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Abstract— Parkinson’s Disease (PD) is a neurodegenerative
disorder that manifests through slowly progressing symptoms,
such as tremor, voice degradation and bradykinesia. Automated
detection of such symptoms has recently received much atten-
tion by the research community, owing to the clinical benefits
associated with the early diagnosis of the disease. Unfortunately,
most of the approaches proposed so far, operate under a strictly
laboratory setting, thus limiting their potential applicability in
real world conditions. In this work, we present a method for
automatically detecting tremorous episodes related to PD, based
on acceleration signals. We propose to address the problem
at hand, as a case of Multiple-Instance Learning, wherein a
subject is represented as an unordered bag of signal segments
and a single, expert-provided, ground-truth. We employ a
deep learning approach that combines feature learning and a
learnable pooling stage and is trainable end-to-end. Results on
a newly introduced dataset of accelerometer signals collected
in-the-wild confirm the validity of the proposed approach.

I. INTRODUCTION

Parkinson’s Disease is characterized by a set of motor
symptoms, including tremor, bradykinesia and rigidity, as
well as non-motor symptoms, such as depression, constipa-
tion and sleep disorders. In particular, tremor, bradykinesia
and rigidity have been characterized as cardinal symptoms,
meaning that their co-existence is sufficient for an accurate
diagnosis of the disease [1]. Early diagnosis of PD can
prove beneficial to the patient as it enables a more efficient
treatment of the symptoms at the earlier stages of the disease,
thus ensuring a higher quality of life in the coming years [2].
Therefore, automatic detection of PD-related symptoms is a
research direction that holds much promise.

One particular symptom that has received much attention
from the research community is that of tremor. Parkinsonian
tremor consists of rhythmic shaking in hands and other body
extremities with a typical frequency in the range of 3−7Hz.
PD tremor can be classified into two main categories: Resting
tremor which occurs when the muscles are relaxed and action
tremor which occurs when voluntary muscle movement takes
place.

In recent years, many methodologies have been proposed
to automatically detect the presence of either type of tremor
in cases associated with PD. Most works employ Inertial
Measurement Unit (IMU) sensors, either as standalone de-
vices or embedded in consumer electronics like smartphones
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and smartwatches, owing to the wide availability of such
devices. The authors of [3], for example, use a commer-
cial accelerometer and propose the use of Empirical Mode
Decomposition coupled with Support Vector Machines, to
differentiate between Parkinsonian and essential tremor. A
different approach was proposed in [4], where the authors use
gyroscope data and perform regression modelling to estimate
the severity of tremor, while [5] highlights the potential
of using the accelerometer sensors embedded in modern
smartphones to record and evaluate tremor episodes.

More recently, the idea of using a smartphone as a measur-
ing device for PD was widely adopted by i-PROGNOSIS [6],
a European Horizon 2020 project, whose aim is to develop
tools that will detect the early onset of PD, based on data
collected via smartphone. More specifically, [6] introduces a
multi-modal approach, where many data sources, including
IMU, voice and typing patterns, are collected in-the-wild and
subsequently used to detect a variety of PD symptoms, such
as tremor, bradykinesia, rigidity and voice degradation. An
important benefit of the approach is that data collection takes
place unobtrusively, meaning that users need only install the
data collection application.

In this work, we deal with the problem of detecting PD
tremor in an in-the-wild setting. Tremor detection in that
setting has not been thoroughly addressed by the research
community, mainly due to the lack of appropriate datasets.
To that end, we introduce a new dataset that contains
accelerometer recordings, captured under entirely unscripted
and unsupervised conditions, via the smartphone application
of [6].

In contrast to other PD symtoms, tremor has an intermit-
tent nature, meaning that it exhibits unpredictable on and
off periods. This implies that we cannot associate the tremor
ground truth of a subject, provided by a domain expert, with
all the sessions (i.e. recordings) that subject contributed, as
that would lead to extreme amounts of label noise and would
mislead the training procedure of our models. To mitigate
this issue, we view the problem at hand through the prism
of Multiple-Instance Learning (MIL).

Multiple-instance learning is a type of supervised learning,
where the learner is presented with objects called bags.
Each bag is essentially a set that contains multiple data
instances. In contrast to the standard supervised setting,
where annotations for all the instances available, ground-
truth in the MIL setting is provided at the bag level. Although
each individual instance may in fact admit to an annotation
of its own, that is assumed to be unknown.

