The figure 4 shows performances for encryption in the

three operation modes of AES in the enclave and directly

in the host application. It is possible to see that the SGX

implementation always impose an overhead to the execution

time. The overhead is linear for ECB and CBC cipher modes

as seen in figure 5, but not for GCM. We tested up to 1 MB

as our use case is biometric templates and only for encryption

as we have not seen any major differences for decryption. In

any case, the overhead in encryption was never bigger than 6

ms per MB.

We also tested the overhead for creating the enclave, key

exchange and a Key Derivation Function (KDF). The results

presented in Figure 6 can be all taken into account when using

a SGX enclave to do a ECDH to reach a cryptographic key.

In practical terms the KDF time is negligible on the server

side, as its computation can be processed while waiting for

the second POST. The key exchange function (item 4 of Fig.

3), namely, generating the random seed and calculating the

shared secret using the public key from the mobile, has also a

4https://developer.android.com/reference/java/security/SecureRandom
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Fig. 6: Key exchange overhead

negligible overhead of less than 5 ms. The only considerable

overhead is the enclave creation that takes an average of 50

ms, which can not be considered an issue for practical use.

C. Discussion

In this section we discuss in details the potential vulnera-

bilities caused by compromised components in our proposed

architecture.

The host application added enclave life-cycle functions to

the servlet with TLS of the host application implemented in C.

This first implementation of the servlet maintain the enclave

state between key exchange and data upload requests. In order

to make it stateless, an enclave binded function can seal the

key and retrieve it when the ciphered data comes. However,

this can lead to break the forward secrecy in case of an attacker

saving the history in possession of a compromised sealing key.

The three cipher modes tested are common in mobile apps.

The assumption was that a more complex cipher mode would

increase the overhead of using SGX. However, the results

showed that only the GCM would increase the overhead

exponentially. By all means it is highly recommended to use a

Authenticated Encryption with Associated Data (AEAD) mode

provided by GCM over CBC [10] if the amount of data allows

as GCM tends to rocket for large files. In comparison to the

insecure ECB mode [10], the enclave overhead of using CBC

is quite small even if the file increases too much. Therefore,

developers should not choose to implement ECB instead CBC

in any situation of this protocol as there are no considerable

performance penalties. In addition, it is important to consider

the possibility of each of the components present in the entire

process being compromised. To this analysis, we consider the

most secure scenario using AES in GCM mode and the OBS

as a push notification service.

• Compromised Mobile App: any tampering in mobile

application code would modify its signature, disallowing

the mobile application to request an user push notification

ID. Therefore, by only attacking the mobile app, the

attacker will not be able to deliver a message containing

the seed and IV (item 9 - Figure 3) to an original

instance of the app. So when the attacker build the

cipher, the enclave will not decipher it correctly, the tag

checking method of GCM would fail and the message

can be safely discarded. Additionally, to act as MITM,

the attacker would need to modify the pinned certificate

in the code and redirect the connection to his server,

consequently modifying the signature as well. Moreover,

the distribution of the modified app would require social

engineering techniques.

• Compromised Device: jailbreak or rooted devices poses

as a challenge to major mobile apps. However in this

case, it is not only a matter of owning the device but

also the push notification services built in the operational

systems of the Android and iOS. This would allow the

attacker to retrieve the seed and IV for the encryption.

Old versions of those services had abuses reported [13],

but the new ones apparently remain intact.

• Compromised Host application: this piece of software is

a natural MITM in the environment as forwards all the

messages between all the other players. Yet, if a key not

generated by the enclave is sent by the host application

during step 8 (see Figure 3), its signature cannot be forged

if the mobile app is remotely attesting the enclave sign

key, preventing the creation of the tunnel with the mobile

app. This is efficient in guaranteeing the privacy of user’s

data. Unfortunately, it does not protect from the host

application from uploading fake data to the enclave since

it can exchange keys directly with the enclave. This can

be mitigated by having the enclave checking the signature

of the host app.

