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1 Research program 1: Methods of analyzing large-scale data

In empirical Bayes multiple testing, a prior distribution is estimated by considering each gene or other

feature corresponding to a null hypothesis to be randomly selected from some reference class. That leads

to the problem of selecting a reference class for the application of empirical Bayes methods since each

feature may belong to more than one eligible reference class. Two solutions to the reference class problem

were developed by Aghababazadeh et al. (2018) and Karimnezhad and Bickel (2018). The latter solution

was further studied by Mei et al. (2017).

Bickel and Rahal (2019a) provided methods of transforming estimates of nonlocal false discovery

rates to estimates of local false discovery rates by correcting a bias in the former. That work represents an

advance over Bickel (2013). Bickel and Rahal (2019b) introduced a new multiple testing procedure and

applied it to the analysis of large-scale genomics data.

2 Research program 2: Uncertainty about statistical models

Building on Bickel (2012a), Bickel (2012b) developed a probability-interval framework for blending fre-

quentist and Bayesian methods on the basis of game-theoretic first principles. It enables data analysis on

the basis of the posterior distribution that is a blend between a set of plausible Bayesian posterior distri-

butions and a parameter distribution that represents a frequentist method of data analysis by combining

strengths of the frequentist and Bayesian approaches. Such blended inference relied on maximum entropy

but was extended to a more general information-theoretic framework in Bickel (2019c).

Bickel (2015) introduced a complementary two-stage approach to the problem of uncertainty about

the prior. In the first stage, all priors in conflict with the data are eliminated. With this approach, prior

conflict may be detected by a number of means, including Bayes factors, proper scoring rules, or the

integrated likelihood ratios that Bickel (2012c) used to quantify statistical evidence. In the second stage,

a robust Bayes decision rule or distribution-combination method is applied to the posterior distributions

corresponding to the remaining priors in order to generate unique inferences and actions such as point

estimates.

Bickel (2018) studied fiducial model averaging as a method of combining statistical models in the same

way as Bayesian model averaging except that a fiducial distribution over models replaces a Bayesian pos-

terior distribution over models. Unlike conventional Bayesian model averaging, fiducial model averaging

can combine frequentist models as well as Bayesian models (Bickel, 2018).

More recently, Bickel (2019e) contributed to the current debate on null hypothesis significance testing

by proving that when a null hypothesis has a sufficiently low p value, any Bayesian model that would

assign the null hypothesis a large posterior probability would fail a model check. It provides a method of

calibrating p values that complements the approaches of Bickel (2019f, 2020).
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3 Research program 3: Statistical methods for data science

The analysis of big data can benefit from statistical methods developed in the above research programs.

The relevance of the program on analyzing large-scale data (§1) is noted in Section 3.1, and that of the

program on model uncertainty (§2) is noted in Section 3.2.

3.1 Assessing the performance of deep neural networks

Bayesian models use posterior predictive distributions to quantify the uncertainty of their predictions. Sim-

ilarly, the point predictions of neural networks and other supervised learning algorithms may be converted

to predictive distributions by various bootstrap methods (Bickel, 2019g, §2). The predictive performance

of each algorithm can then be assessed by quantifying the performance of its predictive distribution.

Previous methods for assessing such performance are relative, indicating whether certain algorithms

perform better than others (e.g., Quiñonero-Candela et al., 2006). I proposed performance measures that

are absolute in the sense that they indicate whether or not an algorithm performs adequately without

requiring comparisons to other algorithms (Bickel, 2019g, §1). The first proposed performance measure

is a model predictive p value, a generalization of a prior predictive p value with the prior distribution

equal to the posterior distribution of previous data (Bickel, 2019g, §3). The other proposed performance

measures use the model predictive p value for each prediction together with the methods in Bickel and

Rahal (2019a), cited in Section 1, to estimate the proportion of target values that are compatible with the

predictive distribution (Bickel, 2019g, §4). I illustrated the new performance measures by using them to

evaluate the predictive performance of deep neural networks when applied to the analysis of a housing-

price data set that is used as a standard in machine learning (Bickel, 2019g, §5).

3.2 Uncertainty about machine learning algorithms

Choosing the supervised learning algorithm that performs the best on test data can overfit the test data in

the same way that an individual algorithm can overfit the training data. Such model selection is outper-

formed by Bayesian model averaging in the presence of a suitable a prior distribution over the algorithms.

Bickel (2019d) used a development of Occam’s razor (Bickel, 2019a,b) to adjust that prior distribution

over models for the complexity of their predictive distributions.

The model predictive p values introduced in Bickel (2019g, §3) can empower the fiducial averaging

of supervised learning algorithms in analogy with Bickel (2018)’s use of prior predictive p values for the

fiducial averaging of Bayesian models.

4 More research contributions

Additional contributions are organized at https://davidbickel.com/.
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