We can address the problem of detecting PD tremor
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Fig. 1: Overview of the bag creation process. A single bag, that contains segments of contributed accelerometer signals, is
created for each subject. The resulting bag is associated with a single tremor label, provided by domain experts.

in the-wild, as a case of multiple-instance learning. MIL
naturally accommodates the lack of annotations for the
individual sessions contributed by the subjects and can be
used to properly model the intermittent nature of tremor: each
subject can be described by a bag containing segments from
their accelerometer recordings and a single tremor ground
truth, provided by experts. We propose to model the tremor
probability of a subject, given their bag of segments, by
adopting a recently proposed deep multi-instance learning
approach based on the attention mechanism [7].

Training and evaluation of the proposed method was
performed on our newly introduced tremor dataset, which
contains in-the-wild accelerometer data from 37 subjects,
leading to encouraging early results.

II. METHODOLOGY

In the standard supervised learning setting, we aim at
finding a mapping f : RN → Y . Depending on the nature
of Y , we either deal with a regression (Y = R) or a
classification problem (Y = Z). The mapping is learned
through a training procedure that minimises some appropriate
cost function, on a given set of instances xk ∈ RN and
their corresponding targets yk ∈ Y . In the multiple-instance
learning setting, instead of individual instances xk, we are
presented with bags of instances Xj = {xj1, . . . ,xjKj

}.
The goal here is to find a mapping that associates a bag
with a single label, that is, a mapping f : X → Y , where
X = 2R

N

is the power set of RN . We assume that although
the individual instances xjk of a bag have labels yjk ∈ Y of
their own, they are unknown and only a single label yj , which
characterizes the whole bag, is available. In the following,
we will limit our discussion to the case where Y = {0, 1},
i.e. the case of binary classification of non-tremor vs tremor.

A recent approach, put forward in [8], is to model the bag
label probability p(y|X), using a three-step transformation:

pmodel(y|X) = g

(
σ

x∈X
(f(x))

)
(1)

where
i) f : RN → RM transforms each instance xi, to a low-

dimensional embedding of size M .
ii) σ : 2R

M → RM is a permutation-invariant pooling
function that produces a fixed-length representation.

iii) g : RM → Y transforms the pooled representation to
the final bag label probability.

The choice of functions f, σ, g leads to different ap-
proaches to the MIL problem. For instance, if f is the identity
function and σ is the histogram of codebook assignments,
equation (1) reduces to a Bag of Features approach [9].
In this work, we use neural networks to parameterise the
transformations f, g and the attention-based pooling mech-
anism proposed in [7], to model the pooling operator σ.
More specifically, let H = {h1,h2, . . . ,hK} be a bag of
K embeddings resulting from the elementwise application
of the embedding function f to the original bag X (the j
index is ommited for simplicity). The function σ is defined
as a non-linear combination of the instance embeddings:

z = σ(H) =

K∑
k=1

akhk (2)

where

ak =
exp (wT tanh (VhT

k ))∑K
k=1 exp (w

T tanh (VhT
k ))

(3)

The non-linearity of the pooling operator, not apparent
at first sight, arises from the way the quantities ak are
computed: the weight assigned to each hk depends on its
value as well as the learnable parameters w ∈ RL×1, V ∈
RL×M . The construction of equation (3) draws inspiration
from the attention mechanism, that is widely used in the
context of machine translation tasks [10]. In the context of
MIL, it can be used to discover key instances within a bag,
thus resulting in a bag representation that is useful to the
final classifier g.

We propose to use the attention-based pooling mechanism
described above, in order to perform Parkinsonian tremor
detection in-the-wild. The rest of this section describes
the process of creating bags of instances and the training
procedure used for bag classification. Specific details about
the model architecture are given in section IV.

A. Bag creation

Each subject in the dataset contributed one tri-axial ac-
celerometer session for each phone call they had realised
during the data collection period. Each such session is
expected to be of variable length depending on the duration
of the call. To overcome this issue while keeping things
as simple as possible, we segment each session into non-
overlapping windows of fixed-length W , and construct a bag



out of the resulting set of windows. In doing so, we explicitly
choose not to model any intra-session dependencies between
neighbouring segments. Instead, we represent the subject as
an unordered bag of signal segments.