• Compromised Enclave: the enclave is the root of trust. In

other words, if the enclave is corrupted during runtime,

the whole setup fails. However, if a breach that allows

to recover the keys of SGX is founded, the previous

communications are not compromised as the shared key

that encrypts sensitive data is immediately discarded after

use upon enclave destruction.

• Compromised Out of Band Server: an attacker controlling

the OBS can deny delivery of the messages and make the

services unavailable.

Only by exploiting combined different infrastructures, that

are nowadays reliable, an attack would succeed. For instance,

if external attacker objective is uploading fake/synthetic data to

the enclave, he would need to modify the mobile application,

rooting/jailbreaking the device and bypassing push notification

services of main mobile operational systems, which has not

been done in the latest versions of the latter. In case the

attacker is targeting to intercept data from the users, he would

require to thrive in all those aforementioned three attacks

inside the target user’s device. In short, those attacks are

unfeasible in practice using the current technology of the

components we implemented. Depending on the specifications

of the Hardware Secured Model (HSM), the latter can replace

the enclave, in other words, our protocol can be extended to

current major banking infrastructure.
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V. RELATED WORK

The use of trusted zones, such as SGX enclaves, to process

sensitive data is relatively new and the number of real use

cases are not numerous. Researchers are now starting to put

more efforts on this subject, driven by the recent threats

and data breaches, as mentioned in session I and II. In

the work presented in [4], the authors focus on analysing

the biometric data from mobile devices by using enclaves.

They implement and evaluate three SGX-compatible learning

algorithms: Naive Bayes (NB), k-Nearest Neighbour (kNN)

and Logistic Regression (LR). While the authors of this

work concentrate their efforts on analysing the data safely,

we focus on presenting a secure way of delivering the data

from the mobile to the enclave. Then, in [7], the authors

present a mechanism to defend MITC attacks by using SGX.

They use sealing and attestation features to protect the user

credentials. Nonetheless, this solution considers a self-owned

cloud server, in private cloud environment. Next, in [8], the

authors present a implicit authentication system. They propose

a profile matching function by using statistics of features to

accept or reject a new sample presented by a user. The data is

encrypted and stored at the carrier to avoid data leaks on the

mobile side. After that, in [9], a software abstraction approach

is proposed to offer trusted sensors to mobile applications. In

fact, the aim is to give to the mobile application means to

verify the authenticity of the data produced by the sensor. In

short, we can argue that the related work, mainly [4], [8], [9],

is complementary to ours, once we deal with the same problem

but from a different perspective.

VI. FUTURE WORK

The code produced for this paper is not currently available.

We are preparing a public version of our framework to be

pushed to a public repository (e.g. github). In our ongoing

future work we aim to extend our framework by considering

the following aspects:

• Investigating compromised systems: we aim to investigate

in more details each of the aspects presented in section

IV-C, e.g. malicious host application. All the potential

vulnerabilities will be attempted to break in order to see

if a real attacker would succeed.

• Enable template extraction inside enclave, mitigating ex-

tractor bypassing (Fig. 1 item 3): the enclave can receive

raw data from the sensors. This means that the extractor

can reside protected inside of the enclave, as well as

tailored for the needs of the analysis.

• On demand parser: after testing the security and building

the template extractor, the next goal is to create a parser

with a Domain Specific Language (DSL) to remove the

Personal Identifiable Information (PII) incoming from the

mobile to the enclave. The DSL should describe to the

enclave which PII is going to be deleted so the data can

be sent to analysis preserving privacy.

VII. CONCLUSION

In this work we proposed a protocol to transfer and process

sensitive data in a trusted zone, such as SGX enclave. Our

main target is to provide a secure channel to transfer data from

a mobile device to a server in which the data can be safely

analysed without exposing Personal Identifiable Information

not even to the service provider. We proceeded experiments

over three implementations of our protocol using three dif-

ferent encryption modes (i.e., CBC, ECB, GCM encryption).

The target is to measure the overhead of using the SGX to

create the encryption key for the secure channel. In general

the performance impact of key generation is considerably low.

Moreover, in our ongoing future work, we are focusing on the

security side of our approach. We aim to evaluate the system

under different attacks, taking into consideration the possibility

of each of the components present in the entire process being

compromised.
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