Let S = {w1,w2, . . . ,wN} denote the set of windows
contributed by a subject, where wi ∈ RW×3 and N denotes
the total number of windows contributed by that subject.
In order to limit the size of the bag without sacrificing
its descriptiveness, we perform a ranking of the windows
based on their energy in the band of [3, 7] Hz (the tremor
band) and keep the top Kt windows. In addition, due to the
periodic nature of tremor, we further transform the signal
segments from the time to the frequency domain, using
Welch’s method for spectral density estimation, and keep the
spectral coefficients for the frequency band [0, 25] Hz. The
overall process leads to a bag of constant-size, that for all
subjects has the form X = {x1,x2, . . . ,xKt} where xk ∈
RF×1 and F denotes the number of spectral coefficients kept.
A schematic overview of the process is given in Fig 1.

B. Model training

The bags acquired through the above procedure, with one
bag corresponding to one subject, can now be associated with
the available tremor annotations, provided by the clinical
experts. The resulting set of tuples (X, y), with y denoting
the label of the bag, defines the empirical data distribution
p̂data on which we will train the model of equation (1).

We use fully-connected neural networks (described in
detail in section IV) to model the functions f, g, σ. The whole
model, consisting of the composition of these 3 functions as
defined in equation 1, is trained in an end-to-end manner for
E epochs, using the standard cross entropy loss:

L = −E
X,y∼p̂data

[p̂data(y|X) log(pmodel(y|X))] (4)

After training, the model can be applied to a new,
previously unseen subject in order to estimate its tremor
probability. The probability estimate can then be binarised
using a threshold T , to acquire a final tremor prediction.

III. DATASET

A. Collection

In this work, we use a dataset of IMU recordings that
was collected1 outside laboratory conditions, in the context
of [6]. Collection was performed through an unobtrusive
smartphone application that initiated capturing of the smart-
phone’s IMU sensors whenever a phone call took place.
Sensor recording lasted at most for 75 seconds, due to battery
constraints. The application was distributed to a pool of
users who used it throughout their daily lives for a period
ranging from a few days to several months. Each user thus
contributed a varying number of IMU sessions to the dataset,
depending on the number of phone calls they realised during
the time the application was installed on their phone. In the

1Data collection was approved by the Institutions Ethical Review Board
and subjects provided electronic consent

following, we focus only on signals collected via the widely-
available accelerometer sensor.

B. Pre-processing

A common pre-processing pipeline was applied to all the
collected signals to remove any discrepancies caused by
the recording conditions. First, we performed a pre-filtering
step that discarded any sessions deemed as problematic. The
criteria for rejecting a session where i) Short duration ii) Low
sampling frequency iii) Low signal energy iv) Existence of
extreme values. Each surviving session was subsequently
resampled to a common sampling frequency of 100 Hz. A
segment of 5 seconds was then trimmed from the start and
the end of the signal, to remove the transition phenomena
from moments when the user either picks up or hangs up
the phone. Finally, a high-pass filter with a cutoff frequency
of 1 Hz was applied to remove the gravitational component
from the acceleration signal.

Due to the intermittent nature of tremor, we imposed an
additional restriction on the quantity of data a user must have
contributed in order to be used in our experiments. More
specifically, we stipulated that each user contribute IMU data
of at least 2.30 minutes in total, after the pre-filtering step
described above. Subsequently, users whose data contribution
did not meet that minimum requirement were not considered.
This ultimately resulted in a dataset of 37 subjects with a
total contribution of ∼ 35 hours of acceptable data.

C. Annotation

The Unified Parkinson’s disease rating scale (UPDRS) is
an established rating scale used by clinicians to quantify the
intensity of PD. UPDRS evaluations at successive points in
time, allow for a longitudinal perspective of the disease’s
progress. The standard UPDRS exam contains a self-reported
questionnaire, where the subject provides an estimation of
their symptom severity under daily living conditions, and a
motor examination part, where the physician quantifies the
intensity of their symptoms at the moment of the examina-
tion.

Each user in our dataset underwent a thorough clinical
examination, including a full UPDRS evaluation as well as
an aggregated PD symptom history from past evaluations.
This resulted in two potential sources of annotation for our
data: the self-report provided by the patient and the medical
history provided by the doctor. However, both the self-report
and the tremor history provide only a rough indication of
whether the patient exhibits tremor in any body extremity.
This may lead to extreme label noise, since a user may have
tremor only in the right hand but use the left hand when
making a phone call. Therefore, all their contributed sessions
would be tremor-less but we still would consider them as
tremorous, owing to the lack of more detailed annotation.
To mitigate this issue, we additionally performed manual
annotation of each subject. To that end, a group of signal
processing experts used the subjects whose medical history
indicated high tremor intensity, to acquire a sense of how
tremor exhibits in an IMU signal. Having done that, the rest



of the subjects were annotated by individually inspecting the
raw accelerometer signal of each session as well as its power
spectrum, and taking into account both the self-report and the
tremor history.

IV. EXPERIMENTS & RESULTS

Training and evaluation of the proposed method was
performed by employing a Leave One Subject Out (LOSO)
scheme. We performed 3 different experiments, one for each
available type of annotation. In each experiment, we used
the signal processing experts’ annotations for training and
evaluated the resulting model using each of the available
annotations (self-report, medical history, signal experts).

We used a window length W of 5 seconds for the signal
segmentation procedure. Each resulting bag contained at
most Kt = 1500 segments. For the instance embedding
function f , we used a network with 3 fully-connected layers
of 256, 128, 64 units respectively, coupled with the Leaky-
ReLU non-linearity with 0.2 negative slope and dropout with
drop probability p = 0.5. Similarly, for the final classifier
g, we use 3 fully-connected layers with 32, 16, 2 units
respectively, along with the Leaky-ReLU activation with 0.2
negative slope and dropout with p = 0.2, in all but the final
layer. The attention pooling function σ, was parameterised
by a 2-layer network that implemented equation (3), with
the attention dimension, L, set to 16. The model was trained
end-to-end for E = 500 epochs using the Adam optimizer
with learning rate ε = 0.0005 and exponential decay after
the first 250 epochs by a factor of 0.9. Finally, the decision
threshold, T , was set to 0.5.

To compare against other methods, we used two standard
pooling algorithms under the same experimental setup. More
specifically, we used the Bag of Features (BoF) algorithm,
with a codebook size of 128, and the Fisher Vector (FV)
encoding scheme [9] with 32 modes. Each algorithm was
used to encode the bag of segments that characterised each
subject. A Support Vector Machine (SVM) was then used to
classify the resulting bag encodings. The chi-square kernel
was used for the BoF encoding (due to its histogram nature),
while the linear kernel was employed for the FV encoding.
The C hyperparameter of the SVM was set to 1 and balanced
weights were used for each class.

Each experiment was repeated 5 times to account for
random initialisation issues. The average performance of
each method over the 5 trials is given in Tables I, II, III.

TABLE I: Evaluation results using annotations provided by
signal processing experts

Model Precision Sensitivity Specificity F-score

Deep MIL 0.893 0.763 0.961 0.851
BoF + SVM 0.888 0.291 0.984 0.438
FV + SVM 0.552 0.763 0.738 0.750

Based on these results, we can see that the deep MIL
approach leads to the best performance under almost all
evaluation schemes. In particular, when evaluating on the
annotations provided by the signal processing experts (which

TABLE II: Evaluation results using annotations provided by
medical experts

Model Precision Sensitivity Specificity F-score

Deep MIL 0.863 0.422 0.936 0.582
BoF + SVM 0.863 0.211 0.968 0.339
FV + SVM 0.584 0.500 0.663 0.570

TABLE III: Evaluation results using annotations provided by
the subject self-report

Model Precision Sensitivity Specificity F-score

Deep MIL 0.791 0.399 0.888 0.551
BoF + SVM 0.937 0.158 0.988 0.270
FV + SVM 0.612 0.515 0.655 0.577

can be considered as the most reliable due to reasons dis-
cussed in section III-C), the MIL approach outperforms the
alternatives by a large margin. This trend persists on the other
evaluation schemes as well, suggesting that the attention-
based pooling method can accurately identify tremor-related
instances within the subject bag, even at the presence of label
noise (as indicated by tables II, III).

V. CONCLUSIONS

We have presented a method for automatically detect-
ing Parkinsonian tremor from accelerometer data using a
deep multiple-instance learning approach. Early results are
promising and indicate that the method can adequately
handle the noisy and unpredictable nature of signals obtained
in-the-wild, thus highlighting its potential in detecting tremor
in a general population of users.
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